
DISS. ETH NO. 30015

Explaining and Improving Communication in
Graph Neural Networks

A thesis submitted to attain the degree of

DOCTOR OF SCIENCES

(Dr. sc. ETH Zurich)

presented by

LUKAS FABER

MSc IT Systems Engineering, University of Potsdam, Germany
born on 19.04.1993

accepted on the recommendation of

Prof. Dr. Roger Wattenhofer, examiner
Prof. Dr. Makoto Yamada, co-examiner

2024

First Edition 2024

Copyright © 2024 by Lukas Faber

Series in Distributed Computing, Volume 44
TIK-Schriftenreihe-Nr. 209
Edited by Roger Wattenhofer

Abstract

This thesis studies improvements for message-passing Graph Neural Net-
works (GNNs) from two angles. First, we tackle the problem of understand-
ing how GNNs reason. We quantify how much GNN architectures achieve
the combined reasoning over features and edges that GNNs uniquely offer.
We then present two methods to explain GNN predictions. The first ex-
planation method explains graphs by contrasting them to similar examples.
The second explanation method uses decision trees to build recipes that ex-
plain the important inputs and how the GNN uses these inputs. We finish
our understanding chapter by examining current explanation datasets. We
discover several problems with these datasets that can lead to wrong con-
clusions. Instead, we propose three new datasets to evaluate explanation
methods.

For the second angle, we investigate the limits of message passing. We
identify the message aggregation step to potentially lose much information,
contributing to problems identified by past research, such as Oversmooth-
ing, Underreaching, or the 1−WL expressiveness limit. We propose a new
architecture that avoids aggregation entirely and processes individual mes-
sages asynchronously. We also identify a problem with neural architectures
to learn comparisons between numbers and propose a new architecture well-
aligned to learn comparisons. For example, we can use this architecture in
a GNN setting to learn shortest paths.

III

Zusammenfassung

In dieser Doktorarbeit betrachten wir zwei Ansätze zur Verbesserung von
Graphneuronalen Netzwerken (GNNs), die dem Nachrichtenaustauschprin-
zip folgen. Im ersten Ansatz verfolgen wir zunächst ein besseres Verständ-
nis von GNNs. Wir quantifizieren, inwiefern existierende GNN Modelle das
gleichzeitige Berechnen von Knotenattributen und Kanteninformationen aus-
nutzen können. Im Anschluss präsentieren wir zwei Methoden zur Erklärung
von GNN Vorhersagen. Die erste Methode verwendet kontrastiert den Gra-
phen, den wir erklären wollen mit ähnlichen Graphen aus dem Trainings-
datensatz. Die zweite Methode verwendet Entscheidungsbäume, um soge-
nannte Rezepte zu erstellen. Diese Rezepte erklären für alle Graphen eines
Datensatzes welche Teile der Eingabe wichtig sind, und wie das GNN diese
Eingaben verwendet um die Vorhersage zu berechnen.

Im zweiten Ansatz betrachten wir die Grenzen des Nachrichtenaustausch-
prinzips. Wir haben festgestellt, dass sich viele Probleme von GNNs auf
den Aggregationsschritt der erhaltenen Nachrichten mindestens teilweise zu-
rückführen lassen. Aus diesem Grund haben wir eine neue GNN Architektur
entwickelt die komplett auf Aggregation verzichtet. Stattdessen verwenden
wir asynchrone Kommunikation um jede Nachricht einzeln zu verarbeiten.
Zuletzt haben wir festgestellt, dass neuronale Netzwerke generell Schwierig-
keiten haben, Vergleiche zwischen Zahlen zu lernen. Wir stellen eine neue
dedizierte Architektur zum Lernen solcher Vergleiche vor, die wir beispiels-
weise dazu verwenden, mit GNNs besser kürzeste Pfade zu lernen.

IV

Acknowledgments

I want to thank all of my fellow DisCo students for the last years I had with
you. During these 4.5 years, I met a lot of amazing people. Thanks, Béni,
Henri, and Roland for making me an honorary member of G94 together with
Zeta. I cherished our fun times with Tichu and other things both in and
outside of Disco. Also thank you Roland for welcoming me into the group,
Henri for the spire-slaying, and Zeta for the Tichu masterclasses and how
to play the “literally-worst-hands-I-have-ever-had-in-my-life”. I also thank
the travel squad Andreas, Benjamin, Florian, Joel, and Karolis for the two
amazing trips to Dijon and Milan, and hope we manage some more. Thanks,
Luca for carrying my posters around the world to meet up in Hawaii. On
a work-related note, thanks Benjamin for the shared late evenings/suffering
before deadlines, Joel for the pro memeing, and Karolis for making all the
numbers bold. When I joined Disco Pankaj thankfully taught me about
the importance of cake. Thanks, Quentin for teaching us about the mod-
ern re-interpretation of cake through bananas and Till for teaching that not
all sweets have to be cake. I also hope I get to savor Florian’s beer eventually

The most important part of the PhD is learning. Some learning was through
a reading group that I enjoyed with Béni, Damian, Gino, and Oli. Thanks,
Damian for finding exotic papers, Gino for teaching me critical thinking on
papers, and Oli for bringing out the good in every paper. I also want to
thank Sal for bringing Lulu into our group as a postdoc who gave us veteran
experience on PhD life. Some learning was about life where I want to thank
Darya for building professional swimming goggles with me and Judy and
Robin for the climbing tipps. Thank you Andras for your extraordinarily
funny life-commentary of my CoTi miseries and life in general and the some
hilarious paper writing sessions. Thank you Andrei for philosophical dis-

V

VI

cussions about the German language and number systems. I also want to
thank Kobi, Tejeaswi, and Yann for the teachings/preachings about crypto,
trust, society, the best mensa (the jury is still out on Platte), and what I
cannot better describe than life in general. Another important part of the
PhD is learning to teach students. From Simon, I learned how to manage
many students at the same time, but Peter taught me (or rather all of us)
how many students you can actually supervise at once. Ye taught me how
to ethically involve students as participants in research and Zhao taught me
how to manage lectures efficiently—which I found so particular I coined it
Zhaoing a meeting. Thanks, Lioba for the fun and rough times where we
learned together to hire professors.

Now that I finish the PhD I will completely switch to industry life, for
which I was thankfully prepared by Ard and Diana through their extensive
internship-obtained industry experience. I look forward to matching your
experience in a few years—maybe. Andreas thankfully interns at my new
workplace to keep me up on the latest DisCo news.

I also want to thank Roger for his guidance over the last 4.5 years during
the PhD. I learned a lot from you and would not have finished without your
help. Outside of work, I really enjoyed playing Tichu with you and Chess
against you.

Those last 4.5 years were not always easy so I am very grateful for the
support I got from my family and my friends to keep me motivated and
on track to finish. Many thanks go to Trier, Mainz, Freiburg, Munich, and
Potsdam!

Collaborations and Contributions

Most of the chapters in this book are based on preprints or published papers
written in collaboration with fellow researchers. Below is a list of the co-
authors per chapter, whom I would like to thank for their contributions and
especially for the interesting meetings that we had during these projects.
The papers marked with a * list the authors in alphabetical order.

Chapter 3 is based on the preprint Should Graph Neural Networks Use
Features, Edges, Or Both? [Faber et al., 2021b]. Coauthors are Yifan Lu
and Roger Wattenhofer.

Chapter 4 is based on the publication* Contrastive graph neural network

VII

explanation [Faber et al., 2020]. Coauthors are Amin K Moghaddam and
Roger Wattenhofer.

Chapter 5 is based on the publication GraphChef: Learning the Recipe
of Your Dataset [Müller et al., 2023]. Coauthors are Peter Müller, Karolis
Martinkus, and Roger Wattenhofer.

Chapter 6 is based on the publication* When Comparing to Ground Truth
is Wrong: On Evaluating GNN Explanation Methods [Faber et al., 2021a].
Coauthors are Amin K Moghaddam and Roger Wattenhofer.

Chapter 7 is based on the publication GwAC: GNNs with Asynchronous
Communication [Faber and Wattenhofer, 2023a]. Coauthor is Roger Wat-
tenhofer.

Chapter 8 is based on the publication Neural Status Registers [Faber and
Wattenhofer, 2023b]. Coauthors is Roger Wattenhofer.

Contents

1 Introduction 1

I Explaining Communication in Graph Neural Networks 4

2 Understanding Communication 5

3 Graph Neural Network Necessity 11
3.1 A Metric for Correct Predictions 12
3.2 Experiments . 13

4 Contrastive GNN Explanation 17
4.1 CoGE: Contrastive GNN Explanations 19
4.2 Experiments . 21

5 Decision Tree Recipes to explain GNNs 25
5.1 GraphChef Recipes . 27
5.2 Recipe Improvements . 30
5.3 Experiments . 32

6 Explanation Evaluation Pitfalls 41
6.1 Pitfalls for Explanation Evaluation 42
6.2 Three New GNN Explanation Benchmarks 47
6.3 Experiments . 53

VIII

CONTENTS IX

II Improving Communication in Graph Neural Networks
58

7 GwAC: Asynchronous GNNs 59
7.1 Limitations of GNNs . 59
7.2 No Aggregation Asynchronous Communication 62
7.3 The GwAC framework . 63
7.4 Expressiveness Analysis . 70
7.5 Underreaching and Oversmoothing 76
7.6 Complexity and Efficiency . 78

8 Neural Status Registers 82
8.1 Neural Status Registers . 84
8.2 Experiments . 88

9 Conclusion 98

1
Introduction

Graphs are much like the force (and apparently economics [Feinstein, 2015]):
“They surround us, penetrate us, and the graphs’ edges hold the galaxy to-
gether.” We can find graphs almost everywhere: Social Networks between
people, Financial Networks in Economics, Traffic Networks in Civil En-
gineering, Bindings between atoms in molecules in Chemistry, Interactions
between Proteins or Enzymes in Biology, or Interactions between particles in
Physics. Naturally, the recent surge of neural network-based models cannot
ignore a field with such rich applications. Graph Neural Networks became
the workhorse for deep learning in graph-structured data. In 2019, GNNs
have just started to attract interest. It was an interesting time for research
in GNNs because the field was new and unexplored. In particular, what
GNNs can or cannot do was still open. The first graph-first explanation
methods also just started appearing in that year.

In the first part of the thesis, we connect to this zeitgeist and understand
what these GNN models can do. First, we investigate which kind of pre-
dictions GNNs newly allow on then-popular graph datasets. While existing
methods can easily reason about node features (red nodes are important)
or graph structure (degree two nodes are important), GNNs now seamlessly
combine both: Only red degree two nodes are important. Then, we dive

1

CHAPTER 1. INTRODUCTION 2

into the main topic of GNN explanation methods, presenting two new ones.
Explaining GNNs differs from other modalities since we have to consider
the discrete edge information. This difference also makes it easy to mistake
explanations (What part of the input makes the GNN predict a class) as
adversarial attacks (what part of the input can we change to cause a mis-
classification). We can easily create graphs that differ from every graph in
the training set by perturbing edges and the graph structure. GNNs may
behave abnormally on such graphs. The first explanation chapter investi-
gates this phenomenon more closely and proposes a training-distribution-
compliant method. In the second explanation chapter, we present an expla-
nation method with a new quality: We can identify the important inputs
and additionally understand the decision-making process. The recipes un-
veil the GNN reasoning through a series of decision trees. We found issues
with existing datasets during both methods’ evaluations that can lead to
false conclusions about whether an explanation method works. We finish
the explanation part with an analysis of properties we need for explanation
datasets and three benchmarks following these properties.

In the second part of the thesis, we connect GNNs to our research group:
Distributed Computing. Loukas [2020], Sato et al. [2019], Sato [2020] char-
acterized the similarities between GNNs and the LOCAL distributed com-
puting model. GNNs also inherit some of the problems from these models,
which are partially aggravated by aggregating messages before processing
them. Oversmoothing is one problem where nodes become more indistin-
guishable with every GNN layer. Oversmoothing can lead to Underreaching
when we cannot use enough GNN layers. Furthermore, GNNs cannot dis-
tinguish several classes of different graphs. They are limited in the same
way as the Weisfeiler-Lehman graph isomorphism heuristic. We take inspi-
ration from other distributed computing models to tackle these limitations
and propose an alternative framework for GNNs following asynchronous
communication. Notably, this framework processes every message indepen-
dently and avoids aggregation completely. We show that this framework
can help to remedy the mentioned problems. We finish wiht a case study
on shortest paths which are a common algorithmic problem for GNNs. We
found that the arithmetic problem of comparing numbers that we need for
finding shortest paths (to find the smallest distance) is a task neural net-
works struggle with. Generally, we can evaluate comparisons on numbers
the model has seen during training but not to much larger numbers. This
suggests that models do not actually understand how to solve comparisons
but find a heuristic that works on the training set. We present a new archi-
tecture that is well-aligned to learn comparisons to solve this shortcoming
and help in learning shortest paths.

CHAPTER 1. INTRODUCTION 3

Background on Graph Neural Networks

In this thesis, we look at GNNs in the message-passing framework proposed
by Gilmer et al. [2017], Battaglia et al. [2018]. In this framework, nodes op-
erate synchronously in rounds. In every round, every node sends a message
to every neighbor based on its state plus potentially edge information and
the recipient’s state. Next, all nodes aggregate their received messages us-
ing permutation-invariant functions. Then, every node transitions to a new
state based on its previous state and the message aggregation. Generally, we
realize the message computation and node update through learnable neural
functions.

Different GNN architectures propose different ways to realize those func-
tions. Graph Isomorphism Networks [Xu et al., 2019c] sum the incoming
messages before combining the aggregation with the node state. For exam-
ple, Graph Convolutional Networks [Kipf and Welling, 2017] scale messages
by the involved nodes’ degrees to achieve laplacian smoothing. Graph At-
tention Networks [Veličković et al., 2018] use the attention mechanism to
direct the receiver’s attention to important messages. There are many more
possible turning knobs, which You et al. [2020] mapped out in a design
space. Is there edge information to incorporate into the messages? Which
aggregation method to use? Do we include skip connections in the model?

Part I

Explaining Communication in
Graph Neural Networks

4

2
Understanding Communication

Graph Neural Networks are no exception compared to other neural archi-
tectures when it comes to being able to understand—or rather not being
able to understand— their decision process. If we have no insight into the
decision-making process, we can use GNNs only as black-box models. This,
in turn, limits our possible trust in the model and may prevent us from
applying GNNs in safety-critical domains such as healthcare. How can we
reveal the decision-making process of GNNs?

The neural functions for computing messages, node, and edge updates allow
for complicated reasoning. Furthermore, the GNN decision-making process
further uniquely involves the exchange of messages. For example, we ad-
ditionally need to understand: Which edges between which types of nodes
are important? How do we route the important information to the relevant
nodes? This unique reasoning over edges is furthermore discrete: In most
graphs, edges to propagate messages either exist or do not exist. This dif-
fers from the continuous reasoning over activations in most neural network
architectures. Many approaches have been proposed in recent years to ad-
dress these unique explanation requirements, some inspired by explanation
methods from other domains, some uniquely built for GNNs.

5

CHAPTER 2. UNDERSTANDING COMMUNICATION 6

Instance-Level Explanations
Most explanation methods follow one the approaches in Figure 2.1: Com-
pute an importance score for each node (b); Compute an importance score
per edge (c), or identify an explanation subgraph(d). We can easily trans-
form these each ideas into each other: We can transform each importances
into node importances by aggregating the importances of all adjacent edges.
Vice versa, we can average two adjacent nodes’ importances to derive the
importance of an edge. To derive a subgraph from importances, we choose
all nodes or edges whose importance surpasses a threshold. When we have
an explanation subgraph, we assign every node and edge inside the sub-
graph an importance of 1 and all other inputs 0. Either way, we derive the
explanations for a particular graph and explain why the GNN assigns this
graph the predicted label.

(a) (b) (c) (d)

Figure 2.1: Overview of different explanation methods. (a) Graph for
which we want to explain a prediction. (b) Node importance explanations,
the brighter the node the more important it is. (c) Edge importance ex-
planations, the thicker an edge the more important it is. (d) Subgraph
explanation, retaining the important subgraph of the input.

Gradients are one example way to compute such scores. For example,
Baldassarre and Azizpour [2019] and Pope et al. [2019] propose gradients
with respect to the input whose perturbation maximizes changes in pre-
dictions. Gradient-based ideas are commonly used in computer vision, for
example, in the Grad-CAM method [Selvaraju et al., 2017a]. Schlichtkrull

CHAPTER 2. UNDERSTANDING COMMUNICATION 7

et al. [2021] extend this idea with continuous masks over edges, which al-
lows computing edge gradients and edge scores as well. While Feng et al.
[2022] is not a gradient method, it backtracks the contributions towards the
prediction through the GNN. The backtracked importances are composed
into subgraphs.

Counterfactual methods build on top of occlusion from computer vi-
sion [Zeiler and Fergus, 2014]: If removing parts of the input changes the
GNN prediction drastically, these parts must be important. Indeed, Lucic
et al. [2021] show that we can find compact explanations in the form of
few counterfactual edges. However, we have to be careful not to mistak-
enly exploit model weaknesses in the form of adversarial attacks, which also
only need a few perturbations [Zügner et al., 2018, Zügner and Günnemann,
2019, Geisler et al., 2020]. To this end, Bajaj et al. [2021] focus on perturba-
tions that simultaneously work for multiple input graphs. The idea is that
such perturbations capture the GNN decision process and not adversarial
artifacts. Ma et al. [2022] derive counterfactual changes not directly in the
graph space but train a variational autoencoder and use its latent space to
generate explanations. Chen et al. [2023], Fang et al. [2023] explicitly learn
a graph distribution and only accept explanations that respect this distri-
bution.

Optimization-basedmethods define an optimization objective whose max-
imum constitutes the explanation. GNNExplainer [Ying et al., 2019] opti-
mizes the mutual information between masks of node features and edges
and the prediction labels. They also introduce a set of explanation bench-
marks that became popular in many follow-up works. Luo et al. [2020] also
build a mutual-information objective. They extend their objective to find
explanations that can explain many graphs at once. Chen and Ying [2023]
employ mutual-information between graph changes and predictions to find
temporal explanations.

Yuan et al. [2021], Ye et al. [2023] use monte-carlo-tree-search to explore the
space of all possible subgraph explanations, scoring the subgraphs with
Shapley values [Shapley, 1953]. Xia et al. [2023] use monte-carlo-tree-search
on the space of graph changes to find explanations in temporal graphs. Li
et al. [2023] propose an alternative approach to explore the space of sub-
graphs to build explanations: they incrementally build explaining subgraphs
through a learnt policy neywork. Wu et al. [2023] conversely build explain-
ing subgraphs by matching parts of graphs from the training set and extract
the commonalities

CHAPTER 2. UNDERSTANDING COMMUNICATION 8

Example-based methods explain a given graph through similar or dissim-
ilar examples. Huang et al. [2020] adopt the LIME algorithm [Ribeiro et al.,
2016] for graphs. They explain a graph through linear approximation of the
decision boundary near that graph. They obtain this decision boundary by
interpolating the most similar graphs with the same and different labels. Vu
and Thai [2020] capture correlations between inputs and predictions with
probabilistic graphical models. Dai and Wang [2021] use similar examples to
transform their GNN into a k-nearest-neighbor classifier where the nearest
neighbors simultaneously decide the prediction and provide an explanation.
We will propose one more example-based explanation method in Chapter 4.
Example-based explanation methods are naturally resistant to mistake ad-
versarial attacks for explanations since explanations are other graphs from
the training distribution.

[Duval and Malliaros, 2021] learn a simpler surrogate model from their
GNN that they use as an explanation. An alternative to post-hoc explaining
complex GNNs is training simpler GNNs that are understandable through
inspection. The question is how much classification performance such sim-
plicity might sacrifice. Cai and Wang [2018], Chen et al. [2019a], and Huang
et al. [2021] show that simpler GNNs must not be much worse than the com-
plex ones. However, these architectures are not built to be more explainable.
Chapter 5 will feature the GraphChef model that intentionally sacrifices ex-
pressive power but with the goal of being more understandable.

Model-level explanations
Another set of explanation methods does explain individual graphs but in-
stead explains how a GNN generally reasons on the entire dataset. For
example, we want to understand the key characteristics that make a GNN
predict a certain class. Zhang et al. [2021] learn a prototype per prediction
class. A prototype tries to capture the essential structure per class, removing
any noise that might be present on training graphs. In the same spirit, Yuan
et al. [2020a] and Wang and Shen [2022] define a graph generation problem
to generate a graph per class that maximizes the GNN confidence to predict
this class. Lv and Chen [2023] define desirable properties of model-level
explanations and search for such explanations through greedy optimization.
Azzolin et al. [2022] build a framework to leverage the instance-level expla-
nation methods from the previous section. Their framework combines many
instance-level explanations to build model-level explanations in the form of
simple decision rules. However, all these methods showcase which inputs are
important or how the input should be structured. They do not explain how

CHAPTER 2. UNDERSTANDING COMMUNICATION 9

the GNN uses these inputs and do not reveal the decision-making process.
In chapter 5, we will present a new explanation method, GraphChef, that
finds model-level explanations and reveals the decision-making process.

Desirable Properties of Explanation Methods
First and foremost, we want an explanation method to find correct explana-
tions. We can measure correctness as either Fidelity or Accuracy. However,
there are further desirable properties of an explanation method.

Accuracy Sanchez-Lengeling et al. [2020], Yuan et al. [2020b]] introduce
Accuracy for cases when we know which nodes and edges should be
the explanation for a GNN prediction. Accuracy measures the overlap
between the explanation and these known inputs: the higher Accuracy,
the better the explanation.

Fidelity Pope et al. [2019], Yuan et al. [2020b], Amara et al. [2022]] define
Fidelity for cases when we do not know which nodes and edges are the
correct explanation. A good explanation should highlight the unique
necessary parts of the input that drive the GNN prediction. Remov-
ing these necessary inputs should then change the model prediction.
Fidelity captures the difference in model prediction with the explana-
tion being removed or not. A good explanation should lead to large
differences.

Stability Sanchez-Lengeling et al. [2020], Yuan et al. [2020b], Agarwal et al.
[2022]] define that if the explanation found the key input, the expla-
nation should not change when we randomly change small amounts of
the input.

Faithfulness An explanation method should explain a model, not try to
solve the prediction itself. A faithful explanation method captures
the model prediction, even when it might be wrongSanchez-Lengeling
et al. [2020], Yuan et al. [2020b], Agarwal et al. [2022]. [Agarwal et al.,
2022] extend this concept with Fairness: If the underlying model is
biased/unbiased, the explanation method should have/avoid the same
biases.

Consistency One opposite idea is that an explanation should be consis-
tent across the top performing models [Sanchez-Lengeling et al., 2020].
However, this property assumes that all models reason in the same
way. Otherwise, Consistency contradicts Faithfulness, which states
that we should explain the model behavior exactly.

CHAPTER 2. UNDERSTANDING COMMUNICATION 10

Sparsity A good explanation should be understandable by humans. There-
fore, it should be sparse and consist of as few nodes and explanations
as possible[Pope et al., 2019, Yuan et al., 2020b].

Contrastivity Explanations should be unique for each different class. In
turn, this means that explanations for different classes should be differ-
ent. Otherwise, the explanations do not find class-specific inputs [Pope
et al., 2019].

Benchmarking Explanation Methods
Most works either use Fidelity or Accuracy to evaluate a good explanation
method. Many works prefer accuracy on the benchmarks proposed by Ying
et al. [2019]. For one example benchmark, they create a binary tree as a
base graph and attach motifs, such as three-by-three grids, to some nodes
in the graph. Every node has to predict if they are part of such a motif.
The explanation ground truth is the whole motif for all motif nodes. These
benchmarks have become popular and used in evaluation in many later
papers. However, we will show in chapter 6 that these benchmarks have
pitfalls that make them problematic for evaluation. Low accuracy may not
necessarily mean bad explanations. Himmelhuber et al. [2021] found similar
issues with these datasets. We will propose three attempts at ground-truth
benchmarks that avoid such pitfalls. Recent works by Amara et al. [2022]
and Agarwal et al. [2023] also propose new benchmarks to avoid the pitfalls
from Chapter 6. Finally, Agarwal et al. [2022] analyze explanation methods
theoretically, avoiding empirical pitfalls completely.

Using fidelity for evaluation is not without problems either. If removing a
potential explanation takes the graph out of the training distribution, fi-
delity might be high even though the graph is not an explanation. Instead,
we might have found an adversarial attack that takes the input out of the
training distribution [Hooker et al., 2019]. In chapter 4, we show one ap-
proach to avoid this problem. Fang et al. [2023] explicitly learn the training
data distribution to ensure their explanations do not fall outside. One more
issue with fidelity arises when there are multiple valid explanations. Re-
moving one correct explanation might not change the model prediction and
would falsely receive a low fidelity score. We discuss this problem in more
detail in chapter 6.

3
Graph Neural Network Necessity

Before we head to explain concrete GNN predictions, let us first understand
GNNs on a higher level. The appealing novelty of GNNs is that they si-
multaneously exploit the node features and the graph structure with neural
functions. Figure 3.1 illustrates the three modes. Learning methods be-
fore GNNs either make use of the node features (Figure 3.1a) such as using
MLPs or extracting information from the graph structure (Figure 3.1c) with
methods such as Node2Vec [Grover and Leskovec, 2016] or VERSE [Tsit-
sulin et al., 2018].

Let us investigate to what extent GNNs make use of this. Shchur et al. [2018]
investigate that simpler models achieve comparable performance to GNNs
despite these models using only the node features or the graph structure.
Zhu et al. [2020] report that GNN architectures struggle and only perform
as well as feature-only models (i.e., MLPs) when facing graphs with low
homophily. This paper motivates our study to measure the extent to which
we can solve a dataset through (i) node features, (ii) graph structure, or
(iii) the combined reasoning of GNNs.

11

CHAPTER 3. GRAPH NEURAL NETWORK NECESSITY 12

(a) (b) (c)

Figure 3.1: What is available for prediction? Left: Every node has only
access to its local features. Right: Only the graph structure is available.
Middle: A GNN can combine features and structure.

3.1 A Metric for Correct Predictions

Let us first define “solving”. The most common form of empirical evaluation
of a GNN, or any machine learning model, is to evaluate the correct predic-
tions on the test set. Generally, we measure the best performance, averaging
over several different seeds to combat (un)-lucky initialization. However, we
want to compute a measure on the dataset that is even more robust against
variance from different hyperparameter choices or initial weights. Further-
more, we a measure independent from the number of classes. For example,
even a random model is correct 50% of the time.

We propose to define solving on the level of an individual prediction and
by contrasting the model across many different instantiations to a random
model. We count how many times the model predicts the correct class. We
consider that a model solves a prediction when we cannot statistically ex-
plain the number of correct predictions through random guessing. When we
reject this hypothesis, we can conclude that there is some systemic informa-
tion that the model could exploit.

Our null hypothesis is that guesses follow a Bernoulli distribution with suc-
cess probability 1

c
where c is the number of classes. Suppose we conduct r

runs on the model with n successes. We want to confirm or reject if such a
Bernoulli process can explain those n successes. In the experiments, we will
use a significance level of 0.001. For a dataset, we will define the solvable
set S as the set of all models where we can reject the null hypothesis. We
will now define operations on these sets.

CHAPTER 3. GRAPH NEURAL NETWORK NECESSITY 13

3.2 Experiments

Evaluating Datasets
Let F be a model that uses only node features and E a model that uses only
edge information. Consider the GCN[Kipf and Welling, 2017] convolution
for a graph with n nodes:

H(l+1) = σ(D
1
2AD

1
2H(l)W (l))

This convolution uses a modified graph adjacency matrix A where we add
self-loops to every node. The diagonal matrix D of node degrees also in-
cludes these self-loops. H(l) ∈ Rn×dl , H(l+1) ∈ Rn×dl+1 are embeddings
for every node per layer and W (l) ∈ Rdl×dl+1 . Our feature-only model
does not have access to the graph information and would only compute
H(l+1) = σ(H(l)W (l)). This is equivalent to a standard MLP over the
node features. For an edge-only model, we set the initial node embedding
H0 ∈ Rn×d0 to a matrix of all ones. As alternatives, we considered ex-
tracting graph features (such as degree, page rank, and centrality measures)
and computing an MLP over those. The feature-starved GNN architecture
is a better choice because it is a more flexible approach that can compute
the graph features it considers most useful. Propagation algorithms such as
those used by Shchur et al. [2018] are other alternatives. We will define SF

as the solvable set by the feature MLP and SE as the solvable set of the
no-features GNN.

For good GNN datasets, these individual scores are as low as possible, mean-
ing that only the combined information of features and edges provided by
GNNs allows for correct predictions. We experiment with co-citation node
classification datasets: Cora, CiteSeer, and PubMed [Yang et al., 2018b].
For graph classification, we use several datasets from Morris et al. [2020]:
MUTAG, ENZYMES, AIDS, and PROTEINS.

We further experiment with several GNN architectures: Graph Convolu-
tional Networks (GCN) [Kipf and Welling, 2017], GraphSage (GS) [Hamil-
ton et al., 2017], Graph Attention Networks (GAT) [Veličković et al., 2018],
and Graph Isomorphism Networks (GIN) [Xu et al., 2019c]. We use the sum-
pooling aggregation for GraphSage and GIN. We build all architectures with
4 layers and set the embedding size to 64. Table 3.2 shows the relative sizes
of SF , SE , and SGNN relative to all possible predictions. We union the
feature and edge-only sets to measure how many predictions are left for a
GNN to solve. We also measure the best union of features, edges, and GNN
to measure how many new predictions the GNNs solve. We use GIN as

CHAPTER 3. GRAPH NEURAL NETWORK NECESSITY 14

the base architecture for the edge-only model, which is the most expressive
architecture considered. Furthermore, we report the best-performing GNN.

Dataset SF SE SF ∪ SE SGNN SF ∪ SE ∪ SGNN

Cora 0.803 0.780 0.923 0.925 0.969
Citeseer 0.752 0.593 0.85 0.812 0.909
Pubmed 0.892 0.626 0.93 0.877 0.961

MUTAG 0.739 0.910 0.94 0.888 0.973
AIDS 0.770 0.879 0.94 0.949 0.980
ENZYMES 0.373 0.473 0.652 0.570 0.800
PROTEINS 0.665 0.662 0.791 0.693 0.838

Table 3.2: Solvable sets for each dataset. Most datasets are largely solved
via features or edges alone, except ENZYMES. However, GNNs learn to
solve additional predictions as the last column shows.

Arguably, Cora, PubMed, MUTAG, and AIDS are not suitable datasets for
GNN evaluation since we can solve almost all predictions in these datasets
through features or edges alone. CiteSeer and PROTEINS can also be
largely solved without requiring GNN reasoning. On the other hand, one-
third of the predictions in ENZYMES need GNN reasoning. Nevertheless,
we can see that the combined GNN reasoning unlocks some new predictions
on most datasets. The difference is most noticeable on ENZYMES, where
GNNs solve roughly half the predictions that neither features nor edges
alone can solve. As the GNN score falls short of this last column, GNNs
also forget some predictions. Let us now analyze this forgetting further.

Evaluating GNNs
Next, we will evaluate the different GNN architectures in three ways: 1)
How well can they predict the same predictions as the feature-only model,
2) the edge-only model, and 3) go beyond these two models and solve the
predictions that neither of these methods can. For each GNN architecture,
we compute SGNN and compute the ratio of predictions of 1) SF , 2) SE ,
and the ratio of SGNN that is neither in SF nor SE . The first two scores
indicate how much GNNs retain the power to explain simpler predictions.
The third metric highlights how much the GNN can solve more difficult

CHAPTER 3. GRAPH NEURAL NETWORK NECESSITY 15

GIN GCN GAT SAGE

Cora

CiteSeer

PubMed

MUTAG

AIDS

ENZYMES

PROTEINS

0.94 0.95 0.95 0.95

0.89 0.91 0.91 0.91

0.92 0.92 0.91 0.88

0.9 0.99 0.96 0.94

0.97 0.88 0.89 0.95

0.71 0.61 0.61 0.71

0.84 0.93 0.93 0.9 0.65

0.70

0.75

0.80

0.85

0.90

0.95

(a)

GIN GCN GAT SAGE

Cora

CiteSeer

PubMed

MUTAG

AIDS

ENZYMES

PROTEINS

0.97 0.97 0.98 0.98

0.91 0.94 0.94 0.94

0.94 0.94 0.94 0.94

0.94 0.8 0.83 0.95

0.98 0.74 0.83 0.95

0.74 0.51 0.57 0.69

0.84 0.85 0.85 0.83

0.6

0.7

0.8

0.9

(b)

GIN GCN GAT SAGE

Cora

CiteSeer

PubMed

MUTAG

AIDS

ENZYMES

PROTEINS

0.048 0.05 0.05 0.048

0.07 0.063 0.062 0.064

0.034 0.028 0.029 0.03

0.03 0 0.013 0.024

0.039 0.0043 0.012 0.033

0.25 0.21 0.23 0.23

0.07 0.047 0.039 0.053
0.00

0.05

0.10

0.15

0.20

(c)

Figure 3.3: Analyzing solvable sets for GNNs in comparison to a feature-
only and edge-only model. (a) What ratio of the feature-only model can be
solved by a GNN as well? GNN reasoning is a superset of feature reasoning.
Values closer to 1 are better. (b) What ratio of the edge-only model can
be solved by a GNN. (c) What ratio of solvable set of the GNN cannot be
explained through feature or edge reasoning? Ideally, GNNs capture more
complex relationships, higher values are better.

predictions. Figure 3.3 shows the results.

Figure 3.3a and Figure 3.3b show that GNNs can generally solve the same
predictions that feature-only and edge-only models can solve. This is ex-
pected since GNN reasoning is a superset of these approaches. Figure 3.3c
shows that GNNs are not only a sum of features and edges but that com-
bining features and edges allows new predictions. Outside of ENZYMES,
most GNNs can predict a few extra predictions on most datasets.

Comparing GNNs
Last, we compare different GNN architectures to what extent the architec-
tural differences allow us to learn different predictions. For every archi-
tecture GNN1, we measure how many predictions are solved by another
architecture GNN2 and report this in Figure 3.4. For example, the number
0.97 in the top right corner of the first heatmap encodes that GIN can solve
97% of the predictions that SAGE can solve on the Cora dataset. Most GNN
architectures agree and learn to solve the same predictions on most datasets.
However, the interesting cases are when different GNN architectures learn
to solve different predictions. This potentially allows for improving dataset
results through ensembling different GNNs. For example, if we perfectly
ensembled all different architectures on the ENZYMES dataset, we could
already solve 86.6% of predictions.

CHAPTER 3. GRAPH NEURAL NETWORK NECESSITY 16

0.0

0.2

0.4

0.6

0.8

1.0

GI
N

GC
N

GA
T

SA
GE

GIN

GCN

GAT

SAGE

1 0.97 0.97 0.97

0.98 1 0.98 0.98

0.99 0.99 1 0.98

0.98 0.97 0.97 1

Cora

GI
N

GC
N

GA
T

SA
GE

GIN

GCN

GAT

SAGE

1 0.95 0.95 0.95

0.96 1 0.97 0.95

0.96 0.97 1 0.96

0.97 0.95 0.96 1

CiteSeer

GI
N

GC
N

GA
T

SA
GE

GIN

GCN

GAT

SAGE

1 0.96 0.96 0.96

0.96 1 0.98 0.97

0.95 0.97 1 0.97

0.92 0.94 0.94 1

PubMed

GI
N

GC
N

GA
T

SA
GE

GIN

GCN

GAT

SAGE

1 0.91 0.93 0.96

0.78 1 0.93 0.8

0.84 0.97 1 0.86

0.96 0.93 0.95 1

MUTAG

GI
N

GC
N

GA
T

SA
GE

GIN

GCN

GAT

SAGE

1 0.98 0.98 0.99

0.72 1 0.85 0.74

0.8 0.95 1 0.83

0.95 0.97 0.97 1

AIDS

GI
N

GC
N

GA
T

SA
GE

GIN

GCN

GAT

SAGE

1 0.81 0.8 0.8

0.57 1 0.78 0.61

0.62 0.87 1 0.67

0.75 0.82 0.81 1

ENZYMES

GI
N

GC
N

GA
T

SA
GE

GIN

GCN

GAT

SAGE

1 0.87 0.87 0.88

0.89 1 0.98 0.95

0.89 0.98 1 0.95

0.89 0.93 0.94 1

PROTEINS

Figure 3.4: Per dataset overlap of different GNN architectures. Every
entry in the heatmap encode the ratio of the solvable set of the column GNN
that the row GNN can also solve. For example, 0.97 in the top right corner
of the Cora heatmap encodes that GIN can solve 97% of the predictions of
SAGE.

4
Contrastive Graph Neural Network
Explanation

In this chapter, we examine the interplay between explanations and ad-
versarial attacks, which try to achieve almost the same goal: Adversarial
attacks want to find a small subset of edges or node features that, when
perturbed, change the prediction of the model [Zügner et al., 2018]. The
Fidelity interpretation of explanations is finding a subset of edges or node
features that are key for the model prediction. Being key to the prediction
means a model would change its prediction with those key parts removed.
This relationship gives us the following problem: We find a subset of the
graph that changes the model output if removed (a common scenario for a
counterfactual explanation). How can we decide whether this subset is an
adversarial attack that exploits an anomaly or a good model explanation?

Let us look at one extreme illustrating example. We assembled a simple
graph classification problem. Randomly created trees as base graphs have
cliques attached, while other trees do not. We train a GNN to distinguish
which trees have cliques attached. Then we use a simple Occlusion [Zeiler
and Fergus, 2014, Ancona et al., 2018] explanation, where we mask each
edge once at a time and rerun the GNN. The more the model prediction

17

CHAPTER 4. CONTRASTIVE GNN EXPLANATION 18

changes away the graph containing a clique, the more important the edge.
Figure 4.1a shows the results for one example graph. Brighter edges are
more important. Surprisingly, Occlusion does not consider the edges in the
clique as the most important but different edges (highlighted with red cir-
cles).

In this dataset, we know that correct explanations are edges in the clique.
This suggests that Occlusion does not find explanations but adversarial
attacks. We hypothesize that removing the highlighted edges creates dis-
connected graphs, which take the underlying GNN out of the distribution of
graphs seen during training (all connected graphs). In particular, deleting
the most important edge would create an isolated node. Based on similar
observations for computer vision [Hooker et al., 2019], a likely reason for this
behavior is that the GNN behaves abnormally on these inputs outside of the
training set. Occlusion erroneously picks up on these edges being important.
Other methods, such as the gradient-based explanation (Figure 4.1b) and
GNNExplainer (Figure 4.1c), experience the same phenomenon but to a
lesser extent. These methods do not change the graph drastically, but they
also consider subgraphs that are not part of the training data.

14

5

6

7

8

910

1213

14

15

16

17 18

19

(a)

14

5

6

7
8

910

1213

14
15

16

17 18
19

(b)

14

5

6

7
8

910

1213

14
15

16

17 18
19

(c)

14

5

6

7
8

910

1213

14
15

16

17 18
19

(d)

Figure 4.1: Comparison of explanations of different methods for a CY-
CLIQ dataset with different methods. The two cliques are the correct ex-
planation. (a) Occlusion (b) Gradients (c) GNNExplainer, and (d) CoGE.
Many methods highlight wrong edges.

We want to find explanations that we can be certain are not adversarial at-
tacks. We want the explanation to focus on data consistent with the training
data distribution to avoid adversarial attacks. We coin this a distribution
compliant explanation. We introduce a new distribution-compliant expla-
nation method that explains graphs by contrasting the graph versus very
similar graphs (from the same dataset) with the same and different labels.
We coin this method Contrastive Graph Explanation. In the introduced
taxonomy in Chapter 2, CoGE is an example-based method.

CHAPTER 4. CONTRASTIVE GNN EXPLANATION 19

4.1 CoGE: Contrastive GNN Explanations

CoGE is a contrastive explanation method [Dhurandhar et al., 2018, 2019]:
We derive explanations by finding commonalities and differences between
the graph G to explain and other similar graphs. The process has two steps:
1) Identifying these similar graphs. To cover the full GNN decision space,
they should cover graphs with the same label and graphs with other labels.
2) Identifying the explanation as commonalities and differences between
G and those other graphs. In CoGE, explanations come in the form of
importance scores for every node.

Finding Similar Graphs We need to define a notion of similarity be-
tween graphs in the dataset. Graph similarity measures are abundant in the
literature that we could choose from [Sanfeliu and Fu, 1983, Heimann et al.,
2018, Zhang and Lee, 2019, Wang et al., 2019]. However, we are not inter-
ested in generally similar graphs but graphs that are similar according to the
GNN decision making. Therefore, we do not evaluate similarity on the raw
graphs but compare similarities between the final GNN embeddings. These
embeddings encode relevant node features and also the relevant structural
information. Equally important, the GNN can drop non-important informa-
tion before the final embedding. For our similarity purposes, we represent a
graph as the multiset of its final node representation {x1, x2, . . . xn} where
xi are d− dimensional embedding out of Rd. Suppose we want to measure
similarity between two graphs S and T with m and n nodes. In their mul-
tiset of final embeddings representation, we note them as

S = {s1, s2, . . . , sm}
T = {t1, t2, . . . , tm}

What is left is measuring the similarity between two such multisets, which
we inspire from Optimal Transport [Fey et al., 2020, Liu et al., 2020, Nguyen
et al., 2021, Nikolentzos et al., 2017, Sato et al., 2020, Xu et al., 2019b,a].
We construct a transportation graph F . Nodes in F are the union of nodes
from S and T . For edges, we connect every node from S to every node
from T . We base similarity on the solution of the following min-cost flow
on this graph F : Every node from S acts as a source that needs to send
a volume vi = 1/m flow, every node from T is a sink that can accept a
capacity ci = 1/n flow. Therefore, the total flow in the network will be 1.
We do not constrain maximum flow on any edge, but sending flow across
an edge (si, tj) occurs cost proportional to the L2 norm ‖si − tj‖2. L(S, T)

CHAPTER 4. CONTRASTIVE GNN EXPLANATION 20

Figure 4.2: Five example graphs with different embeddings, similar em-
beddings receive similar colors. S is the graph we want to explain, G′ and
G′′ have the same label, H ′ and H ′′ have a different label. In this case,
node 1 is the explanation because similar nodes exist in G′ and G′′ but not
in H ′ and H ′′.

is the cost of the min-cost flow of this graph. The lower the loss, the more
similar S and T are. We compare G against every other graph and pick the
top k graphs from the same and different classes with the lowest losses.

Finding Explanations We subdivide the graphs from the previous step
into the set G≈ of graphs with the same label as G and the set of graphs G6≈
with a different label. The explanation of G will be the nodes where there
exist nodes with similar embeddings in G≈ but such nodes do not exist in
G6≈. We will again use flows with G taking the role of S above. We consider
multiple flows simultaneously where each node in G≈ and G6≈ serves as T
in one flow. We optimize the sink volumes vi (while their sum still remains
1) such that the sum over all minimal flows becomes minimal/maximal.

For a single graph T , if we choose vi as to maximize the optimal transport
between G and T , we assign low volumes on nodes in G that do not have a
counterpart in T . Conversely, choosing volume to minimize optimal trans-
port assigns low volumes to the nodes with counterparts. This allows us
to define the explanation e for G as the low-volume nodes of the following
optimization problem over the volumes V = {v1, v2, . . . vm}:

e = arg min
V

1
|G6≈|

∑
G′∈G 6≈

LV (G,G′)− 1
|G≈|

∑
G′′∈G≈

LV (G,G′′)

LV (S, T) is the same loss as above but using volumes V instead of uniform
volumes, while capacities are still uniform. Our overall objective has two
components: The first term pushes the volumes to minimize the loss be-
tween G and graphs in G6≈. This highlights the similarities to graphs with
different labels. The second term changes the volumes to maximize the
loss between G and graphs in G≈, highlighting differences to graphs with
the same. Nodes with low volumes become the explanation: They have no
counterparts in graphs wiht different labels, and they have counterparts in

CHAPTER 4. CONTRASTIVE GNN EXPLANATION 21

graphs with the same label.

Figure 4.2 shows an example of this idea. Here, the graphs G′ and G′′ are
graphs from G≈ and H ′ and H ′′ are from G6≈. For the first loss term, let
us minimize the optimal transport between S and H ′ or H ′′. We will put
the most volume on node 3, which has counterparts in nodes 5 and 7. For
the second loss term, let us maximize the optimal transport between S and
G′ and ’G′′. We will put the most volume on node 2, which has no coun-
terparts. In combining those objectives, node 1 receives consistently low
volumes and becomes the explanation.

We additionally use a third regularizing term: We compute the loss between
G and its uniformly weighted version. This loss is minimal when using
uniform volumes for V . It penalizes deviations from uniform volumes so we
only consider clearly beneficial volume changes.

e = arg min
V

1
|G6≈|

∑
G′∈G 6≈

LV (G,G′)− 1
|G≈|

∑
G′′∈G≈

LV (G,G′′) + LV (G,G).

(4.1)

Which we abbreviate to the following three terms:

L≈ = 1
|G≈|

∑
G′′∈G≈

LV (G,G′′)

L6≈ = 1
|G6≈|

∑
G′∈G6≈

LV (G,G′)

L= = LV (G,G)

e = L6≈ − L≈ + L=

4.2 Experiments

We experiment with three datasets. Mutagenicity is a binary graph classifi-
cation dataset containing 4337 nodes where we predict whether a molecule
is mutagenic. REDDIT-BINARY is a binary graph classification dataset
where we assign user-comment graphs to Q&A or Discussion style subred-
dits. CYCLIQ is a synthetic graph classification dataset based on the simple
problem from Figure 4.1d. We use random trees as base graphs to which
we either attach a cycle or a clique. We predict per graph which motif was
attached. As nodes have no features, we initialize each node with feature
vectors of all ones. We generate 2000 graphs and split them 80 : 20 into a

CHAPTER 4. CONTRASTIVE GNN EXPLANATION 22

Figure 4.3: MUTAG Explanation showing important substructures in
molecules. Left: Original graph, Middle: Similar graphs with the same
label, Right: Similar graphs with a different label. Brighter nodes are more
important in the explanation.

training and a test set.

For obtaining CoGE explanations, we contrast against 10 graphs, each with
the same and different labels. We use the GeomLoss library [Feydy et al.,
2019] for computing optimal transport. We minimize the objective in Equa-
tion 4.1 using gradient descent with the Adam optimizer [Kingma and Ba,
2014] with a learning rate of 0.01 for REDDIT-BINARY and 0.1 otherwise.

Mutagenicity Results
We expect correct explanations to contain the NO2 subgraph, a known mu-
tagenic structure [Debnath et al., 1991, Ying et al., 2019]. However, this
group is insufficient and can also occur in non-mutagenic graphs. Figure 4.3
shows an example CoGE explanation for a mutagenic graph (left). The
explanation consists of two unconnected subgraphs. The known NO2 sub-
structure and a C atom in a carbon ring connected to an O. We can validate
that this explanation might be correct; we find both structures in the other
closest mutagenic graphs (middle graphs). However, the structures are not
simultaneously present in non-mutagenic graphs (right). We do not have
the chemical knowledge to verify the explanation if the CO structure is also
chemically relevant.

REDDIT-BINARY Results
We know that the Q&A graphs are more star-like. Few—or even only one—
user replies to questions from many users. On the other hand, many users
interact with other users in discussion graphs. Figure 4.4 shows a CoGE
explanation for a Q&A graph. We can see the explanation highlighting a

CHAPTER 4. CONTRASTIVE GNN EXPLANATION 23

star structure with the most importance assigned to the center nodes of the
graph.

2
3

1

3

2
2

2

2

2

2

2

1
2

2

2

2

1

3 1

55

1

2

3

1

1

2
2

2

2

2

2

1

1

1

2

1

1

2

2

22

3

2

2

44

2

2

2 2

2

1

2

1

2

2

1

2

2

2

2

1

Figure 4.4: Example Q&A explanation. Numbers depict the node degree.
Nodes connected to both central nodes are more important.

CYCLIQ Results
The correct explanation for the CYCLIQ dataset is the edges that form the
cycle/clique. We can derive edge importances by summing the importance
of adjacent nodes. Table 4.5 shows the explanation accuracy for CoGE and
several other methods: node-based occlusion method (removing adjacent
edges), sensitivity analysis [Pope et al., 2019], and GNNExplainer Ying et al.
[2019] and a random baseline. CoGE achieves higher explanation accuracy
than the other methods. At the same time, all methods can explain cliques
much better than cycles. The reason for this is a defect in the dataset that
we found later and will explain in Chapter 6.

CoGE Ablation
We last investigate the individual effects of each loss term in Equation 4.1
through an ablation study on the CYCLIQ dataset. Table 4.6 shows the CY-
CLIQ explanation accuracy for each subset of loss terms from Equation 4.1.
Additionally, we validate the choice of optimal transport by comparing it
to measuring similarity as Euclidean distance. We compute the volume-
weighted average of nodes in each graph and compute the distance between

CHAPTER 4. CONTRASTIVE GNN EXPLANATION 24

Table 4.5: Explanation accuracies on the CYCLIQ dataset.

Method Cycle Acc. Clique Acc. Avg. Acc.
Random 0.41 ± 0.17 0.58 ± 0.13 0.49
Occlusion 0.39 ± 0.23 0.86 ± 0.16 0.62
Sensitivity 0.36 ± 0.2 0.87 ± 0.12 0.61
GNNExplainer 0.43 ± 0.18 0.73 ± 0.14 0.58
CoGE 0.78 ± 0.18 0.99 ± 0.02 0.88

the two averages.

The finer-grained optimization provides important information that leads
to better explanations. Additionally, removing any loss term also causes
explanation accuracy to drop significantly.

Table 4.6: Explanation accuracies on the CYCLIQ dataset for ablations
of the loss function and the distance measure.

Loss Cycle Acc. Clique Acc. Avg. Acc.
−L≈W 0.63 ± 0.25 0.6 ± 0.35 0.62
−L≈W + L=

W 0.62 ± 0.23 0.61 ± 0.27 0.61
L 6≈W 0.65 ± 0.23 0.99 ± 0.02 0.81
L 6≈W + L=

W 0.66 ± 0.24 0.99 ± 0.02 0.82
L 6≈W − L

≈
W 0.7 ± 0.2 0.99 ± 0.02 0.84

LW and Average 0.45 ± 0.24 0.99 ± 0.02 0.71
LW and OT 0.78 ± 0.18 0.99 ± 0.02 0.88

5
GraphChef: Decision-Tree Recipes to
Explain Graph Neural Networks

This chapter presents a new explanation method, GraphChef. To the best
of our knowledge, this is the first explanation method that does not only
help to understand the important inputs of a GNN prediction. GraphChef
also reveals the decision-making process. Figure 5.1 shows the difference
between these two on the PROTEINS dataset.

PROTEINS is a binary graph classification dataset. Graphs are either an
enzyme or not. The nodes are one of three secondary biological structures
of amino acids: helixes (H, input 0), sheets (S, input 1), or turns (T, input
2). The figure shows explanations: for nodes in Figure 5.1a, for edges in
Figure 5.1b, and by finding subgraphs in Figure 5.1c. All three explanations
reveal that the double-sheet structure is important, but neither method ex-
plains why it is important for an enzyme: Does it need a pair of connected
sheets? Does it just need to be more than one sheet? In contrast, Fig-
ures 5.1d and 5.1e show the recipe from GraphChef. This recipe allows
us to follow the decision-making for any graph, whether it is an Enzyme
or not. Furthermore, the recipe allows to understand for the whole dataset
what makes an enzyme. In this particular instance, the graph has more than

25

CHAPTER 5. DECISION TREE RECIPES TO EXPLAIN GNNS 26

(a) (b) (c) (d) (e)

Figure 5.1: Showing the three example explanations from Figure 2.1. All
methods highlight the connections between the two S nodes. However,
none of the methods explain why these two nodes exactly are important.
GraphChef shows the decision process: There must be less than three S
nodes to classify the graph as Enzyme. Here, we only have two such nodes.

8 nodes that are not sheets, but it has less than 3 sheets. This explanation
is consistent with existing findings for the PROTEINS dataset [Errica et al.,
2020]. Therefore, the graph is an enzyme.

As Figures 5.1d and 5.1e show, GraphChef explains by transforming the
decision-making into a decision tree. Similar ideas exist for non-graph neu-
ral networks. Boz [2002], Craven and Shavlik [1995], Dancey et al. [2004],
Krishnan et al. [1999] investigated the first ideas to combine decision trees
with neural networks. Schaaf et al. [2019] recently improved the approx-
imation through regularization, encouraging sparsity and orthogonality in
the neural network. Wu et al. [2017a] follow a similar regularization idea
for time series neural networks. Their regularization penalizes weights that
are difficult to model for decision trees. Kontschieder et al. [2015] directly
learn neural decision trees by relaxing the routing in decision nodes to be
probabilistic and learning the routing. Aytekin [2022] introduced an approx-
imation theorem for decision trees to theoretically express neural networks.
However, their approach requires exponentially many decision nodes. Such
large trees are not understandable by humans.

GraphChef is closest in spirit to the works of Yang et al. [2018a]. They create
a neural layer that learns to split data and put it into different bins. They
stack their neural architecture with these layers. GraphChef also introduces
a differentiable but inherently explainable layer, the dish layer (differentiable
stone h). In contrast to Yang et al. [2018a], GraphChef has to additionally
reason about the graph structure and combine the presence/absence of edges
with the node features. We will introduce a dish layer as a version of a GNN

CHAPTER 5. DECISION TREE RECIPES TO EXPLAIN GNNS 27

layer. Instead of following the CONGEST [Peleg, 2000, Wattenhofer, 2020]
distributed communication model, dish layers follow the simpler stone-age
communication model [Emek and Wattenhofer, 2013]. It turns out that
decision trees can easily model this layer.

5.1 GraphChef Recipes

Introducing dish GNN Layers
The first step to finding GraphChef recipes is building a GNN composed
of dish layers. The starting point for these dish layers is GIN layers [Xu
et al., 2019c]. These layers internally use Multi-Layer Perceptrons. MLPs
are sequences of linear weight layers W (l) separated by nonlinearities σ. For
example, a 3− layer MLP applied on a feature matrix X ∈ Rn,d looks like
the following:

MLP(X) = σ(σ(XW (0))W (1))W (2) (5.1)

W (0) first dimension is equal to d we can choose the other dimensions freely
as long as dimensions for matrix multiplications match. For exampleW (0)’s
second dimensions must equal W (1)’s first dimension. GIN takes a node v’s
current embedding hv and the sum of this node’s neighbors’ Nb(v) embed-
dings and computes v’s next embedding through such an MLP:

hl+1
v = MLP(hl

v,
∑

w∈Nb(v)

hl
w) (5.2)

The internal representations hl allow the encoding of complex information.
These embeddings are mixed with neighborhood embeddings in the next
GNN layer, which causes the interpretability of GNN to suffer. We take
inspiration from distributed computing to make this layer understandable.
The above GIN layers are close to the CONGEST computation model. In-
stead, we create a GNN layer close to the stone-age model [Emek and Wat-
tenhofer, 2013]. In this model, nodes are more limited and have a categorical
state. Stone-age nodes can only count the number of neighbors in each state
for aggregating their neighbors. Furthermore, nodes can only count to an
upper bound. In this spirit, we can create a GNN layer by transforming the
node embeddings hl into categorical values. We use Gumbel softmax [Jang
et al., 2016, Maddison et al., 2016] that allows to draw samples from a cat-
egorical distribution. Suppose our GIN update from Equation 5.2 above
computes d-dimensional embeddings. Per node, we can interpret the em-
beddings as per-state-probability logits πs and sample state probability ps

CHAPTER 5. DECISION TREE RECIPES TO EXPLAIN GNNS 28

as follows:

ps = exp((πs + gs)/τ)∑d

i=1 exp((πs + gs)/τ)

The terms gs are independently sampled values from a Gumbel(0,1) distri-
bution[Jang et al., 2016]. We can use the temperature τ to control how close
the distribution should converge to a one-hot distribution. For one node,
we obtain the per-class sampling probabilities by computing above update
for each of its d logits. We note Gumbel(X) with X ∈ Rn×d as computing
per-class probabilities for each of the d classes, computing each of the n
nodes independently. This gives us the following dish update equation:

hl+1
v = Gumbel(MLP(hl

v,
∑

w∈Nb(v)

hl
w)) (5.3)

Having categorical node states means that the summation of neighbor em-
beddings turns into counting the number of neighbors in each state. Fig-
ure 5.2 shows the computation in one dish layer. We compute the update
for a node in state 0 and has 1, 2, and 1 neighbors in states 0, 1, and 2,
respectively. Equation 5.3 corresponds to the red box. We complete the
dish GNN with an encoder that discretizes the initial node features and a
decoder with skip connections to every intermediate node state. For graph
classification, the decoder can access sum-pooled embeddings for all inter-
mediate layers.

Figure 5.2: One dish layer. Nodes receive their previous state and counts
of their neighbor states. A final Gumbel softmax outputs a categorical state.

This design does not need to lose expressiveness if the categorical node states
are exponentially larger than the continuous GIN embeddings. However, we
aim for small and, therefore, interpretable node states and accept the slight
loss in expressive power.

CHAPTER 5. DECISION TREE RECIPES TO EXPLAIN GNNS 29

GraphChef Recipes
GraphChef recipes consist of a series of decision trees. We find these trees
by distilling the node update from Equation 5.3 into a decision tree. We
do not change anything about the remaining architecture, shown in Fig-
ure 5.3. The red block again highlights the node update step. Because the
dish layers compute categorical states, we can directly formulate the tree
distillation as a classification problem: Given the previous node state and
neighborhood counts, predict the followup state. Similarly, we distill the
encoder and decoder layers.

Figure 5.3: A GraphChef layer after distilling the MLP + Gumbel block
into a decision tree.

Decision trees struggle with comparing two input features and picking the
greater one. Such comparisons require a binary search over two features. To
help produce small trees, we provide delta features as full pairwise compar-
isons of all neighborhood states as additional inputs to the decision trees.
Figure 5.4 shows these additional features in yellow. The first entry is 0 be-
cause the count of neighbors in state 0 (1 node) is smaller than the number
of nodes in state 1 (2 nodes). Similarly the third delta feature is a 1 since
there are more nodes in state 1 than 0 (2 versus 1 nodes).

Figure 5.4: An improved version of a GraphChef layer that has additional
features for comparing features.

CHAPTER 5. DECISION TREE RECIPES TO EXPLAIN GNNS 30

Interpreting GraphChef Recipes
We can now interpret how GraphChef reasons per layer by looking at which
features each decision split in the decision trees use. Figure 5.5 shows how we
can interpret each feature. The colors match the feature colors in Figure 5.4.
The trees can pay attention to the node’s state (a) if there are at least a
learned number of neighbors in a certain state (b) or if there are more
neighbors in one than another state.

(a) (b) (c)

Figure 5.5

5.2 Recipe Improvements

Decision Tree Pruning
To further improve the human understandability of the recipes, we employ
pruning to minimize the number of decision nodes in each tree. We use
reduced error pruning for this [Quinlan, 1987], for which we need a quality
criterion. We observed that neither the validation set nor the training set
accuracy is a good criterion. The validation set would need to be bigger to
cover all decision paths, leading to overpruning. The training set does not
allow pruning artifacts that stem from overfitting on the training set.

Our criterion allows replacing a decision split with a leaf if (i) does not
reduce validation accuracy and (ii) does not drop training accuracy below
validation accuracy. The first criterion ensures that we do not overprune.
The second criterion allows leveraging the larger training set. By letting the
training accuracy drop back to the validation accuracy, we can prune the
overfitting artifacts.

We prune our trees by iterating the inner nodes sorted by the number of
training samples covered until we find a decision node we can replace with
a leaf. We replace this node with a leaf and restart the iteration since this
might change the scores for other nodes. We can finish pruning when no
more nodes fulfill the quality criterion. Practically, we found it beneficial to
keep pruning and allow slight deterioration in validation accuracy to prune

CHAPTER 5. DECISION TREE RECIPES TO EXPLAIN GNNS 31

significantly more nodes. The choice of which drop in accuracy is acceptable
for which amount of pruning is dependent on the dataset. Therefore, we
leave it to the user.

Computing Explanation Scores
We can also use the recipes to compute node-level explanation scores similar
to other explanation methods. While these are not as informative as the
recipe containing the decision process, these scores can complement a recipe
to highlight the important nodes for a particular graph. We compute these
explanations as a matrix E ∈ RN×S×N . N is the number of nodes in the
graph, and S is the number of classes. An entry (u, s, v) contains a value of
how much node v contributes to node u being in state s. We normalize the
matrix after every computation step so that values sum up to 1 for every
pair u, s. We denote e(n, s) = E[n, s, :] ∈ Rn as the explanation for node n
being in state s

For the importance computation, we follow a layer-wise importance propa-
gation through the tree layers. We initialize the matrix to contain ones on
the diagonal entries (u, s, u) for all states s. This means that every node is
initially its own explanation. Per layer, we compute the importance of each
feature available to the decision tree using TreeShap values [Lundberg et al.,
2018]. Depending on the type of feature, we update explanation importance
as follows:

State features Consider the simple example where the tree consists of
one decision split where a node transitions into state s if it currently is
in state s′. The explanation for the node for state s for this layer is the
explanation for the node for state s′ for the previous layer. It can also be
the other way around that nodes transition to state s when they are not
in state s′. Then, the explanation for s is the opposite of that for s′. The
TreeShap values TS also capture the interaction between all pairs of states
for larger trees. Indicator variables 1(n, s′) are 1 when node n is in state s′
before the current layer and −1 if it is not. This applies the correct sign for
the explanation. We can compute the state explanation:

σ(n, s) =
∑
s′∈S

TS(s′, s) · e(n, s′) · 1(n, s′)

Message Features Consider the simple example where a node n transi-
tions to a state s if it has at least some neighbors in state s′. In this case,
we define the message explanation for n being in state s as the average of

CHAPTER 5. DECISION TREE RECIPES TO EXPLAIN GNNS 32

these neighbors’ explanations for state s′. The TreeShap values TM capture
the dependencies between states for neighborhood splits. We compute the
message explanation as follows:

µ(n, s) =
∑
s′∈S

TM (s′, s) ·
∑

n′∈Nb(n,s′)

e(n, s′)
|Nb(n, s′)|

Delta Features The delta features work similarly to message features.
Consider that we compare if the number of nodes in state s′ is larger than
state s′′. In that case, the explanation of neighbors in state s′ contribute
positively, but the neighbors in state s′′ contribute negatively. However, if
the comparison is true the other way around, we must invert which nodes
contribute negatively. The TreeShap values TD capture which comparisons
between neighbor counts are important. Indicator variables 1(n, s′, s′′) are
1 if s′ neighbors are in the majority and are −1 otherwise. We can then
compute the delta explanation as follows:

δ(n, s) =
∑
s′∈S

∑
s′′ 6=s′∈S

TD(s, s′, s′′) · 1(n, s′, s′′)·∑
n′∈Nb(n,s′) e(n, s

′)−
∑

n′∈Nb(n,s′′) e(n, s
′′)

|Nb(n, s′)|+ |Nb(n, s′′)|

We can then compute the new explanations by adding these three explana-
tions to the previous explanations. Keeping the previous explanations helps
to highlight whole motifs. After the addition, we renormalize the explana-
tions e(n, s) to be 1 again. The decoder layer with skip connections requires
a slight modification of this approach. We can use the same scheme for
node classification problems, except the features and explanations can be
from more than just the previous layers. In graph classification problems,
we expose the counts of nodes in each state from all layers to the decoder.
We propagate the explanations as we do for message and delta explanations
from those nodes in the given state in the given layer.

5.3 Experiments

The following experiments show that GraphChef retains much expressive-
ness compared to the not-explainable GIN. Quantitatively, we will investi-
gate the classification accuracy of Graphchef against several baselines, the
effectiveness of the proposed pruning method, and the explanation accuracy
of the tree-derived importance scores. Qualitatively, we will present and an-
alyze recipes from several datasets to showcase how we can use GraphChef

CHAPTER 5. DECISION TREE RECIPES TO EXPLAIN GNNS 33

to understand GNN decision-making.

We run our experiments on explanation benchmarks: Infection and Nega-
tive Evidence dataset, which we will introduce in Chapter 6, BA-Shapes,
Tree-Cycle, and Tree-Grid from Ying et al. [2019] and the BA-2Motifs from
Luo et al. [2020]. We perform further experiments on real-world datasets:
BBBP from molecule net [Wu et al., 2017b] and MUTAG, Mutagenicity,
PROTEINS, REDDIT-BINARY, IMDB-BINARY, and COLLAB from TU-
Dataset[Morris et al., 2020].

We train five-layer GNNs on each dataset with 10−fold cross-validation.
We use a GIN as a baseline and a GNN using our dish layers that we
convert to GraphChef trees. GIN layers have an embedding size of 16.
We train the dish layers with ten available spaces. We can identify the
number of needed states and layers upon inspecting the recipes. We show
these in Table 5.6. We train the GNNs for 1500 epochs, allowing an early
stopping with a patience of 100. We use the temperature parameter τ inside
the Gumbel-Softmax blocks to increasingly converge towards sampling from
one-hot distributions. Additionally, we create two decision tree baselines.
The first version has access to only the node features; the second version has
access to node degrees. These decision trees and the distilled in GraphChef
are limited to 100 nodes at most.

Layers States
Infection 5 6
Negative 1 3

BA-Shapes 5 5
Tree-Cycles 5 5
Tree-Grid 5 5
BA-2Motifs 4 6

Layers States
MUTAG 4 6

Mutagenicity 3 8
BBBP 3 5

PROTEINS 3 5
IMDB-B 3 5

REDDIT-B 2 5
COLLAB 3 8

Table 5.6: Used number of layers and number of states GraphChef uses
per dataset. Found through recipe inspection..

Quantitative Results
First, we investigate the expressive power of dish GNN layers and GraphChef
trees. Since the dish layers are less expressive than GIN layers, we expect
small losses in classification accuracy. On the other hand, these layers allow
for better reasoning in graphs compared to vanilla decision trees. Therefore,
we expect dish layers and GraphChef to perform better. Table 5.7 shows

CHAPTER 5. DECISION TREE RECIPES TO EXPLAIN GNNS 34

the classification accuracy for all methods.

Compared to GIN, neither dish GNN nor GraphChef loses much, if any,
classification accuracy on the datasets. This supports that the loss of ex-
pressiveness is negligible. The similar performance on the synthetic bench-
marks shows that GraphChef can reason over larger graph structures. The
weak performance of both vanilla decision tree variants further supports the
observation that we require sophisticated graph reasoning for these datasets.
All methods perform close to each other on real-world datasets, which sug-
gests most of the reasoning is over the individual node features.

GraphChef
Dataset DT DT+degrees GIN dish GNN No pruning Lossless pruning
Infection 0.43±0.00 0.43±0.00 0.98±0.04 1.00±0.00 1.00±0.00 1.00±0.00
Negative 0.51±0.00 0.50±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00
BA-Shapes 0.43±0.00 0.86±0.02 0.97±0.02 1.00±0.01 0.99±0.01 0.99±0.01
Tree-Cycles 0.59±0.00 0.84±0.04 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00
Tree-Grid 0.58±0.00 0.76±0.03 1.00±0.01 0.99±0.01 0.99±0.01 0.99±0.01
BA-2Motifs 0.50±0.00 0.82±0.03 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00
MUTAG 0.83±0.09 0.85±0.07 0.88±0.05 0.88±0.06 0.88±0.06 0.85±0.08
Mutagenicity 0.71±0.02 0.72±0.02 0.81±0.02 0.79±0.02 0.75±0.02 0.74±0.02
BBBP 0.83±0.03 0.83±0.02 0.81±0.04 0.83±0.03 0.82±0.03 0.83±0.03
PROTEINS 0.74±0.02 0.71±0.04 0.70±0.03 0.71±0.02 0.71±0.04 0.71±0.04
IMDB-B 0.57±0.04 0.71±0.04 0.69±0.04 0.70±0.05 0.69±0.03 0.69±0.04
REDDIT-B 0.75±0.03 0.80±0.03 0.87±0.10 0.90±0.03 0.88±0.03 0.87±0.04
COLLAB 0.59±0.01 0.70±0.02 0.72±0.01 0.70±0.02 0.69±0.02 0.69±0.02

Table 5.7: Classification accuracy of simple decision trees without graph
reasoning, GIN for comparison, and three GraphChef variants. GraphChef’s
accuracy is competitive with.

Next, let us investigate the effectiveness of tree pruning on these datasets.
We measure the sum of nodes overall decision trees in all layers and compare
the (i) unpruned decision trees, (ii) REP-pruned decision trees with no loss
on the training set, (iii) REP-pruned trees with no loss on the validation
set, (iv) pruned decision trees with no loss on our criterion, and (v) trees
with lossy pruning. For lossy pruning, we experimented with 10% steps of
nodes to prune and choose what we considered the best tradeoff between
size and accuracy. Table 5.8
As expected, many training set artifacts cannot be eliminated with pruning
on the training dataset, whereas other methods produce smaller trees. We
can also observe, especially on real-world datasets, that pruning on the vali-
dation dataset alone tends to over prune and consistently underperform un-
pruned trees and other methods. Our proposed pruning criterion combines
the advantages of both ideas: We obtain decision trees that are almost as

CHAPTER 5. DECISION TREE RECIPES TO EXPLAIN GNNS 35

No pruning REP Training REP Validation REP Ours REP Lossy
Dataset Accuracy Size Accuracy Size Accuracy Size Accuracy Size Accuracy Size
Infection 1.00±0.00 205±56 1.00±0.00 26±2 1.00±0.00 25±2 1.00±0.00 26±2 0.98±0.01 17±2
Negative 1.00±0.00 18±14 1.00±0.00 5±0 1.00±0.00 5±0 1.00±0.00 5±0 1.00±0.00 4±0
BA-Shapes 0.99±0.01 30±10 0.99±0.01 21±5 0.97±0.03 15±4 0.99±0.01 21±5 0.98±0.04 17±4
Tree-Cycles 1.00±0.00 19±5 1.00±0.00 11±3 0.99±0.02 9±2 1.00±0.00 11±3 0.99±0.01 9±3
Tree-Grid 0.99±0.01 30±13 0.99±0.01 17±8 0.99±0.01 13±4 0.99±0.01 15±8 0.99±0.01 15±8
BA-2Motifs 1.00±0.00 141±43 1.00±0.00 12±3 1.00±0.01 11±3 1.00±0.00 13±4 1.00±0.00 13±4
MUTAG 0.88±0.06 59±27 0.86±0.08 19±17 0.83±0.07 7±6 0.85±0.08 18±16 0.85±0.08 18±16
Mutagenicity 0.75±0.02 375±13 0.76±0.02 154±19 0.73±0.01 56±16 0.74±0.02 91±36 0.73±0.02 50±19
BBBP 0.82±0.03 366±53 0.84±0.02 88±52 0.79±0.04 8±10 0.83±0.03 46±27 0.82±0.03 31±18
PROTEINS 0.71±0.04 206±90 0.72±0.03 12±13 0.70±0.04 8±6 0.71±0.04 9±6 0.71±0.04 9±6
IMDB-B 0.69±0.03 218±32 0.69±0.04 20±9 0.66±0.06 16±6 0.69±0.04 29±9 0.69±0.04 29±9
REDDIT-B 0.88±0.03 248±28 0.88±0.02 53±14 0.85±0.04 28±8 0.87±0.04 49±21 0.87±0.04 38±15
COLLAB 0.69±0.02 301±1 0.70±0.02 36±15 0.67±0.03 22±12 0.69±0.02 30±18 0.68±0.02 21±12

Table 5.8: GraphChef decision tree sizes and testing accuracy for different
tree pruning strategies and no pruning as comparison. Using the training set
does not prune enough training artifacts, using the validation set overprunes
at cost of accuracy. Our combined objective keeps the best of those two
worlds.

small as validation pruning but without losses in accuracy. Accepting small
losses in accuracy, we can reduce the decision tree size even further.

Method Infection Saturation BA-Shapes Tree-Cycles Tree-Grid
Gradient 1.00±0.00 1.00±0.00 0.882 0.905 0.667
GNNExplainer 0.32±0.09 0.32±0.05 0.925 0.948 0.875
PGMExplainer 0.38±0.06 0.01±0.01 0.965 0.968 0.892
GraphChef 0.95±0.02 1.00±0.00 0.94±0.02 0.84±0.02 0.927±0.01

Table 5.9: Explanation accuracy measured as the overlap of nodes we
score most important to the dataset ground truth. GraphChef produces
competitive explanations compared to existing state-of-the-art methods.

Last, let us compare the explanation scores that we can derive from the deci-
sion trees to other explanation methods: Gradient-based explanation [Pope
et al., 2019], GNNExplainer [Ying et al., 2019], and PGMExplainer [Vu and
Thai, 2020]. We evaluate on datasets with an existing explanation ground
truth. The explanation accuracy is the relative overlap of the k−sized
ground truth with the k most important nodes. Table 5.9 shows that the
explanation accuracy of GraphChef is comparable to that of other expla-
nation methods (Figure 5.10 shows some examples). Except Tree-Cycles,
GraphChef performs at least as well or better than the baselines. We will
analyze the recipe for Tree-Cycles to understand the lower score for this
dataset. In Chapter 6, we will discuss a principled flaw in the dataset that

CHAPTER 5. DECISION TREE RECIPES TO EXPLAIN GNNS 36

surfaces here. Similar flaws are also at work in BA-Shapes and Tree-Grid
but do not surface as much.

(a) GN-
NExplainer
Ba-Shapes

(b) GN-
NExplainer
Ba-Shapes

(c) GN-
NExplainer
Ba-Shapes

(d) GN-
NExplainer
Ba-Shapes

(e) GN-
NExplainer
Ba-Shapes

(f)
GraphChef
Ba-Shapes

(g)
GraphChef
Ba-Shapes

(h)
GraphChef
Ba-Shapes

(i)
GraphChef
Ba-Shapes

(j)
GraphChef
Ba-Shapes

Figure 5.10: Example subgraphs of the 10 most important nodes for GN-
NExplainer and GraphChef for several datasets.

Qualitative Experiments
Tree-Cycles We now present the new quality of explanation that GraphChef
offers: understanding the GNN decision-making process. We first analyze
the recipe for the Tree-Cycles dataset to understand the below-baseline per-
formance in Table 5.9. Figure 5.11 shows the decision tree recipe for every
layer for this dataset and Table 5.12 an analysis of the recipe. To under-
stand the decision-making, we have to understand what every state across
the layers means. The idea is to analyze the states from encoder to decoder
like dynamic programming. First, we understand what the encoder states
mean. Next, we analyze the decision-making of the first layer, which uses
the encoder states. We can then make sense of the first layer by looking
up the semantics of encoder states. Then, we proceeded to the next layer
with the same approach until we analyzed all states up to the decoder. Per
state, we mention the mechanical rule of the decision tree as well as a human
understandable explanation.

Notably, the output layer (Figure 5.11d) ignores several message-passing
layers. The first message-passing layer already identifies most cycles nodes

CHAPTER 5. DECISION TREE RECIPES TO EXPLAIN GNNS 37

(a) (b) (c) (d) (e)

Figure 5.11: Recipe for the Tree-Cycles dataset. Table 5.12 provides and
analysis for the state of every layer.

Layer State Decision Rule Interpretation
Encoder 0 All nodes No node features available for

differentiation.
Layer 0 0 Three or more state 0

neighbors
Degree 3 or higher nodes (in-
ner nodes in the tree, cycle
node connecting the cycle to
the tree).

Layer 0 2 Two neighbors in state
0

Degree 2 nodes (root node and
cycles nodes).

Layer 0 3 One or zero neighbors
in state 0

Degree 1 nodes (leaves in the
connected graph).

Layer 1 1 At least as many state
3 as state 2 neighbors

As least as many leaves as cy-
cle neighbors (true for inner
nodes as well having zero of
both).

Layer 1 3 More state 2 than
state 3 neighbors

Most cycle nodes, nodes con-
nected to degree 2 nodes.

Layer 2 4 Not previous state 3
and at least one state
1 neighbor

Not already a cycle node and
connected to a non-cycle node.

Layer 2 1 1) Previous state 3 or
2) no state 1 neighbors

1) already a cycle node or 2)
only connected to cycle nodes.

Decoder Cycle In layer 2 state 1 See previous state.
Decoder No Cycle otherwise otherwise.

Table 5.12: Analysis of the recipe for Tree-Cycles in Figure 5.11. Gen-
erally, cycle nodes are nodes connected to only or almost only degree two
nodes. Notably, nodes identify as cycle nodes before seeing the whole motif.

as degree two nodes. Since the base graph is a balanced binary tree, all base
graph nodes except the root have a degree different than 2. The next layer
almost finished the cycle detection as nodes connected to degree 2 nodes
(Layer 1 state 3). Layer 2 finds the few remaining cycle nodes. Figure 5.11e
confirms that the explanation only considers nodes two hops away. Since

CHAPTER 5. DECISION TREE RECIPES TO EXPLAIN GNNS 38

the recipe does not consider the while motif, it is a Faithful explanation to
score the unconsidered parts low.

Reddit-Binary Let us do another analysis for the Reddit Binary dataset.
From Ying et al. [2019] and Chapter 4, we expect the Q&A graphs to

(a) (b) (c)

Figure 5.13: Recipe for the Reddit-Binary dataset. Table 5.14 provides
and analysis for the state of every layer.

exhibit a more star-like structure. Figure 5.13 and Table 5.14 The first
layer in Figure 5.13a splits the nodes into three different groups based on
their degrees: inactive users with at most three neighbors, active users with
at most 44 neighbors, and central users. The decoder uses only state 0 from
the next layer. There are two possibilities to reach this state: (i) inactive
users writing with at least two central users, (ii) non-inactive users that
write with central users and at most two active users. The conditions limit
the interaction of active and central nodes with non-inactive nodes. A graph
has few central nodes, and the interaction with active nodes is limited to at
most two. This dataset is a nice example of how the recipes allow us new
possibilities of explanation because it allows us to quantify what a GNN
considers centers in the star (45 nodes) and to what extent deviations from
the star structure are acceptable (communication to 2 active nodes).

Limitations of GraphChef
We identified a limitation when applying GraphChef to datasets with many
input features on the nodes, for example, citation datasets such as Cora,
CiteSeer, Pubmed [Sen et al., 2008], or OGB-Arxiv [Hu et al., 2020]. The
dish layers still perform somewhat comparably to GIN, but converting to de-
cision trees leads to clear drops, as Table 5.15 shows. Larger feature spaces
are harder to condense into one categorical space. However, the larger effect
is that having 500 features (as PubMed) would require 500 decision nodes to

CHAPTER 5. DECISION TREE RECIPES TO EXPLAIN GNNS 39

Layer State Decision Rule Interpretation
Encoder 2 All nodes No differentiation due to no

features.
Layer 0 2 Nodes with at most 3

neighbors
Inactive users

Layer 0 4 Between 4 and 45
neighbors

Active users

Layer 0 0 More than 45 neigh-
bors

Central users

Layer 1 0 1) State 0 nodes with
more than one state
0 neighbor or 2) Not
state 2 nodes that have
at most two state 4
neighbors

1) Inactive users writing with
at least 2 central users or 2)
Active or central users that
write with at most 2 active
users.

Layer 1 1 No neighbor in state 0 Users that do no write with a
central user.

Layer 1 2 Not state 2 nodes with
at least 3 state 4 neigh-
bors

Active or central users that
write with at least 3 active
users.

Layer 1 4 Nodes in state 2 with
exactly one state 0
neighbor

Inactive users write with one
central user.

Decoder Q/A At least 15 nodes in
Layer 1 state 0

See interpretation of Layer 1
state 0.

Decoder Discussion Otherwise The GraphChef model looks
for evidence of a Q/A graph.
Discussions are "not Q/A"
graphs.

Table 5.14: Analysis of the recipe for Tree-Cycles in Figure 5.13. The
recipe tries to find evidence for Q&A graphs and predicts Discussion other-
wise. For Q&A graphs, there must be a limited number of interactions that
involve non-low-degree nodes. Low-degree nodes must communicate with
one high-degree node, which creates a star-like graph structure. The recipe
also provides thresholds what a low-degree node is.

consider each feature once. Since we only allow 100 nodes, we force the en-
coder layer to disregard 80% of the input space. We confirmed that the drop
happens in the encoder layer: When we do not convert the encoder layer into
trees, the loss of accuracy becomes much smaller. We consider three possi-
bilities to tackle these datasets in future work: (i) Dimensionality-reduction
strategies such as PCA or clustering, (ii) Special neural architectures that
allow interpretability, such as the works of Wu et al. [2017a] or Schaaf et al.

CHAPTER 5. DECISION TREE RECIPES TO EXPLAIN GNNS 40

[2019], and (iii) Additional features to expose to GraphChef to express the
input space more efficiently, similar to how we expose the delta features to
compare neighbor counts.

Dataset Features GIN Dish GNN GraphChef
CORA 1433 0.87±0.02 0.82±0.03 0.69±0.04
CiteSeer 3703 0.77±0.01 0.70±0.03 0.61±0.04
PubMed 500 0.88±0.01 0.87±0.01 0.85±0.01
OBGN-Arxiv 128 0.68±0.02* 0.68±0.01 0.28±0.11

Table 5.15: Accuracy of GraphChef on citation networks. When convert-
ing to trees, accuracy drops noticeably. *Since the dataset has 40 classes,
we use a state-size of 50 for GraphChef variants and 128 wide embeddings
for GIN.

6
When Comparing Against Ground
Truth is Wrong

We finish this chapter by wrapping up several observations during the eval-
uation of the previous two chapters. We made the first observation in Chap-
ter 4 on the CYCLIQ dataset. Is the reason for better performance in clique
explanation versus cycle explanation really a problem of CoGE to explain
cycles? We also saw a surprising GraphChef recipe in Chapter 5 where
the recipe for Tree-Cycles was content only to explore the cycle two layers
deep. Does GraphChef also have a problem with Cycle detection? We will
show in this chapter that cycles are not the bane of explanation methods.
Rather, deficiencies in the evaluation setup can easily make post-hoc ex-
planation methods seem worse than they are. We characterize five pitfalls
that can cause such deficiencies. Next, we propose three new explanation
benchmarks designed to avoid these pitfalls and finish with experiments on
these datasets. The pipeline in Figure 6.1 shows the most common setup
for evaluation explanation method, in which these pitfalls can occur.

In the first step, we train a GNN on a problem. Then, we employ a post-
hoc explanation method to generate explanations for the GNN. Because of
the nature of the problem, we know which nodes are the correct explana-

41

CHAPTER 6. EXPLANATION EVALUATION PITFALLS 42

Problem
Trained
GNN

Explanation
Quality

GNN
Architecture

Explanation
Method

Train
GNN

Generate
Explanations

Ground Truth Explanations

Figure 6.1: Common setup to evaluate explanation accuracy for an expla-
nation method (yellow). First we train a GNN and then apply the explana-
tion method. We measure explanation quality as accuracy to the problem
ground truth.

tion. For example, the correct explanations in the CYCLIQ dataset are
the clique or cycle nodes. As another example, the correct explanation in
the BA-Shapes dataset is all the nodes in the house. Because we have this
explanation ground truth, we can define the quality of explanation methods
as the overlap between its explanation and the explanation ground truth.

6.1 Pitfalls for Explanation Evaluation

In this chapter, we will focus our definitions on explaining edges. However,
the following arguments can be equally defined on nodes, or we can derive
edge explanations from nodes. Two sets are commonly considered important
for evaluation explanations: the set of ground truth explanation edges T
versus the set of explanation edges produced by our method to test E . Some
explanation types, such as subgraphs, directly produce a set of edges while
others produce importance scores, which we use to assemble the set E . With
ground truth labels, we use accuracy to measure explanation quality instead
of fidelity. In this notation, accuracy is the overlap of these two sets relative
to the size of T :

Acc = T ∩ E|T | (6.1)

However, we argue that this approach fails to acknowledge another crucial
set of edgesM, which are the edges that the GNN actually used. The above
definition makes sense if we assume that the GNN used exactly the ground
truth edges and T = M. However, what if the model partially uses some

CHAPTER 6. EXPLANATION EVALUATION PITFALLS 43

other edges?

Because we want our explanation method to explain the model behavior,
we would also want E to reflect those edges (Faithfulness). However, Equa-
tion 6.1 would show low accuracy scores even for perfect explanation meth-
ods where M = E . Therefore, it is imperative to take measures to ensure
T = M as much as possible. In the following, we discuss five pitfalls dur-
ing the dataset or model design that can cause a divergence and should,
therefore, be avoided.

Bias Terms
The first pitfall comes from failing to acknowledge that GNNs can use bias
terms in their decision-making. When using a bias term, the GNN does not
use any edges. Therefore,M = ∅, and there is no way to reasonably expect
an explanation method to find the correct explanation T . We observed this
pitfall in a previous chapter in the CYCLIQ dataset. Table 4.5 shows that
the accuracy for cliques is much higher than for cycles. We can explain this
difference by bias terms. We investigated the GNNs on this dataset and
found they consistently use bias terms to predict cycles and only switch to
clique predictions upon seeing enough data in favor of it.

How can we solve this pitfall? Unfortunately, not allowing bias terms
in the GNN is not enough. GNNs can easily create their own bias terms.
Suppose one input feature is a one-hot encoded categorical value. The first
layer can sum up all these values, thereby creating a constant one that
subsequent layers can use again as a bias term. Therefore, we have to
solve this pitfall in the dataset design. When designing an explanation
benchmark, we must include a target class that input features cannot easily
solve. One common approach we will also use later is including a class for
“all other cases”.

Redundant Evidence
Another pitfall arises when the ground truth evidence contains two or more
sets of edges that each are sufficient for the GNN to make its prediction.
Suppose T = T1 ∪ T2. For example, the CYCLIQ dataset from the previ-
ous chapter but a graph has two cliques attached instead of one. It may
be use only one of the clique (M = T1 or M = T2) or both of the cliques
(M = T1 ∪ T2). We should only expect the explanation method to find all

CHAPTER 6. EXPLANATION EVALUATION PITFALLS 44

edges in the latter case.

A similar effect, but more subtly, can happen when the ground truth is
larger than necessary. This happens in the Tree-Cycles dataset from Ying
et al. [2019]: In this node classification dataset, we attach cycles of length
six to random parts in a balanced binary tree. The GNN learns to separate
the nodes in the cycle from the other nodes. Intuitively, the whole cycle
should be the ground truth T . However, we can identify every cycle node
as nodes with two degree-two neighbors. We train a 2−layer GNN on this
dataset to validate this idea, achieving 95% accuracy. We can largely solve
the dataset without observing the whole cycle. Therefore, it may be that
not even a deeper GNN considers the full cycle before making a prediction,
which leads to “incomplete” cycles in the explanation. We can see one such
occurrence in the GraphChef recipe in Figure 5.11. The figure also shows
that the explanation, consistent with the recipe, only assigns importance to
nodes at most two hops away.

How can we solve this pitfall? We can address this pitfall in sev-
eral ways: When creating the benchmark dataset, we must ensure that the
ground truth only contains the truly necessary edges to find the correct pre-
diction. This set may be counterintuitive, so we should double-check that
smaller ground truth sets are not informative enough. We also propose hav-
ing the set be unique, for example, not having two cliques in the CYCLIQ
dataset. Instead, we account for redundant evidence in our evaluation and
accept either clique as an explanation.

Trivial Evidence
Adebayo et al. [2018] present an “explanation” of a convolutional neural net-
work for a bird. Except the explanation is not an actual explanation but an
edge detector. The model-agnostic edge detector should not be considered
a good explanation method since it disregards the model decision-making
process– -even though the output looks reasonable. The same can happen in
graphs: For example, a model agnostic method that returns close neighbors
would perform well in the Tree-Grid [Ying et al., 2019] node classification
dataset, where we attach grids to balanced binary trees. For most nodes
in the grid, the closest neighbors are exactly the other grid nodes. Ho-
mophilic community detection datasets such as Cora [Sen et al., 2008] are
another example where explaining a node through its neighbors may yield
perceptively good results while disregarding the GNN decision-making pro-
cess altogether.

CHAPTER 6. EXPLANATION EVALUATION PITFALLS 45

How can we solve this pitfall? During benchmark creation, we need to
ensure that simple heuristics, such as the nodes’ closest neighbors, do not
cover the entire explanation T . We vet our later-proposed benchmarks by
ensuring that nearest-neighbor, random-walk, and entirely random methods
perform poorly.

Weak GNN Architecture
While the three previous pitfalls concerned the dataset used in the evalua-
tion, this and the next pitfall concern the GNN we want to explain. First,
let us consider the implications if the GNN performance is significantly be-
low 100%, which means the GNN makes many mistakes. If the GNN were
to use all the ground truth edges M = E , it would have access to all the
necessary information. Therefore, it stands to reason that the GNN could
solve the dataset (close to) perfectly. On the other hand, a GNN that makes
mistakes is a strong indicator that M 6= T , which in turn means that the
GNN explanation method will also contain wrong edges and/or miss correct
ones.

How can we solve this pitfall? For evaluating explanation methods, we
should limit ourselves to benchmarks where we can train the GNN we want
to explain to near-perfect accuracy. Note that we can still use explanation
methods on real-world datasets where we commonly do not reach such ac-
curacy scores. However, we should strive for a controlled environment to
evaluate explanation methods. Alternatively, we should compare the differ-
ent explanation methods on the very same GNN so the GNN mistakes are
consistent for evaluating all explanation methods.

Misaligned GNN Architecture
The last pitfall is the most subtle and the most difficult to remedy. Even
when we have a (close-to) perfect scoring GNN, and none of the other pit-
falls are in place, we can find a mismatch between M and T because the
model architecture does not fit the problem at hand.

Consider the simple graph classification problem where graphs have yellow
and blue nodes, and we classify whether a graph contains two connected
yellow nodes. However, we encode node color deliberatively in a suboptimal
way. Instead of representing the categorical color as a one-hot vector, we
encode color in a scalar where 1 maps to blue and 2 maps to yellow. We
now train a GNN in two versions: both consist of three message-passing lay-
ers, and only one has two preprocessing layers. These two layers allow every

CHAPTER 6. EXPLANATION EVALUATION PITFALLS 46

(a) Preprocessing (b) Without Preprocessing

Figure 6.2: Example of how a misaligned model architecture can cause
bad explanations. The GNN on the right has no preprocessing layers and
has to use message-passing layers to transform the node features (color)
into a more usable representation. Neighbors of yellow nodes receive such
messages and become important when they should not be.

node to transform its features into a more useful representation before start-
ing the message-passing layers. There is no difference in performance; both
GNNs achieve quasi-perfect accuracy. However, we observe clear differences
in the explanations. Here, we use a graph adopted version of integrated
gradients [Sundararajan et al., 2017] in Figure 6.2.

Figure 6.2a explains the GNN with preprocessing layers, which is the ex-
pected edge between the two yellow nodes. However, the explanation for
the architecture without preprocessing layers includes many more nodes, as
Figure 6.2b shows. This GNN needs to transform the scalar color value into
a more useful representation using the message-passing layers. Because of
those layers, several nodes that do not carry useful information participate
in this transformation.

How can we solve this pitfall? Unfortunately, we did not find a prin-
cipled way to address this pitfall. Usually, it requires intricate knowledge of
the benchmark to know if the GNN architecture is aligned with the reason-
ing required by the dataset. You et al. [2020] laid out a design space with
twelve dimensions for GNN architecture design that each can help or hurt
aligning the GNN architecture. We will discuss for each following bench-
mark individually how we think we found a well-aligned GNN architecture.
Generally, preprocessing layers allow node-local computation to happen lo-
cally in the node. Additionally, we found skip connections helpful: In case a

CHAPTER 6. EXPLANATION EVALUATION PITFALLS 47

GNN can solve some predictions without using all layers, information does
not need to be passed around additional layers.

6.2 Three New GNN Explanation Benchmarks

We propose three new benchmarks tailored to circumvent the previously
mentioned pitfalls. The benchmarks are designed to cover the most com-
mon GNN reasoning tasks: a simple pattern detection benchmark and one
benchmark requiring homophilic reasoning. The third benchmark investi-
gates the ability of explanation methods to handle negative evidence and
abundant information.

Infection Benchmark
The infection is a simple pattern detection benchmark. Pattern detection is
a common task, for example, in chemical applications where we want to iden-
tify subgraphs known for some chemical function. Two example benchmarks
are MUTAG and Mutagenicty [Morris et al., 2020] dataset. Our proposed
dataset is close to the infection benchmark proposed by Baldassarre and
Azizpour [2019] with some modifications.

0 1 2 3 4 5+

5+ 0 1 2 3

Figure 6.3: One example graph from the infection dataset. Yellow nodes
are infected nodes, we classify the nearest distance of every node to an
infected node. We only explain on nodes the GNN can find (no nodes with
label 5+) and nodes with a unique shortest path (not on the node with
distance 4.)

We create a random connected Erdös-Rényi graph where nodes are either
healthy or infected. The task is node classification, where every node classi-
fies how far they are away from their nearest infected node, up to a maximum
distance. Therefore, the possible labels reach from 0 (the node itself is in-
fected) to 5+ for nodes five or more hops away from an infected node. We
also give the label 5 to unreachable nodes. This task differs from the dataset
by Baldassarre and Azizpour [2019] in three ways: (i) We allow for more
than one step of infection propagation, so explanations become graphs; (ii)

CHAPTER 6. EXPLANATION EVALUATION PITFALLS 48

We do not incorporate immune edges; (iii) We exclude nodes from consid-
eration whose shortest path to an infected node is not unique. We show
an example graph with labels in Figure 6.3. Yellow nodes are infected, and
white nodes are not considered for computing the explanation accuracy ei-
ther because there is no unique path (as for the white node at distance 4) or
there is no ground truth (for the 5+ nodes). Every blue node has a unique
ground truth explanation, which is the unique shortest path of length 4 or
less—if it exists. This dataset circumvents the pitfalls as follows:

Bias Terms The label 5+ is overloaded: It contains nodes in distance 5,
larger than distance 5, and even unreachable nodes. Especially for the
last group, there is no information in the graph that the GNN can
leverage. These nodes have their class because of the absence of any
information. To solve all classes correctly, the GNN must use its bias
for this class. Therefore, the evaluation of relevant classes is bias-free.

Redundant Evidence We remove nodes with non-unique shortest paths
from consideration for evaluation explanation accuracy, particularly to
avoid this pitfall. Every considered node (the blue nodes in Figure 6.3)
has a unique shortest path to an infected node, and every node along
this path is necessary for a correct explanation.

Trivial Evidence The explanations are paths, therefore, not restricted to
a node’s immediate neighborhood. We further validate that path-
based baselines, such as random walks, also perform poorly on this
dataset.

Weak GNN architecture The GNNs used in the test solve this dataset
with 100% accuracy.

Misaligned GNN architecture The longest paths among all the classes
have length 4, therefore we employ a 4−layer GNN. Additionally, we
use skip connections so the GNN does not have to preserve the infor-
mation for distance 1 nodes for 3 more steps. This preservation would
not be guaranteed to be on the nodes themselves.

We create 6 training and 4 test graphs, each having 1000 nodes and roughly
4000 edges on average. Since we are employing 4 GNN layers, there are 6
possible labels: distances from 0 to 4 plus one label for unreachable nodes.
Since we only consider nodes with a unique shortest path, we have an average
of 491 nodes for testing per graph.

CHAPTER 6. EXPLANATION EVALUATION PITFALLS 49

Community Benchmark
Another very common form of graphs is social networks. Typically, these
networks exhibit homophily, which makes it a frequent reasoning require-
ment for GNNs. This benchmark evaluates whether an explanation method
can explain such homophilic reasoning.
We base our graphs on the directed stochastic block model (SBM) [Abbe,
2017]. We build a graph with n nodes that we split into k equally sized
communities to which we assign different colors. The goal is for every node
to predict their community/color. The probability for any two nodes in
the same community is p, and the probability for any other two nodes is
q. We choose (i) p > q and (ii) p < (k − 1) ∗ q. Therefore, every node
has more neighbors from other communities than from its community in
expectation. On the other hand, the community with the most neighbors is
a node’s community in expectation. To prevent a node from just predicting
the majority class among its direct neighbors, we randomly re-assign a color
to a fraction f of nodes (without changing their prediction label). Several
graph generation processes involve randomness, so we base our explanation
evaluation on relative importance [Yang and Kim, 2019].

We generate a base graph as described above. Figure 6.4 shows one exam-
ple graph. When explaining node v, we will rewire this base graph within
v’s receptive field in two different ways. First, we increase the community
structure of v’s community by rewiring edges that start outside of v’s com-
munity but end in v’s community. After rewiring, the edges also start in v’s
community, strengthening the community structure. If the prediction con-
fidence for v now increases, then we expect the explanation score for these
edges to increase. Second, we rewire edges that start and end outside of v’s
community to end them in v’s community, overall decreasing community
structure. If this leads to decreased prediction confidence, we require the
explanation score to decrease. We define the overall explanation accuracy as
the ratio where the prediction confidence of the GNN leads to an equivalent
change in explanation score by the explanation method. This avoids the
above pitfalls as follows:

Bias Terms There is no special class accounting for the bias term, which is
why we contrast the GNN prediction before and after rewiring and look
for differences in confidence. Both predictions use the same biases, so
a prediction change cannot stem from the bias term.

Redundant Evidence There must be a tradeoff between rewiring too few
edges (with no impact because there is redundant evidence available)

CHAPTER 6. EXPLANATION EVALUATION PITFALLS 50

Increase intra-community edgesRewiring scheme 1

Increase inter-community edgesRewiring scheme 2

Figure 6.4: An example graph from the community dataset. Nodes need to
classify the community they belong to (background color) while potentially
starting with a different color. This benchmark uses relative importance on
two rewirings: The first rewiring (top) increases intro-community edges, and
the second rewiring(bottom) increases inter-community edges. Explanations
for the rewired edges should copy model confidence changes.

CHAPTER 6. EXPLANATION EVALUATION PITFALLS 51

versus too many rewirings that create graphs that no longer represent
the training distribution.

Trivial Evidence Nearby nodes do not make for an explanation since the
majority of immediate neighbors come from a different class. High-
centrality nodes help neither since such nodes tend to connect to all
communities.

Weak GNN architecture While the GNN does not reach 100% on the
prediction task, we only evaluate the explanation accuracy where the
model predicts correctly and detects the change in community struc-
ture.

Misaligned GNN architecture We found a 4− layer GNN to produce
the best results and again provide skip connections to allow each layer
to directly provide a signal to the final output.

We create 45 training and 5 test graphs, each with 1000 nodes and, on
average, 11250 edges. We found the best model accuracy for the parameters
p = 0.05, q = 0.007, and f = 0.5. The explanations are not easy, yet the
GNN still reaches an accuracy of 0.81.

Negative Evidence and Saturation
This last benchmark tests two properties of graph explanation methods:
Handling negative evidence and robustness to surplus explanation. Nega-
tive evidence differs from unimportant edges in that they actively discourage
the GNN from certain predictions. Understanding negative evidence allows
us to understand the model reasoning more deeply. Further, we want mod-
els to be robust to surplus evidence. When faced with more evidence, some
methods will actually become less confident in their explanation. Shrikumar
et al. [2017] refer to this as the saturation effect. Resilience to saturation is
important since we cannot guarantee that real-world datasets will avoid the
second pitfall. We propose the following benchmark to test both properties.

We create a graph with white, blue, and red nodes. There are 10 blue and
red nodes each. We connect every white node to other white nodes such that
every white node has mostly white neighbors. Furthermore, we connect each
white node to b blue and r red nodes, such that b 6= r. The target predic-
tion for the GNN is the majority color. We do not learn to predict anything
for red and blue nodes. Multiple white nodes exist for every combination
(b, r). We only use nodes for testing where the difference between red and
blue nodes is larger than 1, so occlusion never observes out-of-distribution

CHAPTER 6. EXPLANATION EVALUATION PITFALLS 52

v v

Figure 6.5: Two example graphs of the negative evidence and saturation
benchmark: Node labels are the majority non-white color in their neigh-
borhood. Node v in the left graphs has more blue neighbors, and more red
neighbors in the right graph. We expect white edges (uninformative) to
be attributed differently from minority edges (negative evidence). Evidence
can saturate when the difference between majority and minority grows.

graphs. Figure 6.5 shows two example graphs. The left graph shows a white
node with a blue majority, and the node in the right graph has a red majority.

Blue edges are negative evidence for a node with more red edges and vice
versa. At the same time, white edges do not carry any information. De-
pending on the semantics of an explanation method, we could imagine a
higher attribution for a white edge (a white edge is more “helpful” than
a minority edge) or a lower attribution (a white edge is less “informative”
than a negative edge). However, white edges should be attributed differently
from minority edges. We verify that white edges differ from minority edges
in their attribution. We run a two-sided Kolmogorov-Smirnov test with a
significance level of 0.99. A method can detect negative evidence when it
creates different importance distributions.

It is easy to cause saturation in this benchmark by having a large differ-
ence between the majority and minority color. No matter how large the
difference, the prediction stays the same. Therefore, we expect that the
explanation strength should not decrease when the difference between ma-
jority and minority increases. The benchmark addresses the five pitfalls as
follows:

Bias Terms No class is suited to catch bias terms. However, the task
symmetry plus the fact that both labels require considering both colors
means that the model cannot reach 100% through using bias terms.

CHAPTER 6. EXPLANATION EVALUATION PITFALLS 53

Redundant By design, this benchmark does contain redundant evidence.
Therefore, we do not measure explanation accuracy as overlap. We
measure exposure to saturation by measuring if the explanation strength
decreases with more redundant evidence.

Trivial Evidence Most neighbors are white and unimportant for every
white node. This eliminates simple “explanation” methods just as a
majority vote of the neighbors or path-based approaches.

Weak GNN architecture GNNs reach 100% accuracy on this dataset.

Misaligned GNN architecture We can classify correctly using only 1
GNN layer without any skip connections or preprocessing. Colors are
available as one-hot inputs.

We create 6 training and 4 test graphs, each with 1980 white nodes. We
connect white nodes with probability 0.015 to other white nodes. In expec-
tation, every white node has 30 white neighbors, and the graph has 103955
edges. We have 22 white nodes for every combination of blue and red neigh-
bors. By restricting the difference between the majority and minority to be
at least 2, each graph has 1232 nodes available for testing.

6.3 Experiments

Setup
We evaluate several explanation methods. To evaluate the third pitfall on
trivial solutions, we also run several simple “explanation” methods:
Random A simple baseline where we assign a random number between 0

and 1 to every edge.

Nearest Neighbor A simple baseline where we assign importance inversely
proportional to the distance from the target node.

PageRank A simple baseline where we assign importance equivalent to the
node’s personalized pagerank [Page et al., 1999] explain.

Node Gradients We measure node importance by computing gradients
with respect to the node features. We derive the edge importance as
the average value of its adjacent nodes’ importance.

Edge Gradients To compute edge gradients, we allow every edge to have
continuous weights and multiply passed messages with the edge weight.
This allows us gradients with respect to these edge weights. The gra-
dients form the edge importance.

CHAPTER 6. EXPLANATION EVALUATION PITFALLS 54

Integrated Gradients Integrated gradients (abbreviated with IG) are pro-
posed from Sundararajan et al. [2017]. We accumulate gradients for
several inputs where we gradually interpolate from an all-zeros input
to the actual input. We use this version for both nodes (Node IG) and
edges (Edge IG).

GradCAM GradCAM [Selvaraju et al., 2017b] is a gradient-based method
that weighs the gradients by the node activation. Instead of only using
the last layer, which restricts explanations to one-hop neighborhoods,
we base node importance on gradients and, additionally, activations
from intermediate layers.

Occlusion Occlusion [Zeiler and Fergus, 2014] removes one node or edge
at a time and defines the importance as the difference in the model
confidence on the perturbed graph.

PGMExplainer PGMExplainer [Vu and Thai, 2020] also creates perturbed
graph versions and employs probabilistic graphical models to capture
dependencies and the prediction target. We use a single-instance ver-
sion of PGMExplainer that we modify to predict the explanation for
a graph of our choice.

GNNExplainer Similar to gradient methods GNNExplainer [Ying et al.,
2019] relaxes the edges and features to continuous values. Instead
of gradients, GNNExplainer defines node importance as the mutual
information between these inputs and the prediction target. We also
modify GNNExplainer to compute an explanation for a graph of our
choice instead of the model-predicted class.

We run these methods on the three newly proposed benchmarks we created,
as mentioned in the previous section. We use a GIN with access to the
previous state and two sets of weights: one for the aggregated messages
and one for the previous state. We use skip connections if outlined for the
benchmark. The learning rate is 0.0003 for Infection and Community and
0.005 for the third benchmark. All results are computed only on eligible
graphs in the test set.

Explanation Accuracy
Table 6.6 shows the explanation accuracy for all methods. Generally, edge-
based methods work better than node-based methods. This is unsurprising
since the here-proposed benchmarks define their ground truth as edges, and
edges allow for finer-grained explanations. The first Infection column shows
the overlap of the shortest path edges with the most important edges in the

CHAPTER 6. EXPLANATION EVALUATION PITFALLS 55

Method Infection Community Negative Evidence
Random 0.00 ± 0.00 0.50 ± 0.00 0.01 ± 0.00

NearestNeighbor 0.44 ± 0.01 0.57 ± 0.00 N/A
PageRank 0.05 ± 0.00 0.56 ± 0.00 N/A

Node Gradients 0.03 ± 0.03 0.40 ± 0.03 0.00 ± 0.00
Edge Gradients 0.74 ± 0.12 0.92 ± 0.01 1.00 ± 0.00

Node IG 0.53 ± 0.13 0.55 ± 0.02 1.00 ± 0.00
Edge IG 1.00 ± 0.00 0.71 ± 0.13 1.00 ± 0.00
GradCAM 0.50 ± 0.11 0.33 ± 0.11 0.00 ± 0.00
Occlusion 1.00 ± 0.00 0.89 ± 0.01 0.25 ± 0.16

PGMExplainer 0.38 ± 0.06 0.53 ± 0.01 0.01 ± 0.01
GNNExplainer 0.32 ± 0.09 0.53 ± 0.04 0.32 ± 0.05

Table 6.6: Results for baselines and explanation methods for the three
proposed benchmark. First group of methods are baselines. Second group
of methods are white-box explanation methods. Second group are black-
box methods. Infection shows the overlap ratio with the shortest path to
an infected node. Community shows the ratio of rewired edges where the
explanation change is consistent with model confidence changes. Negative
Evidence shows for how many nodes the distribution of white and minority
explanations are different.

explanation. The strongest baseline is the nearest neighbor explanation,
which finds at least one correct edge. Node methods, PGMExplainer, and
GNNExplainer struggle to beat this baseline. On the other hand, Integrated
edge gradients and Occlusion achieve perfect scores.

For the Community benchmark, the table contains the ratio of edges that
pass the relative importance test. Many methods struggle to beat the ran-
dom baseline of 0.5 by a large margin. Only the same methods that also
worked best on the last benchmark do. This time, vanilla edge gradients
worked better than the integrated variant and performed best.

For the third benchmark, we first evaluate the negative evidence. We per-
form one Kolgomorov-Smirnov test for each node with at least 2 minority
edges to determine whether we can reject the null hypothesis that the distri-
bution of minority and white edges are different. Table 6.6 contains the ratio
of nodes for which this test is successful with at least 0.99 confidence. Edge
gradients and both integrated gradient methods achieve perfect results. We
show the results for the saturation effect in Figure 6.7. If a method is almost

CHAPTER 6. EXPLANATION EVALUATION PITFALLS 56

parallel to the x− axis, it does not suffer from saturation. Edge gradients
and Occlusion suffer from saturation. When saturation is too strong, Oc-
clusion fails.

Table 6.6 shows that white box explanation methods (those have access
to the model weights) generally perform better than black-box explanation
methods. This result is not surprising since access to the model weights
allows, for example, to use negative weights to identity negative evidence.
Black-box models can also detect negative evidence, but the task is harder.
Current black-box models do not explicitly have the goal to detect such
evidence, therefore models like GNNExplainer or PGMExplainer struggle
with this dataset. The result of black-box models apart from Occlusion on
the Infection dataset are surprisingly low. The construction of the dataset
means that removing any edge on the path switches the label. This is
why Occlusion easily performs perfectly. One hypothesis for the worse re-
sults of PGMExplainer and GNNExplainer is that they might build their
explanations additively instead of removing like Occlusion. In such cases
they need to consider several apparently useless edges to uninfected nodes,
before finally connecting to an infected node. In particular for GNNEx-
plainer, it might matter if we optimize upwards from an empty graph or
downwards from the computational subgraph. We see a similar pattern for
the Community benchmark where Occlusion performs better. When the
actual community is unclear including the right edges is difficult since the
majority of neighboring edges lead to wrong communities.

Explanation Runtimes
Finally, we compare the runtimes of the different methods. For gradients,
the measured code is on Pytorch Geometric [Fey and Lenssen, 2019] and
Captum [Kokhlikyan et al., 2020]. We use the Infection Benchmark and run
it on a TITAN Xp GPU with 12GB memory. We measure the runtimes per
explanation and show the results in Figure 6.8. Gradient-based methods
are the most efficient. The Integrated Gradients compute 50 gradients.
Therefore, they are slower than vanilla gradients. GNNExplainer optimizes
a mutual-information objective over several iterations. Similarly, Occlusion
evaluates different permutations of a graph. PGMExplainer is the slowest
method that also evaluates permutations and evaluates them in graphical
models.

CHAPTER 6. EXPLANATION EVALUATION PITFALLS 57

2 3 4 5 6 7 8 9

100

10−3

10−6

10−9

10−12

10−15

10−18

10−21

10−24

|r − b| (Evidence Strength)

M
ed

ia
n
at
tr
ib
ut
io
n

Edge Gradients

Edge IG

GNNExplainer

PGMExplainer

Occlusion

Figure 6.7: Saturation effect measured on the third benchmark. Evidence
saturates along the x−axis with |r − b|. The y− axis shows the median
attribution of non-white edges in log-scale. Methods robust to saturation
do not decrease in attribution strength and stay parallel to the x−axis.

10−2 10−1 100 101

Node Gradients

Edge Gradients

GradCAM

Node IG

Edge IG

GNNExplainer

Occlusion

PGMExplainer

Runtime per explanation (s)

Figure 6.8: Time (in seconds) that explanation methods need on average
to compute on explanation.

Part II

Improving Communication in
Graph Neural Networks

58

7
GwAC: GNNs with Asynchronous
Communication

7.1 Limitations of GNNs

Let us first stay in the spirit of understanding: this time, the limits of
GNNs: What are the theoretical limits of GNNs? Which problems can
GNNs practically [not] learn to solve well?

Theoretical Limits One important observation is that GNNs operate
similarly to nodes in the synchronous communication model in distributed
computing [Loukas, 2020, Sato et al., 2019, Sato, 2020]. Both models operate
in rounds. In each round, every node sends a message to every neighbor.
There are two distributed models: LOCAL and CONGEST [Peleg, 2000,
Wattenhofer, 2020]. In the LOCAL model, nodes can send an arbitrary
amount of information; in CONGEST, only a limited amount. Practically,
GNN layers are width-bound, which corresponds to the CONGEST model.
While LOCAL and CONGEST can perform arbitrary computations on in-
dividual messages they receive from their neighbors, GNNs apply a learned
neural function on an aggregated view of the messages. Does this limit what

59

CHAPTER 7. GWAC: ASYNCHRONOUS GNNS 60

Figure 7.1: Two graphs that are not distinguishable by 1−WL or most
GNNs. The left graph consists of two cycles of length 4. The right graph
consists of one cycle of node 8. In every GNN message-passing step, there
are 8 nodes; no node has any features and receives a message from exactly
2 featureless nodes. No node can gains information to differentiate between
the two graphs.

GNNs can compute?

Loukas [2020] show that GNNs can compute any function on a graph with
several conditions: (i) The neural functions in the GNN need to be suffi-
ciently deep and wide to allow them to approximate any function following
the universal approximation theorem [Royden and Fitzpatrick, 1988]. (ii)
The GNN needs to have sufficient many layers such that the information
can propagate through the entire graph. Therefore, number of layers needs
to be at least as large as a graph’s diameter. (iii) The nodes in a graph need
to be distinguishable by unique identifiers.

What is the expressive power of GNNs such identifiers are not available? Xu
et al. [2019c] show that their GIN architecture is as powerful as the 1−WL
test, a heuristic for graph isomorphism [Weisfeiler and Leman, 1968]. 1−WL
is the upper bound for expressiveness without any mechanism to distinguish
nodes. Figure 7.1 from Garg et al. [2020] shows two simple graphs that a
GNN cannot distinguish. One graph consists of two disconnected cycles
of length 4 versus one cycle of length 8. Every node in both graphs has
the same features (none) and exactly two neighbors. Therefore, every node
always receives identical information, and no node learns information to dis-
tinguish the two graphs.

There are many proposed approaches how to add additional information to
nodes. For example, there exist random features [Loukas, 2020, Sato et al.,
2021], ports [Sato et al., 2019], subgraphs [Wijesinghe and Wang, 2021],
or additional domain-specific information such as spatial data in chem-
istry [Gasteiger et al., 2020]. Other methods mirror higher-order versions
of the WL test and use GNNs on higher-order graphs [Chen et al., 2019b,
Maron et al., 2019, Morris et al., 2019]. Another line of approaches computes
multiple perturbed graphs and combines the GNN prediction across those

CHAPTER 7. GWAC: ASYNCHRONOUS GNNS 61

permutations [Bevilacqua et al., 2022, Papp et al., 2021, Vignac et al., 2020].

Morris et al. [2023], Wang et al. [2023], Zhang et al. [2023] recently proposed
alternatives to measure expressiveness, but we will measure expressiveness
with the WL framework in the scope of this thesis.

Practical Limits Similar to CONGEST, we can run into scenarios where
there is too much information we would have to pass over a single edge.
The edge becomes a bottleneck and causes congestion in the overall com-
munication Sarma et al. [2012]. We can observe the same effect in GNNs
when the information is too much to learn with the given node and message
dimensions [Alon and Yahav, 2021, Topping et al., 2022]. Practically, we
can address congestion by introducing further edges into the graph [Brüel-
Gabrielsson et al., 2022]. Such additional edges can act as shortcuts. They
can free intermediate nodes from needing to pass information. Alternatively,
we can reduce the information load in a layer by dropping some nodes or
edges [Rong et al., 2020, Feng et al., 2020, Hasanzadeh et al., 2020].

Two more practical problems stem from the aggregation in GNNs. Usually,
not all messages are important; non-important messages can bury impor-
tant ones. Nodes average these messages with their state. Over time, the
embeddings of all nodes converge to the same state [Li et al., 2018, 2019],
which is known as the Oversmoothing problem [Oono and Suzuki, 2020].
The previously mentioned dropping methods also help with Oversmooth-
ing. In particular, skip connections also help against oversmoothing since
they help nodes preserve their information [Chen et al., 2020b, Xu et al.,
2018]. Chen et al. [2020a], Zhao and Akoglu [2020], Zhou et al. [2020].

Second, a node in a GNN needs k layers to propagate information to a node
that is k hops away. Since oversmoothing limits the number of GNN layers,
pairs of nodes may be too far away from each other to exchange pertinent
information. We call this limitation Underreaching [Barceló et al., 2020].
Adding or rewiring edges can help to reduce distances in the graph [Brüel-
Gabrielsson et al., 2022]. In the extreme case, we can also connect all
nodes to a global node to facilitate short distances [Gilmer et al., 2017, Wu
et al., 2021]. Such nodes are especially prone to suffer from Oversquashing.
Scarselli et al. [2008], Klicpera et al. [2019] propose partially breaking from
the message-passing paradigm and propagating information through diffu-
sion.

CHAPTER 7. GWAC: ASYNCHRONOUS GNNS 62

7.2 No Aggregation Asynchronous Communication

All these problems stem partially from GNNs aggregating the messages be-
fore processing them. What if we did not aggregate any messages but would
process any message individually? We investigate such a GNN framework
in Chapter 7. The synchronous message-passing framework generates many
messages, which would be costly to all processes. Furthermore, not all mes-
sages are relevant. Therefore, the proposed framework will instead follow
asynchronous communication. We present GwAC as an architecture that
avoids aggregation entirely. Instead, GwAC uses asynchronous communica-
tion and processes each message individually. Figure 7.2 shows an example
of the dynamics.

Figure 7.2: Example communication in the GwAC framework. Messages
happen one at a time. Only important messages (such as from H to O)
trigger a reaction from the receiver.

The topmost H sends a message to its neighbor. This message is not rele-
vant for the C atom and gets discarded. Furthermore, the C atom does not
communicate with its neighbors since it has no relevant information. The
other H atom messages the O atom. Since this is relevant information, the
O, in turn, communicates with its neighbors. This message reaches the C
atom, which can correctly classify the graph. Note that the bottom two H
atoms never communicate.

This different communication style helps with the previously-introduced
problems. Since different nodes act a different number of times at differ-
ent moments, asynchrony can serve as an information mechanism. Nodes
receive every message individually; the important messages cannot become
buried between many not-important messages. Suppose oversquashing were
to occur on a node state. We expect asynchronous communication to help
since all information can be directly forwarded and stored in the message
instead. Furthermore, nodes can choose not to act when there is no impor-

CHAPTER 7. GWAC: ASYNCHRONOUS GNNS 63

tant information, not interrupting the flow of important information. This
helps combat underreaching.

7.3 The GwAC framework

Algorithm 1: GNNs in the synchronous model.
1 repeat L times . L is the number of GNN layers
2 foreach Node v in parallel do
3 zi+1

v = UPDATE(hi
v,Aggw∈NB(v), MESSAGE(hi

w))
4 gi+1

v = GATE(zi+1
v)

5 hi+1
v = gi+1

v · zi+1
v + (1− gi+1

v) · hi
v

Algorithm 1 shows a simplified algorithm for GNNs following the mes-
sage passing framework parametrized by three functions: MESSAGE is a
function f : Rn×d → Rn×m that converts d−dimensional node states to
m−dimensional messages. Common choices for messages are the identity
functions where nodes directly share their state or MLPs such as the ones
in Equation 5.1. Line 3 of the algorithm shows how to derive the new node
embedding form the old embedding. UPDATE is a function f : Rn×x → Rn×d′

to compute the new d′− dimensional node states from information, the exact
information available differs by GNN architecture. For example, the GIN
from equation 5.2 uses an MLP for UPDATE, the identity for MESSAGE and
summation as aggregation. Gin does not require lines 4 or 5 but directly
uses this result as new node embedding. However, Li et al. [2016] propose
to allow easy preservation of previous information. In line 4 GATE learns a
value between 0 and 1 which we use to interpolate between the old embed-
ding and the new embedding. However, other gating mechanisms exist that
take into account the full history of prevous node embeddings such as in
Universal Transformers [Dehghani et al., 2018].
In contrast, Algorithm 2 shows the asynchronous GwAC model, which uses
the same kinds of functions. MESSAGE works exactly as in synchronous GNNs
in that a node derives a message from its state. UPDATE differs slightly: in
the asynchronous setting, we receive a single message so UPDATE computes
a new embedding (or state) from the old embedding/state and the received
message. We use the same kind of neural functions that we use for the
synchronous UPDATE, for example, linear layers or MLPs. GATE also uses a
single message but uses the same architectures as in the synchronous case
to compute a value between 0 and 1. We also consider variants of GwAC

CHAPTER 7. GWAC: ASYNCHRONOUS GNNS 64

Algorithm 2: GNNs in the asynchronous model.
1 unreceivedMessages = [] . Tuples (receiver, message)
2 initializeList() . e.g., a message to single or all nodes
3 repeat M times . M is the number of processed messages
4 v, message = unreceivedMessages[0]
5 gi+1

v = GATE(hi
v,message)

6 zi+1
v = UPDATE(hi

v,message)
7 hi+1

v = gi+1
v · zi+1

v + (1− gi+1
v) · hi

v

8 newMessage = MESSAGE(hi+1
v , message)

9 foreach w in NB(v) do
10 unreceivedMessages.add(w, newMessage)

that discard messages if gi+1
v is small. This corresponds to a conditional

continue in the loop in line 3

The major difference between GwAC and synchronous GNNs is how mes-
sages are processed and emitted. In synchronous GNNs, every node sends
and receives messages for a specified number of times. This number is the
same for all nodes. On the other hand, we use a queue of unprocessed mes-
sages in GwAC. The initialization can depend on the task at hand. For
example, we send an initial message to the node from which we want to
compute the shortest path. Alternatively, we can pick one or more nodes
at random. We iterate this queue and deliver the first message. As part of
reacting to the message, a node may emit messages to its neighbors, which
we append to the end of the queue. We also investigate an alternative model
that uses a priority queue, and every message incurs a random delay.

Let us understand the introductory example from Figure 7.2 in this algo-
rithm. We initialize a queue of unreceived messages with a message to each
the H at the top and at the right of the molecule. In principle, we can also
insert messages to the other two H but they will be processed identically
like the top H. During the first run of the loop in line 3 of Algorithm 2, we
extract the message to the top H: The atom decides that the message is
interesting (line 5), so it updates its state (the actual value is irrelevant) and
sends a message encoding “I am an H” to its neighbor. The H atom on the
right does the same. Next, the C atom receives such a message. However,
the message is not relevant for this atom, so GATE learns a small value (line
5) and we employ a continue. We insert no new messages. Finally, the
O receives the message “I am an H”, which is relevant. After updating its

CHAPTER 7. GWAC: ASYNCHRONOUS GNNS 65

state (the value again does not matter) it puts a “OH! I have an H neighbor”
in the queue for both neighboring nodes. When the C atom receives this
message it can update its state to encode that the molecule is an alcohol.

GwAC can simulate GNNs
This GwAC framework is at least as expressive as message passing, which
we prove by demonstrating that we can simulate a message passing GNN,
namely GIN, with GwAC. Let S be a synchronous GNN that computes node
embeddings hl

v for all layers l and all nodes v. An asynchronous GwAC
model A simulates S if A computes the same embeddings for every node for
all possible input graphs. There may be intermediate states on the nodes, so
A has to be aware of when an embedding is valid. The underlying idea for
simulation comes from techniques in distributed computing to synchronize
an asynchronous network to operate in rounds.

We follow Awerbuch [1985]’s α synchronizer that uses the notion of safe
nodes. A node becomes safe if it receives its information from all neighbors
and its information is received and confirmed by all neighbors. If a node
and all its neighbors are safe, it starts the next round and sends new infor-
mation. We will implement this idea in neural layers to simulate layers in
GwAC. Besides the actual information, messages contain type information,
assigning them as one of the four following types: (i) pulse messages encode
that the sender starts a new layer, and the sent information is valid. The
other messages are synchronization overhead, and nodes ignore the message
information. (ii) ack messages acknowledge receiving a pulse message. A
node must receive one acknowledgment from every neighbor before becom-
ing safe again. The (iii) origin message only occurs once at the beginning
to bootstrap the computation and is sent to an arbitrary node. Finally, (iv)
nodes discard noop messages without any action. We need these messages
in our definition of GwAC, where receipt is optional, but sending after re-
ceiving is not.

We simulate a simple GIN with sum aggregation. We will discuss simulating
other architectures later. If the GIN has embeddings of size d, our GwAC
model has a state size of 2d + 5. The first d entries are the node state s
that is equivalent to the GIN embedding up to the simulated point. The
next d entries are an accumulator a summing up the neighborhood states as
individual messages come in. The last four entries are for synchronization:
The number of nodes w stores on whom the node is waiting for their state.
If we receive the state from every neighbor, the accumulator contains the
sum of all neighborhood states. Then, we can update the node. Nodes store

CHAPTER 7. GWAC: ASYNCHRONOUS GNNS 66

the number of unsafe nodes u. On every pulse, the node marks itself and
every neighbor as unsafe. All nodes must become safe again before a node
can send the next pulse. The third entry stores the number of layers l left to
simulate. Since the first time a node acts needs slightly different handling,
the fourth entry is a boolean if the node has ever reacted to a message.
The last entry is a node’s degree. The degree is available for simplicity. We
could also let every node figure out its degree.

Table 7.3: Update function for GwAC simulating GIN. We execute the
state update and message type on the first matching condition. Input to
the function are the current node state s, accumulator value a, number w
of neighbors the node is waiting on, number u of neighbors that are unsafe,
if the node acted before i, and the currently simulated layer number l. The
function computes a new value for every of these inputs in addition to a
message type.

Condition s’ a’ w’ u’ i’ l’ message type
noop=1 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
l=0 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

origin=1 s a w D 0 l pulse
i=1 s a+m w-1 u 0 l pulse
pulse=1 ∧ w=0 UPDATE([s,(a+m)]) 0 D-1 u-1 0 l-1 ack
pulse=1 s a+m w-1 u 0 l noop
ack=1 ∧ u=0 s a w D 0 l pulse
ack=1 s a w u-1 0 l noop

Table 7.3 shows the node update function, depending on the values of w,
u, l, and i and the message type. The table shows how to update the
node state and which message type to send. Furthermore, messages always
contain the current state. The table is a series of cascading if statements
where we execute the first matching condition. ⊥ means that the message
is discarded.

An example execution Before we prove that the function in this table
does indeed simulate GIN, let us walk through one example. Let G =
v1, v2, v3, v4 and E = v1, v2, v1, v3, v2, v4, v3, v4 be the graph on which we
simulate. Initially, the nodes are in the following states:

Node s a w u i l
v1 s1 0 1 2 1 L
v2 s2 0 1 2 1 L
v3 s3 0 1 2 1 L
v4 s4 0 1 2 1 L

CHAPTER 7. GWAC: ASYNCHRONOUS GNNS 67

Now we send v2 the initial message, on which it uses the third rule and sends
pulse messages. Node v1 receives this message, updates with the fourth rule,
and replies with a pulse message. Node v2 receives this reply from v1 and
also updates. However, since v2 acted before, it uses the sixth rule. Node
v3 also receives the pulse message from v1 and updates with the fourth rule,
which means sending pulse messages. This gives the following node states
with the pulse message from v2 to v4 still in transit.

Node s a w u i l
v1 s1 s2 0 2 0 L
v2 s2 s2 0 2 0 L
v3 s3 s1 0 2 0 L
v4 s4 0 1 2 1 L

Next, we deliver the pulse message from v3 to v1. Now, node v1 received
information from all neighbors. Therefore, it can compute the next layer’s
state with the fifth rule. Note that v1 is not yet safe since its neighbors have
yet to acknowledge its pulse message. As part of the node update, v1 now
sends ack messages. Both v2 and v4 receive this information and apply the
eighth rule. Finally, the pulse message from v2 to v4 also arrives. Node v4
updates with the fourth rule and sends a pulse to its neighbors. Node v3
receives it and also updates with the fifth rule, emitting an ack message.
Nodes v1 and v4 receive this message, yielding the following state.

Node s a w u i l
v1 s′1 0 1 0 0 L− 1
v2 s2 s1 0 1 0 L
v3 s′3 0 1 1 0 L− 1
v4 s4 s2 0 0 0 L

Once v2 is safe, and v1 receives the ack message, v1 is safe and can
start simulating the next layer. Let v2 receive the pulse message from v4,
update with the fifth equation, and send the ack message. Let v1 receive
this message and now use the seventh rule and send new pulse messages.

Node s a w u i l
v1 s′1 0 1 2 0 L− 1
v2 s′2 0 1 1 0 L− 1
v3 s′3 0 1 1 0 L− 1
v4 s4 s2 0 0 0 L

Unlike the other nodes, v1 already proceeded to the next layer. Its neighbors
v2 and v3 finished processing and are waiting for v4 to acknowledge their
pulse. Therefore, v2 and v3 can already receive the next pulse by v1 and
store it in their accumulator. Let us assume that they both do, which leaves
us in the following state:

CHAPTER 7. GWAC: ASYNCHRONOUS GNNS 68

Node s a w u i l
v1 s′1 0 1 2 0 L− 1
v2 s′2 s′1 0 0 0 L− 1
v3 s′3 s′1 0 0 0 L− 1
v4 s4 s2 0 0 0 L

The one pending message is the pulse message from v3 to v4. When v4
receives this message, it can update using the fifth rule and cause v2, v3,
and v4 to become safe and start the next layer.

Lemma 7.4. Nodes receive a pulse message when executing the i = 1
condition.

Proof. Preceding messages capture messages of type noop and origin. A
node u could only receive an ack message from a neighbor v after v received
a pulse message from every neighbor, including u. By elimination, the
message type must be pulse.

This allows us to proof the following Lemma via induction over i.

Lemma 7.5. When node v emits its i-th pulse message, it must have
already received (i− 1) ·D + 1 pulse or origin messages.

Proof. We start with i = 1, i.e., when nodes emit their first pulse message.
After initialization, all nodes will send a pulse message after receiving one
origin (third condition) or pulse message (Lemma 7.4).

Suppose the lemma holds for node v that just sent its i-th pulse. Before v
another pulse, it must reach the seventh condition in Table 7.3. For this, u
must decrease to 0, which requires reaching the fifth condition. This requires
decrementing w to zero, for which v must receive D − 1 pulse messages in
the sixth condition and one further one in the fifth. In total, v has now
received (i− 1) ·D + 1 +D = i ·D + 1 pulse messages.

Corollary 7.6. Nodes require D pulse messages between their own (Lemma 7.5).
Thus, nodes receive one pulse from every neighbor.

We now know that a node receives a pulse message from every neighbor be-
tween two pulses. This proves that every node can access all the information
it requires to compute the next GIN embedding.

Lemma 7.7. When node v emits its i-th pulse message, it’s state s equals
the synchronous GNN representation hL−i−1

v .

CHAPTER 7. GWAC: ASYNCHRONOUS GNNS 69

Proof. We prove this by induction. The lemma holds for i = 1 when the
node state s is h0

v based on initialization.

Suppose the lemma holds for node v that just sent its i-th pulse. We
know from Lemma 7.5, that v now needs to receive D pulse messages
(Lemma 7.5), one from each neighbor(Corollary 7.6) before it can send
pulse i+ 1. According to the induction hypothesis, node v receives zl−i−1

w

from every neighbor w in their ith pulse message. Upon receiving the last
of these messages, v computes locally UPDATE(zl−i−1

v ,
∑

w
zl−i−1

w) = zl−i
v

following the fifth condition. This state is unchanged until v emits pulse
i+ 1.

This lemma confirms that the simulation is correct. With every pulse mes-
sage, nodes in A proceed to the next embedding hl

v.

Lemma 7.8 (Synchronous Simulation). A simulates GIN, where one round
of pulse messages maps to one synchronous layer.

Other Simulation Scenarios We can extend the above proof that uses
simplifying assumptions to more general scenarios:

Disconnected Graphs The above proof requires connected graphs but
can be quickly changed to allow any number of connected subcom-
ponents. The easiest extension is to send one origin message to a
random node in each connected component.

Variable Layer Sizes We used a constant embedding size d for GIN across
layers, but we might want to have different dimensions d1, d2, . . . dL

for each layer. We can also simulate such GNNs by having a state
and an embedding of appropriate size for each layer. Furthermore, we
send the layer the sender simulates as part of the message. We can
infer which accumulator to store the message by the layer.

Max Aggregation We can support other aggregation methods than sum-
mation by changing the logic of the accumulator. For example, if
we want to simulate a max-aggregating network, we accumulate with
element-wise maximum in the accumulator.

Mean Aggregation With a simple change in the fifth condition in Ta-
ble 7.3, we can switch from a sum aggregation to mean aggregation.
We only have to divide a+m by the node’s degree.

CHAPTER 7. GWAC: ASYNCHRONOUS GNNS 70

GCN GCN smoothes incoming messages by the neighboring nodes’ de-
grees. We can simulate these smoothing factors using the GATE func-
tions. For this, we also include the sender’s degree in messages. Fur-
thermore, we need to slightly change the accumulator updates in lines
4 and 6 in Table 7.3 to a+ GATE(s,m) ·m.

GAT Unfortunately, GAT is one GNN architecture that we cannot simulate
this way. GAT also scales each message by a factor. However, this
factor is dependent on all other messages. We could only compute
these factors after receiving messages from all neighbors, which is too
late for processing an incoming message.

7.4 Expressiveness Analysis

Uniform Delays
We will now analyze GwAC’s expressiveness in theWL framework. Lemma 7.8
gives us an easy lower bound:

Corollary 7.9 (1WL). Models following the GwAC framework generally
are at least as powerful as the 1 Weisfeiler-Lehman test.

GNN models such as GIN are as powerful as the 1−WL test. If GwAC can
simulate such models, it must be as powerful as the 1WL test. Moreover,
GwAC is more powerful, as we show in several examples in Figure 7.10,
which shows three example graphs that are not distinguishable by 1−WL.
The left graph is the example from the chapter introduction to distinguish
cycles of different lengths. The middle graph is another example with sim-
ple node features of indistinguishable graphs: Are the pairs of white nodes
connected to the same blue node or not? The right graph is an example
of cliques of different sizes: We consider the node classification problem; it
was easy to decide as graph classification by just counting nodes.

It suffices to learn to detect cycles of different lengths to distinguish the
first two graphs. We can solve the first example by answering if there is a
cycle of length 8. and the second example by answering if there is a cycle
of length tree with two white nodes.

Lemma 7.11. In GwAC, nodes v1, v2, . . . vk can determine if they are a k
cycle.

Proof. Let v1, v2, . . . vk be a cycle of k nodes and let computation start from
node v. Every node executes the following protocol. If a node receives
a message COUNT-i and it never received a message before, it stores i and

CHAPTER 7. GWAC: ASYNCHRONOUS GNNS 71

(a) From Garg et al.
[2020]

(b) From Papp et al.
[2021], added red node.

(c) 3− versus 4− clique

Figure 7.10: a) GwAC can separate the two graphs by identifying the 8−
cycle and b) by identifying a 3− cycle with one blue node (Lemma 7.11.
GwAC must not start from the red node to be able to separate the graphs.
c) GwAC can separate the graphs (Lemma 7.12). This Lemma also allows
to separate Rook-Shrikande graphs which are beyond 3−WL.

messages COUNT-(i+ 1). If the same node then receives a COUNT-j message
with j > i, the node ignores the message. Node v starts the computation
by sending COUNT-0. The nodes on both paths store numbers as in a BFS
from v. Eventually, the two BFS branches meet when one node w that first
received a COUNT-i message receives a COUNT-j message with i ≥ j. Then, w
knows the circle is closed and sends a FOUND-(j+i) that every node forwards
once. Thus, all nodes become aware of the cycle and its length.

The third example requires distinguishing cliques of different sizes. Separat-
ing cliques is a surprisingly difficult problem that requires expressive power
beyond even 3−WL since we can reduce distinguishing the Rook-Shrikande
graphs to clique detection [Chen et al., 2019b, Martinkus et al., 2022]: Rook
graphs have four cliques. We now show that GwAC can solve this problem:

Lemma 7.12. In GwAC, nodes v1, v2, . . . vk can determine if they are a k
clique.

Proof. Let v1, v2, . . . vk be in a k clique. The nodes iteratively find out they
are in 2, 3, . . . k + 1 cliques. The starting node v will coordinate the other
nodes. Initially, every node stores that they are in a 1−clique. To find a
clique of size j, node v sends a CLIQUE-j message, which every neighbor of
v forwards once. If neighbors of v receive j − 1 such messages and are in
a j − 1 clique according to their state, they send a CLIQUE-j-ACK message
to all neighbors (including v) and update their state to be in a j-clique. If
v receives k many CLIQUE-j-ACK messages, it sends out a CLIQUE-(j + 1)
message. Upon receiving k many CLIQUE-(k + 1)-ACK messages, v knows
there exists a (k+1)-clique and can propagate this information to its neigh-
bors.

CHAPTER 7. GWAC: ASYNCHRONOUS GNNS 72

Random Delays
There are limits to the GwAC model following Algorithm 2 that can be
observed in the middle graph from Figure 7.10. Suppose we have one starting
node for our message queue and start from the red node. In this case, the
blue nodes receive the same message from the red node and propagate it
to their white neighbors. Every white node receives the same message. No
node can separate the two graphs. The symmetry-breaking of GwAC is not
always strong enough. One practical solution we validate later is to start
computation from multiple starting nodes. We now explore a theoretically
even more powerful version of GwAC as shown in Algorithm 3. The key
difference is that we insert messages into a priority queue with a random
delay.

Algorithm 3: GNNs in the asynchronous model.
1 openMessages = [] . Triples (delay, receiver, message)

initializeList() . e.g., a message to single or all nodes repeat M
times . M is the number of processed messages

2 delay, v, message = openMessages[0]
3 gi+1

v = GATE(hi
v),message

4 zi+1
v = UPDATE(hi

v,message)
5 hi+1

v = gi+1
v · zi+1

v + (1− gi+1
v) · hi

v newMessage = MESSAGE(hi+1
v ,

message)
6 foreach w in NB(v) do
7 openMessage.add(delay + randomDelay(), w, newMessage)

Generating unique identifiers These delays can break otherwise exist-
ing symmetries. Let us revisit the above scenario of sending a message from
the red to the two blue nodes in Figure 7.10b. With random delays, we
might incur a large delay in one of those messages, such that the message
from red to blue to the other blue node is faster than from red to blue. In
this case, the two blue nodes are distinguishable. We will now show that we
can use these delay races to create unique identifiers for the outer nodes in
a star graph:

For simplicity, we connect all outer nodes. The algorithm also routes all
communication through the center node c. This node will offer an ID to all
neighbors, and nodes without an ID will try to claim it. Some nodes will
hear of the claim before they receive the message from c. These nodes will

CHAPTER 7. GWAC: ASYNCHRONOUS GNNS 73

not claim this ID. If exactly one node claims the ID, they receive it, and c
assigns the next ID. In case of more than one claim, c retries this ID with
the claiming nodes. We can model this idea in the following network:

Nodes can have for states: offering is only used by c, claiming and
surrendering used by the outer nodes and done used by all. We have
five different message types: offer and claim sent by the c, claim and
surrender used by the outer nodes and noop. Every node has an embed-
ding of 6 values: One of the above one-hot encoded node states, its ID,
and the current try to assign the ID offered by c. Additionally, c uses three
additional features: a bit p if there was a previous claim on the offered ID
in this try, the number w in the try on whose reply c is waiting, and the
number n of neighbors with no ID yet. Messages are triples of a message
type, the offered ID O-id, and the offering try O-try. We can model UPDATE
and MESSAGE functions with the following tables using the same cascading
condition semantics as Table 7.3. Practically, the two tables combine into
the same function. We can use a binary feature we can inform nodes if they
are the central or an outer node and choose the right set of conditions:

Table 7.13: UPDATE (a) and MESSAGE function (b) for the central node v in
GwAC to assign unique IDs in a star graph.

(a)

Condition state try ID p w x
noop ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
done ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

try 6= attempt ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
origin offering 0 0 0 D-1 D-1

claim ∧ c = 0 offering try 0 1 w-1 x
claim ∧ c > 0 offering try+1 0 0 x-1 x
surrender offering try 0 c w-1 x

w = 0 ∧ x > 0 offering try+1 0 0 x-2 x-1
x = 0 done 0 0 0 0 0

(b)

type O-id O-try
⊥ ⊥ ⊥
⊥ ⊥ ⊥
⊥ ⊥ ⊥

offer 1 0
noop ⊥ ⊥
offer O-id try+1
noop ⊥ ⊥
offer O-id+1 try+1

confirm ⊥ ⊥

Lemma 7.15. These two functions assign a unique identifier to every node
in the star graph.

Proof. We prove that (i) that no two nodes receive the same identifier and
(ii) every node receives an identifier.

(i) The center node takes ID 0 for itself and only proposes IDs of 1 and
above to its neighbors. If a neighbor does not change its ID, it stays with

CHAPTER 7. GWAC: ASYNCHRONOUS GNNS 74

Table 7.14: UPDATE (a) and MESSAGE function (b) for the outer nodes in
GwAC to assign unique IDs in a star graph.

(a)

Condition state try ID c w x
noop ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
done ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

surrendering ∧ offer ∧ CID=ID surrendering O-try ID ⊥ ⊥ ⊥
offer ∧ O-try > try claiming O-try CID ⊥ ⊥ ⊥

claiming ∧ O-try > try surrendering O-try CID ⊥ ⊥ ⊥
claiming ∧ offer ∧ ID 6= CID done 0 ID ⊥ ⊥ ⊥

claiming ∧ confirm done 0 ID ⊥ ⊥ ⊥

(b)

type CID O-try
⊥ ⊥ ⊥
⊥ ⊥ ⊥

surrender CID O-try
claim CID O-try

surrender CID O-try
noop ⊥ ⊥
noop ⊥ ⊥

−1. Thus, ID 0 is unique. Suppose that two nodes w1, w2 received the same
ID. Since IDs are increasing, w1 and w2 must have received the ID at the
same time. Since the c only sends a confirm when the last node responds,
w1 and w2 must have received the ID via the second to last condition in
Table 7.14a. This is only possible if they were in state claiming, meaning
they both send a claim message. However, in such cases, v would have
started another try with that ID.

(ii) The center node receives ID 0. We have to show that all other nodes
also receive an ID. Node v counts internally how many IDs it could offer
successfully and only stops when this counter reaches 0. We initialize the
counter with v’s degree. Therefore, v will offer sufficiently many IDs. Let
us suppose that w did not receive an ID. Node w will always try to claim
an ID unless it is already surrendering this ID. Therefore, w surrenders for
all IDs, even the last one. However, this is not possible since there is only w
left, and no node could have sent a claim message to make w surrender.

We can easily extend this protocol to arbitrary graphs: We send one
node the first message that assigns itself 0 and IDs to its neighbors. After
all neighbors have an ID, the node received 1 as ID repeats the protocol in
the role of the center node, skipping the nodes who received an ID from 0.
Eventually, every node will be adjacent to a center node and receive an ID.
Alternatively, we create a global node that distributes IDs that we connect
to all other nodes.

Lemma 7.16. GwAC with random message delays can create IDs in arbi-
trary graphs.

Solving Graph Isomorphism We now have a toolkit to solve graph iso-
morphism and distinguish any two graphs. Let G1 and G2 be two graphs we

CHAPTER 7. GWAC: ASYNCHRONOUS GNNS 75

want to check. We connect them via a bridge node u so that the resulting
graph has a diameter of δG. We know from Loukas [2020] that a GNN with
δG many layers, sufficiently wide layers, and unique identifiers can solve all
problems on G. From Lemma 7.16, we know GwAC can create unique iden-
tifiers. From Lemma 7.8, we can simulate such a GNN for δG many rounds
after assigning identifiers to nodes.

Despite this impressive theoretical result, we found that a simple queue
assuming constant delays works better in practice. The random delays in-
troduce noise in the gradient signal and the training process. Therefore,
the same graph can cause many different outputs and gradients. We will
present some practical results on expressiveness now.

Experiments
We conduct experiments on the recently proposed expressivness bench-
marks: Limits1 and Limits2 by Garg et al. [2020], Triangles and LCC by
Sato et al. [2021], 4−cycles by Loukas [2020], and Skip-cycles and Rook-
Shrikande by Chen et al. [2019b]. Furthermore, we use the aggregation-
restricted constructions from Xu et al. [2019c] for Max and Mean aggrega-
tion. We want to test the capabilities of the asynchronous communica-
tion. Therefore, we choose a simple GwAC model GwAC-S: linear projec-
tions for the UPDATE and MESSAGE function in GwAC and choose to discard
the GATE function. We also try a version that uses non-uniform delays
GwAC-R. We compare against other powerful beyond-1−WL architectures:
PPGN [Maron et al., 2019], SMP [Vignac et al., 2020], DropGNN [Papp
et al., 2021], ESAN [Bevilacqua et al., 2022], and AgentNet [Martinkus
et al., 2022]. Furthermore, we run a 1−WL GIN for control.

We follow the setup from Papp et al. [2021] to use four message passing
layers, except for Skip-Circles, where we use the better of 4 or 9 layers.
Like DropGNN and ESAN, we compute one GwAC computation per node,
making it the starting node. Per computation, we process 5n messages. We
use 16 hidden layers for all problems except Max and Mean and Skip-Circles
which we give 32 units. We train all models with the Adam optimizer with
a learning rate of 0.01 for 1000 epochs. Table 7.17 shows the accuracy for
each model:

We can see that the simple GwAC-S performs close to perfectly on all
datasets, including Skip-Cycles and the beyond 3−WL datasets. This sets
GwAC-S apart from the other methods that tend to struggle on Skip-Cycles,
which require long-range information propagation or aggregation-restricted

CHAPTER 7. GWAC: ASYNCHRONOUS GNNS 76

Table 7.17: GwAC-S solves all beyond 1−WL benchmarks quasi-perfect
even the challenging ones require long-range propagation (Skip-Cycles) or
beyond 3−WL reasoning (Rook-Shrikande)

Dataset GNN PPGN SMP DropGNN ESAN AgentNet GwAC-S GwAC-R
Limits1 0.50±0.00 0.60±0.21 0.95±0.16 1.00±0.00 1.00±0.00 N/A 1.00±0.00 0.89±0.11
Limits2 0.50±0.00 0.85±0.24 1.00±0.00 1.00±0.00 1.00±0.00 N/A 1.00±0.00 0.98±0.01
Triangles 0.52±0.15 1.00±0.02 0.97±0.11 0.93±0.13 1.00±0.01 N/A 1.00±0.01 0.88±0.15
LCC 0.38±0.08 0.80±0.26 0.95±0.17 0.99±0.02 0.96±0.06 N/A 0.96±0.03 0.80±0.04
MAX 0.05±0.00 0.36±0.16 0.74±0.24 0.27±0.07 0.05±0.00 N/A 1.00±0.00 0.37±0.10
MEAN 0.28±0.31 0.39±0.21 0.91±0.14 0.58±0.34 0.18±0.08 N/A 1.00±0.00 0.71±0.11
4-cycles 0.50±0.00 0.80±0.25 0.60±0.17 1.00±0.01 0.50±0.00 1.00±0.00 1.00±0.00 0.99±0.02
Skip-Cycles 0.10±0.00 0.04±0.07 0.27±0.05 0.82±0.28 0.40±0.16 1.00±0.00 1.00±0.00 0.56 ±0.18
Rook-Shrikande 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 1.00±0.00 1.00±0.00 1.00±0.00 0.50 ±0.50

datasets. Again, this highlights the benefit of not using any aggregation.
The inferior results of GwAC-R highlight the practical advantages of having
a stable message order, even at the cost of theoretical power.

7.5 Underreaching and Oversmoothing

Theoretical Analysis
In synchronous GNNs, both Underreaching and Oversmoothing occur when
information has to travel large distances. We may use too many GNN layers
and lose information in the node states (Oversmoothing), or we might try
to avoid Oversmoothing but use too few layers, and the information does
not reach its target (Underreaching). Let us look at the simple example of a
graph G with m where we want to pass information from node u to a node
v that is distance d away. A normal GNN will require d rounds of message
passing, which totals dm edges. We would only require d messages being
sent along the path from u to v. However, in the synchronous framework,
the nodes in this path must keep steady until the information from u passes
them. This is true even when we use gating. On the other hand, nodes in
GwAC only react when receiving an important message, drastically reducing
the number of nodes.

Lemma 7.18. Let G be a graph with n nodes and m edges. GwAC can
send a message from any node u to any node v in O(m) messages.

Proof. The following protocol sends a message from u to v. Any number of
nodes w1, w2, . . . wn may receive an initial message seek. Every node w 6= u
will forward a seek message exactly once. When u receives a seek message,
it emits a send message instead. Every node also forwards send messages
exactly once. In the worst case, we have one seek and one send message

CHAPTER 7. GWAC: ASYNCHRONOUS GNNS 77

traveling over every edge, which is 2m messages total. The actual number
may be lower: If nodes receive a send message first, they do not need to
propagate seek messages.

This protocol does not require u to be the starting node; in this case, we
would send m messages at most. Crucially, the number of messages is
independent of d, and whether we need to send information over short or
long distances does not matter. This helps against Underreaching, and fewer
messages also help with Overreaching.

Experiments
We experimentally validate these observations with a shortest-path-based
experiment. Shortest paths are a common benchmark [Tang et al., 2020,
Velickovic et al., 2020, Xu et al., 2021] to test information propagation. We
slightly modify shortest paths to not compute the path length but only the
parity of the length. This allows us to disregard the arithmetic problems
that neural networks that we introduced in Chaper ??. We will propose an
architecture to improve learning shortest paths in the next Chaper 8.

We create a training set of 100 graphs with 10 nodes each. We base graphs
on random spanning trees to which we add 2 random additional edges. We
pick a starting node s for every graph to compute paths. In GNNs, we
give this node a special embedding; in GwAC, we send this node an initial
message. We use Neural Execution of Graph Algorithm)s (NEG) [Velick-
ovic et al., 2020], Universal Transformers (UT) [Dehghani et al., 2018], and
IterGNNs [Tang et al., 2020]. We employ the same GwAC-S model from
the expressiveness section. Furthermore, we create two versions of GwAC
that use a gating function inspired by the termination logic used in Graves
[2016] and UT or IterGNN, which we call GwaC-UT and GwAC-Iter. After
training for 1000 epochs with Adam, we test on increasingly large sets of 10
graphs with 10, 25, 50, 100, 250, 500, and1000 nodes each. We show the test
results in Table 7.19.

The GwAC models perform better than the synchronous architectures, even
the simple GwAC-S. This highlights the benefit of the better-aligned com-
munication scheme for this task. We will now investigate the effects of
Underreaching and Oversmoothing on the results in Table 7.19. To investi-
gate Underreaching, we measure accuracy not overall but per distance. To
capture a model collapsing to a constant prediction, we combine distances
into pairs, i.e., we group accuracies 1 and 2, 3 and 4, and further pairs. Fig-
ure 7.20 shows the accuracies per pair. The results show that Underreaching

CHAPTER 7. GWAC: ASYNCHRONOUS GNNS 78

Table 7.19: Accuracy for predicting the parity of shortest paths to a start-
ing node. Columns show different test graph sizes. Training size was 10
nodes. GwAC models outperform synchronous baseline, even the simpler
GwAC-S without termination logic.

Model 10 25 50 100 250 500 1000
NEG 0.73±0.14 0.59±0.11 0.53±0.07 0.52±0.04 0.51±0.03 0.49±0.02 0.50±0.01
Universal 0.87±0.03 0.71±0.04 0.62±0.03 0.56±0.02 0.52±0.01 0.51±0.00 0.50±0.00
IterGNN 0.98±0.03 0.86±0.05 0.74±0.03 0.65±0.04 0.57±0.01 0.53±0.01 0.51±0.00
GwAC-S 0.99±0.00 0.91±0.05 0.82±0.07 0.76±0.10 0.64±0.10 0.58±0.13 0.53±0.10
GwAC-UT 1.00±0.00 0.99±0.00 0.98±0.02 0.97±0.03 0.96±0.05 0.95±0.05 0.94±0.06
GwAC-Iter 1.00±0.00 0.99±0.01 0.99±0.01 0.98±0.03 0.98±0.05 0.97±0.05 0.97±0.05

0 1-2 3-4 5-6 7-8 9-10 11-12 13-14 15-16 17-18
Node distance

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Figure 7.20: Accuracy for predicting the parity of shortest paths by dis-
tance to the starting node. Methods suffer from Underreaching if the accu-
racy for close-by nodes is better than for far-away nodes.

can explain a lot of the accuracy differences in Table 7.19.

We investigate Oversmoothing by only measuring the accuracy on close
nodes that have a distance to s that we also observed in the training set.
If we see deterioration on these nodes as the graphs and required iterations
grow, we can suspect Oversmoothing. Figure 7.21 shows the accuracy on
these close nodes. All methods show resistance against Oversmoothing, and
some methods are even close to perfect results.

7.6 Complexity and Efficiency

Complexity We finish by comparing the complexity of GwAC to other
GNN architectures. A simple GIN with L layers sends O(LnD) messages
and updates O(Ln) nodes, L usually being a constant. Powerful architec-

CHAPTER 7. GWAC: ASYNCHRONOUS GNNS 79

10 25 50 100 250 500 1000
Graph size

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Figure 7.21: Accuracy for predicting the parity of shortest paths by graph
size, only considering nodes in training-set distance to the starting node.
Methods suffer from Oversmoothing if the accuracy stays constant with
larger graph sizes.

tures such as ESAN [Bevilacqua et al., 2022] or DropGNN [Papp et al., 2021]
achieve higher expressiveness by higher complexity. With the node-dropping
augmentation, ESAN performs n rounds, each with the complexity of a sin-
gle GIN pass. This totals O(Ln2D) messages and O(Ln2) node updates.
Similarly, DropGNN computes r graphs with different dropped nodes, to-
taling O(LnDr) messages and O(Lnr) node updates.

Instead of a layer number L, the complexity driving hyperparameter in
GwAC is the number of messages M to process. For M messages, GwAC
computes M node updates; each update sends D messages to its neighbors,
O(MD) in total. For the expressiveness experiments, we used M = n2,
which makes the complexity comparable to ESAN/DropGNN. For the un-
derreaching/oversmoothing experiments we tried M = 15n and M = 25
yielding a comparable complexity to GIN.

Efficient Implementation GwAC’s practical runtime is much slower de-
spite comparable complexity. The reason lies in the more sequential Algo-
rithm 2: we process one message at a time. This hinders hardware accel-
eration to compute large amounts of computation in parallel using GPUs.
Furthermore, our prototypical implementation is entirely written in Python
instead of languages like C++ like many contemporary libraries. However,
we can still gain significant speedups by parallelizing computation in GwAC.
For example, we use multithreading to run Algorithm 2 in parallel for differ-

CHAPTER 7. GWAC: ASYNCHRONOUS GNNS 80

ent graphs. If we run with different starting nodes, we can also parallelize
those. We built a proof of concept in Python that uses—due to Python’s
global interpreter lock—multiprocessing instead of multithreading. This
causes additional overhead to synchronize memory between processes. Nev-
ertheless, Figure 7.22 shows a promising inversely proportional relationship
between epoch time and number of processes available.

2 4 6 8 10 12
Processes

0

50

100

150

200

Ti
m

e(
s)

 p
er

 E
po

ch PROTEINS
MUTAG
GINPTC
IMDB-BINARY
IMDB-MULTI

Figure 7.22: Time per one GwAC epoch for different datasets and number
of procesess available. Runtime is inversely proportional to the available
compute.

Graph Classification Finally, we also evaluate the classification accu-
racy of GwAC on several well-known datasets from the TUDataset collec-
tion [Morris et al., 2020]. These datasets are on the smaller side to honor
the slower runtime: MUTAG, PTC, PROTEINS, IMDB-B, and IMDB-M.
We follow the evaluation scheme from Xu et al. [2019c]: measuring the test
set accuracy over the overall best epoch across 10 different random seeds.
The first three datasets use 16 or 32 hidden units, the latter two 64. For
GwAC, we again use each node once as a starting node, experimenting with
M = 15 and M = 25 per start. Furthermore, we attempt a simple attempt
at skip connections: The final embeddings contain the last four node states.
Table 7.23 shows that GwAC achieves comparable results as several 1−WL
and beyond 1−WL GNN architectures.

CHAPTER 7. GWAC: ASYNCHRONOUS GNNS 81

Table 7.23: Graph classification accuracy (%). All GNNs are powerful
and able to separate graphs beyond 1-WL. GwAC-S produces competitive
results. *multiple versions, the score is the best-performing model

Model MUTAG PTC PROTEINS IMDB-B IMDB-M
GraphSAGE Hamilton et al. [2017] 90.4±7.8 63.7±9.7 75.6±5.5 76.0±3.3 51.9±4.9
GCN Kipf and Welling [2017] 88.9±7.6 79.1±11.4 76.9±4.8 83.4±4.9 57.5±2.6
GAT Veličković et al. [2018] 85.1±9.3 64.5±7.0 75.4±3.8 74.9±3.8 52.0±3.0
GIN Xu et al. [2019c] 89.4±5.6 66.6±6.9 76.2±2.6 75.1±5.1 52.3±2.8
1-2-3 GNN Morris et al. [2019] 86.1 60.9 75.5 74.2 49.5
DropGNN Papp et al. [2021] 90.4±7.0 66.0±9.8 76.3±6.1 75.7±4.2 51.4±2.8
PPGN Maron et al. [2019]* 90.6±8.7 66.2±6.5 77.2±4.7 73±5.8 50.5±3.6
ESAN Bevilacqua et al. [2022]* 92.0±5.0 69.2±6.5 77.3±3.8 77.1±2.6 53.7±2.1
AgentNet Martinkus et al. [2022] 93.6±8.6 67.4±5.9 76.7±3.2 75.2±4.6 52.2±3.8
GwAC-S 90.4±4.1 63.7±9.1 76.7±7.1 74.6±3.6 52.1±3.6

8
Neural Status Registers as a
Shortest-Path Case Study

Xu et al. [2021] and Velickovic et al. [2020] show that GNNs, especially with
max aggregation, share similarities well with the Bellman-Ford algorithm:
One GNN layer corresponds to one iteration in the Bellman-Ford algorithm.
The authors found some success in learning shortest paths but we will show
later that there is room for improvement. The underlying problem is that
Neural networks struggle with learning arithmetic operations. This moti-
vated us not to learn the actual lengths of shortest paths—a quantity— but
instead learn their parity— a categorical value. Xu et al. [2020] define a
property called algorithmic alignment to explain such behavior. Algorith-
mic alignment explains how efficiently we can train a neural architecture
and how well the trained model will extrapolate to unseen tasks. If an
architecture aligns well with how a task can be solved, we need fewer train-
ing examples because we do not need the solution structure. Furthermore,
well-aligned models also extrapolate better to harder instances.
When it comes to arithmetics, Trask et al. [2018] showed that normal neural
architectures quickly fail to compute simple arithmetic operations such as
addition, subtraction, and multiplication when we input numbers outside
the training set. They propose a better-aligned architecture called Neural

82

CHAPTER 8. NEURAL STATUS REGISTERS 83

Comparison Model 101 102 103 104 105 106 107

=

MLP 0.18 ±0.16 0.28 ±0.17 0.47 ±0.14 0.52 ±0.05 0.50 ±0.00 0.50 ±0.00 0.50 ±0.00
NPU 0.40 ±0.15 0.50 ±0.00 0.50 ±0.00 0.50 ±0.00 0.50 ±0.00 0.50 ±0.00 0.50 ±0.00
NALU 0.45 ±0.10 0.45 ±0.10 0.48 ±0.08 0.52 ±0.07 0.50 ±0.00 0.50 ±0.00 0.50 ±0.00
NAU 0.33 ±0.11 0.33 ±0.11 0.35 ±0.12 0.35 ±0.12 0.35 ±0.12 0.35 ±0.12 0.35 ±0.12

Table 8.1: Comparing numbers with = after training on digits. The col-
umn header denotes the number that is compared against all numbers at
most 5 apart. The table cells shows the mean absolute error to the correct
prediction, therefore lower numbers are better.

Arithmetic Logic Units (NALU). Subsequent work by [Schlör et al., 2020]
and [Madsen and Johansen, 2020] improve upon the NALU, Heim et al.
[2020] propose a unit that can compute more operations, including division
and power functions.

Table 8.1 shows a motivating example where we compare increasingly large
numbers to their immediate neighbors after training only with single digits.
Vanilla MLPs struggle a lot in this task. Surprisingly, so do these existing
arithmetic architectures such as the NPU [Heim et al., 2020]], NALU [Trask
et al., 2018], or NAU [Madsen and Johansen, 2020]. In this final chapter,
we present an algorithmically well-aligned neural architecture to solve com-
parisons, the Neural Status Register (NSR). The NSR, as the NALU, NAU,
or NPU is a quantitative architecture: The model directly operates on the
numbers and manipulates them.

The alternative paradigm to tackle arithmetic problems is neuro-symbolic
models: These models encode the number in a sequence of symbols and rea-
son over these symbol sequences. A popular choice is text-encoding numbers
and using powerful text-based architectures such as transformers [Saxton
et al., 2019, Lample and Charton, 2020, Lewkowycz et al., 2022]. Recent
large language models also show a surprising aptitude for arithmetic rea-
soning [Brown et al., 2020]. Kim et al. [2021] also encode the numbers as
text but arrange the equations in a grid and use convolutional operations.
Similarly, [Kaiser and Sutskever, 2016] and Freivalds and Liepins [2017]
also use convolutions as reasoning architecture but encode the numbers in
binary form. There also exist various other architectures that draw inspi-
ration from circuits for other problems than arithmetic reasoning.: Graves
et al. [2014, 2016], Grefenstette et al. [2015], Le et al. [2020], Weston et al.
[2015], Zaremba and Sutskever [2016], Zaremba et al. [2016] all propose dif-
ferent versions of building differentiable memory. There furhter exist several
works aiming to learn algorithms using different programming paradigms:

CHAPTER 8. NEURAL STATUS REGISTERS 84

Chen et al. [2018], Li et al. [2017], Reed and de Freitas [2016] follow im-
perative programming and learn algorithms by composition of instructions.
Cai et al. [2017], Feser et al. [2017] use functional programming and with
recursive function calls. Dong et al. [2019], Evans and Grefenstette [2018]
follow declarative programming and logic reasoning.

8.1 Neural Status Registers

The inspiration for Neural Status Registers is physical status registers: cir-
cuits we encounter in virtually all processors nowadays. These circuits are
part of a processor’s arithmetic logic unit (ALU) to evaluate conditionals
such as if x == y. Internally, the status register subtracts y from x and
inspects so-called condition code bits. For our purposes, we are interested
in two bits: the sign bit, which is 1 if y is greater than x, and the zero bit,
which is only 1 when x == y. For comparing the above if statement, we
can directly inspect the zero bit.

The NSR translates these ideas into a fully-differentiable neural architec-
ture. As with other quantitative architectures, the NSR takes a vector of
numbers as inputs. The NSR’s output is a probability p how confident it is
about a comparison being true. The NSR independently learns which num-
bers are relevant for the comparison and also which comparison to evaluate
with the architecture shown in Figure 8.2:

The input to the NSR is a vector x. The first set of parametersWM andWS

(shaded red) learn which two numbers in x to compare. We activate each of
them with Softmax. Note that WM and WS are not symmetric. WM learns
the minuend m, number to subtract from, and WS learns the subtrahend
s, the number to subtract. We activate the difference m − s with a Ŝ and
a Ẑ function that approximates the sign and zero bits from circuit status
registers. The second set of learnable parameters W+, W0 combined with a
bias term b learn to combine the output of these two functions to represent
any comparison. The final probability p is the sigmoid activation of this
combination. Formally, the NSR computes:

m = 〈x, softmax(WM)〉
s = 〈x, softmax(WS)〉

p = σ(b+W+Ŝ(m− s) +W0Ẑ(m− s))

CHAPTER 8. NEURAL STATUS REGISTERS 85

Figure 8.2: Architecture for a Neural Status Register. Learnable parame-
ters are shaded in red. A first set of parameters WM learns a number based
on the input to subtract from, and WS learns a number to subtract. We ac-
tivate the difference with continuous approximations for sign and zero bits.
A second set of weights W+ and W0 learns to weigh these bits with a learn-
able bias term. We output a confidence of a true comparison by activating
this weighted sum with a sigmoid.

And for the learnable parameters WM ,WS ,W+,W0, and b, we can derive
the following partial derivatives:

∂p

∂b
= p(1− p) ∂p

∂W+
= p(1− p)Ŝ(d) ∂p

∂W0
= p(1− p)Ẑ(d)

∂p

∂m
= p(1− p)(Ŝ′W+ + Ẑ′W0) ∂p

∂s
= −p(1− p)(Ŝ′W+ + Ẑ′W0)

Choosing Bit Approximations The last two equations require our ap-
proximations for the sign and zero bits to be differentiable and to produce
helpful gradient landscapes. For example, consider the following function
approximation for the zero bit: Ẑ = 1 − 2 tanh(m − s)2. The issue is that
the sign and zero bits have a value of 0 for a significant part of the inputs.
Furthermore, these bit approximations are a multiplier in most gradients,
causing gradient vanishing. Figure 8.3a shows the gradient landscape forW0
when we choose Ẑ = 1− 2 tanh(m− s)2. The gradients become vanishingly
small except for the tiny part of the input space where m ≈ s. Therefore,
we deviate from an exact bit mapping and use −1 as the value for a false bit.
We propose the following functions, which we also visualize in Figure 8.4a.

CHAPTER 8. NEURAL STATUS REGISTERS 86

-2
.0

-1
.5

-1
.0

-0
.5 0.
0

0.
5

1.
0

1.
5

2.
0

m

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

s

0.2

0.1

0.0

0.1

0.2

(a)

-2
.0

-1
.5

-1
.0

-0
.5 0.
0

0.
5

1.
0

1.
5

2.
0

m

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

s

0.2

0.1

0.0

0.1

0.2

(b)

-2
.0

-1
.5

-1
.0

-0
.5 0.
0

0.
5

1.
0

1.
5

2.
0

m

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

s

0.2

0.1

0.0

0.1

0.2

(c)

Figure 8.3: Gradient landscapes for different approximates for sign and
zero bits. (a) landscape forW0 when Ẑ = 1−tanh (m− s)2: most gradients
are zero. (b) Landscape for W0 improved when Ẑ = 1 − 2 tanh (m− s)2:
mostly non-zero gradients. Positive gradients for x1 ≈ x2 but gradients are
also positive for |x1 − x2| = 0.5. We say that this difference falls below
the resolution limit. (c) Landscape for m when Ŝ = tanh (m− s),W0 =
0,W+ = 1. Gradients shrink towards 0 as m− s grows.

Ŝ(d) = tanh (m− s)

Ẑ(d) = 1− 2 tanh (m− s)2

Figure 8.3b shows the gradient landscape for W0, which is now different
from zero for virtually all values. However, we have two more issues to solve:
First, the sign approximation is approximately 0 when m ≈ s. If we want
to learn comparisons between almost similar numbers, this function will be
close to 0 most of the time, again causing vanishing gradients. Second, there

4 3 2 1 0 1 2 3 4
x

1.0

0.5

0.0

0.5

1.0

S
an

d
Z

S
Z

(a)

4 3 2 1 0 1 2 3 4
x

1.0

0.5

0.0

0.5

1.0

S
an

d
Z

S = 3

S = 1
3

Z = 3

Z = 1
3

(b)

Figure 8.4: (a) Discrete sign (blue) and zero (orange) bits and the proposed
continuous approximations. (b) Two different rescaled approximations with
λ = 1

3 or λ = 3.

CHAPTER 8. NEURAL STATUS REGISTERS 87

-0
.2

5
-0

.2
-0

.1
5

-0
.1

-0
.0

5 0
0.

05 0.
1

0.
15 0.

2
0.

25

WO

-0.25
-0.2

-0.15
-0.1

-0.05
0

0.05
0.1

0.15
0.2

0.25

W
+

4

5

6

7

8

9

10

Figure 8.5: Number of successes to learn equality comparisons with the
given weight initialization. Learning may fail if W0 is negative highlighting
initialization dependence on WM and WS .

is always a region where m 6= s but Ẑ > 0, giving a wrong approximation.
In these cases, we say that m and s are below the resolution limit. The
proposed Ẑ has a resolution limit of roughly 0.88. If we wanted to detect
that numbers that are 0.5 apart are not equal, this version of the NSR
would struggle. To address both issues, we introduce a factor λ to scale
m − s before applying the approximations. We can use λ > 1 to amplify
differences between m − s, which lowers the resolution limit and the range
where Ŝ ≈ 0. On the other hand, we can also use λ < 1 to diminish
differences between m− s. This may help when we compare numbers that
are far apart. For large differences m−s both Ŝ and Ẑ are saturated. Their
derivatives occur as a factor in the gradients for WM and WS , which can
vanish these gradients as Figure 8.4b. Figure 8.4b shows this scaled variants
of Ŝ and Ẑ, which we define mathematically as:

Ŝ(d) = tanh (λ(m− s))

Ẑ(d) = 1− 2 tanh (λ(m− s))2

Redundancy in the NSR
Figure 8.5 gives a motivating example for building redundancy into the NSR.
We initialize WM and WS Glorot Uniform [Glorot and Bengio, 2010] and
W+ and W0 to each value in 0.05 increments in [−0.25; 0.25]. We repeat
each combination for W+ and W0 10 times. The figure shows how often the
NSR, with this initialization, learns the equality comparison successfully.
We can see that—especially for small values for W0— the NSR does not

CHAPTER 8. NEURAL STATUS REGISTERS 88

Table 8.6

Task Example input Example output Extrapolation

Comparisons 10 > 5 1 Larger numbers1 > 5 0

Functions

f(11, 10, 22, 44, 62) 66

Larger numbers for comparisonsf(10, 11, 22, 44, 62) 22
g(10, 10, 22, 44, 62) 66
g(11, 10, 22, 44, 62) 22

MNIST > 0 N/A
= 1

Recurrent min([3, 5, 2, 7, 1]) 1 Longer sequences and/or larger numbers
count([3, 3, 5, 2, 3, 1]) 2

SSSP More nodes and/or larger edge weights

always succeed. This result is consistent with previous findings on learning
inequality (the bitwise XOR) where Bland [1998] and Frankle and Carbin
[2019]: Learning success is initialization dependent.

Kaiser and Sutskever [2016] address initialization dependence in the neural
GPU by creating several redundant parameter sets that are forced to con-
verge eventually. We apply a similar idea to the NSR. We adapt WM and
WS to learn multiple versions of m and s and adaptW+ andW0 to combine
all the differences into one logit for p. Unlike Kaiser and Sutskever [2016],
we did not find regularization to make these versions converge helpful.

8.2 Experiments

We experimentally validate the NSR in various settings, in isolation, with
other architectures, and recurrently with itself. Since we design the NSR to
be algorithmically well-aligned with comparisons, we expect that the NSR
can extrapolate well. Table 8.6 shows an overview of each experiment with
its inputs and outputs and how we extrapolate to more difficult predic-
tions. To align with the quantitative nature of the models, we supervise
with the mean absolute error. We use 10 redundant NSR units and the
Adam [Kingma and Ba, 2014] optimizer and average all results over 10
seeds.

CHAPTER 8. NEURAL STATUS REGISTERS 89

ChatGPT
In addition to the NSR and other arithmetic architectures, we attempt to
solve these problems with the large generative language model ChatGPT1

with the default settings. We experimented with the following prompts

Comparison Which of the numbers x1 and x2 is larger

Functions Let f(a, b, c, d, e) be a piecewise defined function that computes
e+ 4 if a > b and d− c otherwise. What is f(x1, x2, x3, x4, x5)

Minimum What is the smallest number in [x1, x2, . . .]

Counting How many times does x1 occur in [x2, x3, . . .]

Shortest Paths I am describing to you a graph in a set of triples (a,b,c) of
undirected edges. a and b are node IDs and c is the distance between
the two nodes. The edge list is [e1, e2, . . .]. Can you compute the
lengths of shortest paths from v to all other nodes. You can skip the
intermediate steps and only provide the final result

ChatGPT solved all instances of the first three problems. The solutions
extrapolated to larger numbers. On the other hand, ChatGPT often failed
on the counting task, especially as sequences became longer. ChatGPT also
failed to compute shortest paths, though most distances were in the right
ballpark. We found the final instruction necessary to ensure the reply does
not exceed the output size. We also experimented with encoding MNIST
images in text but found no encoding that ChatGPT understood. This
small study shows the impressive progress general-purpose symbolic archi-
tectures have made on arithmetic tasks. However, it also demonstrates that
quantitative architectures are still the better choice for some tasks.

Comparisons
First, we run the NSR on the motivating problem at the beginning of the
chapter. The inputs are two digits; the output is the binary evaluation of
one comparison between the two numbers. We run this experiment in six
versions and try each comparison of >,<,=, 6=,≥,≤. We train with all pairs
of digits. For testing, we use larger numbers around the powers of 10. For
each power, we create a set of comparisons testing the power against each
number at most 5 apart. Crafting the test set this way allows us to test on
the hardest comparisons around the decision boundary: Large numbers that
are almost the same. We balance the test set by only taking one different

1https://openai.com/product/chatgpt

CHAPTER 8. NEURAL STATUS REGISTERS 90

number instead of all 10. This allows us to identify model failures when the
score becomes 0.5. We compare the NSR with the four architectures from
the chapter introduction: A multilayer perceptron (MLP), Neural Power
Units (NPU) [Heim et al., 2020], Neural Arithmetic Units (NAU) [Madsen
and Johansen, 2020], and Neural Arithmetic Logic Units (NALU) [Trask
et al., 2018]. We append a linear readout to these models to allow a fair
comparison to the NSR in terms of parameters. We train for 50000 epochs.
Table 8.7 shows the results for all models. As we measure with mean abso-
lute error, smaller numbers are better.

Comparison Model 101 102 103 104 105 106 107

>

MLP 0.00 ±0.00 0.00 ±0.00 0.01 ±0.01 0.23 ±0.16 0.49 ±0.12 0.52 ±0.01 0.52 ±0.01
npu 0.75 ±0.19 0.51 ±0.02 0.51 ±0.02 0.51 ±0.02 0.51 ±0.02 0.51 ±0.02 0.51 ±0.02
nalu 0.00 ±0.00 0.00 ±0.00 0.11 ±0.06 0.50 ±0.09 0.52 ±0.00 0.52 ±0.00 0.52 ±0.00
nau 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00
nsr 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

<

MLP 0.00 ±0.00 0.00 ±0.01 0.09 ±0.14 0.33 ±0.18 0.52 ±0.01 0.52 ±0.01 0.52 ±0.01
npu 0.83 ±0.14 0.52 ±0.02 0.52 ±0.01 0.52 ±0.01 0.52 ±0.01 0.52 ±0.01 0.52 ±0.01
nalu 0.00 ±0.00 0.00 ±0.00 0.11 ±0.05 0.51 ±0.03 0.52 ±0.00 0.52 ±0.00 0.52 ±0.00
nau 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00
nsr 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

=

MLP 0.18 ±0.16 0.28 ±0.17 0.47 ±0.14 0.52 ±0.05 0.50 ±0.00 0.50 ±0.00 0.50 ±0.00
npu 0.40 ±0.15 0.50 ±0.00 0.50 ±0.00 0.50 ±0.00 0.50 ±0.00 0.50 ±0.00 0.50 ±0.00
nalu 0.45 ±0.10 0.45 ±0.10 0.48 ±0.08 0.52 ±0.07 0.50 ±0.00 0.50 ±0.00 0.50 ±0.00
nau 0.33 ±0.11 0.33 ±0.11 0.35 ±0.12 0.35 ±0.12 0.35 ±0.12 0.35 ±0.12 0.35 ±0.12
nsr 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

6=

MLP 0.18 ±0.11 0.27 ±0.12 0.42 ±0.11 0.50 ±0.00 0.50 ±0.00 0.50 ±0.00 0.50 ±0.00
npu 0.43 ±0.15 0.52 ±0.05 0.50 ±0.00 0.50 ±0.00 0.50 ±0.00 0.50 ±0.00 0.50 ±0.00
nalu 0.38 ±0.12 0.38 ±0.12 0.41 ±0.13 0.50 ±0.10 0.52 ±0.07 0.50 ±0.00 0.50 ±0.00
nau 0.33 ±0.11 0.33 ±0.11 0.35 ±0.12 0.35 ±0.12 0.35 ±0.12 0.35 ±0.12 0.35 ±0.12
nsr 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

≥

MLP 0.00 ±0.00 0.00 ±0.00 0.01 ±0.01 0.23 ±0.16 0.49 ±0.12 0.52 ±0.01 0.52 ±0.01
npu 0.75 ±0.19 0.51 ±0.02 0.51 ±0.02 0.51 ±0.02 0.51 ±0.02 0.51 ±0.02 0.51 ±0.02
nalu 0.00 ±0.00 0.00 ±0.00 0.11 ±0.06 0.50 ±0.09 0.52 ±0.00 0.52 ±0.00 0.52 ±0.00
nau 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00
nsr 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

≤

MLP 0.00 ±0.00 0.00 ±0.00 0.02 ±0.04 0.25 ±0.19 0.52 ±0.01 0.52 ±0.00 0.52 ±0.00
npu 0.74 ±0.20 0.51 ±0.02 0.51 ±0.02 0.51 ±0.02 0.51 ±0.02 0.51 ±0.02 0.51 ±0.02
nalu 0.00 ±0.00 0.00 ±0.00 0.11 ±0.06 0.50 ±0.08 0.52 ±0.00 0.52 ±0.00 0.52 ±0.00
nau 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00
nsr 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

Table 8.7: Learning comparisons following the setup from Table 8.1 for six
different comparisons and using the NSR. The NSR learns and extrapolates
all comparisons, including the equality-based comparisons that are difficult
for the other methods.

As expected, the NPU struggles most with this task. The NPU architec-
ture learns power functions and is not well-aligned for comparisons that re-
quire addition and subtraction. MLPs are universal function approximators
that learn all comparisons to some extent. However, MLPs are not aligned
enough to extrapolate fully. The NALU weights saturate before learning
the exact solution, so it does not extrapolate fully. On the other hand, the

CHAPTER 8. NEURAL STATUS REGISTERS 91

NAU is well-aligned to learn a subtraction between numbers. This allows
the NAU to learn all of >,<,≥,≤ and extrapolate over all tests. The NSR
also perfectly solves these comparisons and learns the equality-based infor-
mation = and 6=. The zero bit allows for a direct signal to learn (in)equality.
This experiment shows that the NSR can learn all comparisons. Next, we
integrate the NSR into larger models with other architectures.

Piecewise-defined Functions
First, we combine the NSR with NAUs and NALUs. We wire NSR output p
and 1− p each to a separate model to allow learning two different branches
of piecewise functions. We aim to learn the following two functions:

f(a, b, c, d, e) =
{
e+ 4 if a > b

d− c otherwise

g(a, b, c, d, e) =
{
e+ 4 if a == b

d− c otherwise

We sample a and b as in the previous experiment: training with digits and
using powers and numbers close by for testing. We sample the remaining
numbers used in addition and subtraction from [−100; 100]. Table 8.8 shows
the mean average error. As before, we train for 50000 epochs.

Function Comparison 21 22 23 24 25 26 27

f

MLP+NALU 0.00 ±0.00 0.00 ±0.00 0.01 ±0.00 0.01 ±0.00 0.96 ±2.72 3.92 ±4.69 3.95 ±5.57
MLP+NAU 1.46 ±1.67 4.45 ±8.09 6.42 ±8.88 17.72 ±24.86 27.41 ±37.65 49.67 ±56.88 103.28 ±152.32

NALU+NALU 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.01 ±0.00 0.02 ±0.03 0.30 ±0.81 2.77 ±4.77
NALU+NAU 7.28 ±12.25 14.83 ±21.82 9.72 ±12.24 14.12 ±14.42 21.86 ±23.19 25.78 ±27.84 65.97 ±114.87
NAU+NALU 0.00 ±0.00 0.01 ±0.00 0.01 ±0.00 0.01 ±0.00 0.02 ±0.01 0.03 ±0.01 0.06 ±0.03
NAU+NAU 7.19 ±12.28 13.45 ±21.69 9.76 ±12.22 16.15 ±18.70 21.41 ±22.59 37.93 ±53.33 93.63 ±142.86
NSR+NALU 0.00 ±0.00 0.00 ±0.00 0.01 ±0.00 0.01 ±0.00 0.01 ±0.01 0.02 ±0.01 0.05 ±0.06
NSR+NAU 1.75 ±1.83 2.27 ±2.54 4.01 ±5.34 5.84 ±6.28 10.28 ±15.71 15.58 ±23.08 24.01 ±42.46

g

MLP+NALU 4.78 ±8.78 5.81 ±9.18 4.71 ±8.52 5.42 ±8.73 4.26 ±6.55 12.72 ±13.34 25.93 ±16.09
MLP+NAU 8.28 ±9.89 8.64 ±10.52 9.30 ±9.71 15.96 ±13.28 18.37 ±13.11 33.30 ±9.29 37.38 ±10.04

NALU+NALU 25.39 ±9.36 30.76 ±14.19 37.31 ±29.58 43.95 ±47.93 75.85 ±119.67 139.51 ±254.32 204.69 ±357.51
NALU+NAU 34.51 ±10.76 36.23 ±13.06 36.75 ±14.96 34.85 ±15.66 33.97 ±14.21 32.75 ±11.56 40.14 ±18.70
NAU+NALU 24.89 ±9.20 28.86 ±12.74 29.62 ±14.80 32.59 ±21.83 57.92 ±71.28 82.04 ±120.31 148.11 ±256.99
NAU+NAU 33.86 ±11.40 37.59 ±11.18 35.92 ±13.19 37.52 ±13.16 40.80 ±16.17 42.15 ±24.79 57.77 ±37.23
NSR+NALU 0.04 ±0.03 0.04 ±0.04 0.12 ±0.19 0.08 ±0.11 0.06 ±0.05 0.08 ±0.08 0.21 ±0.30
NSR+NAU 5.66 ±8.20 6.48 ±8.34 7.24 ±6.48 12.72 ±11.35 17.48 ±12.49 23.94 ±24.45 41.20 ±50.47

Table 8.8: Combining comparison models with a downstream arithmetic
unit to learn piecewise-defined functions. The NSR performs best with the
most noticeable difference on the equality-based comparison.

Generally, all architectures can better learn comparisons when paired with
a downstream NALU over a downstream NAU. In the previous experiment,

CHAPTER 8. NEURAL STATUS REGISTERS 92

we saw that the clipping weights in NAU allow for much better extrapola-
tion. However, we hypothesize that this clipping, with its associated zero
gradients, makes gradients for upstream units harder. Looking only at the
comparison units, the NSR again outperforms the remaining architectures:
The NSR achieves the best extrapolation for f, tied with NAU, and is the
only method that learns g at all. This function requires learning equality,
so this result is consistent with the equality results from Table 8.7.

Digit Image Comparisons
We now combine architectures the opposite way: We combine the NSR
with a convolutional neural network (CNN) but this time, the NSR is the
downstream unit. We train a simple CNN for MNIST2, multiply the class
probabilities with the respective digit, and input pairs of these numerical
predictions into an NSR. We want this NSR to predict which if comparisons
> and = are equal. We train the entire architecture, including the CNN,
end to end. Since the initial predictions of the CNN are close to uniform,
we found it helps to lower the resolution limit by setting λ = 10. To set
up pairs for >, we batch the MNIST dataset in batches of 50 and create
ordered pairs from all images in each batch. To set up pairs for =, we create
batches of 100. We use every correct equality comparison per batch to create
balanced pairs and add one wrong pair of images. We train for 13 epochs
over the MNIST training set and test with the same batching setup on the
test dataset. Table 8.9 shows the correct predictions where the distance to
the correct label is less than 0.5.

Model Digit > Digit=
MLP 95.18±0.78 70.79±5.25
NALU 75.90±20.36 64.99±0.97
NAU 76.01±20.44 63.26±1.68
NSR 96.92±1.06 80.05±12.07

Table 8.9: Combining comparison models with an upstream convolutional
neural network to compare images of digits. The NSR produces the best
results for both comparisons, especially for the equality comparison.

The accuracy does not reach that of the image classification task, which is
above 99%, which is not surprising given this is a harder problem. Clas-

2https://github.com/pytorch/examples/blob/234bcff4a2d8480f156799e6b9baae06f7ddc96a/
mnist/main.py

https://github.com/pytorch/examples/blob/234bcff4a2d8480f156799e6b9baae06f7ddc96a/mnist/main.py
https://github.com/pytorch/examples/blob/234bcff4a2d8480f156799e6b9baae06f7ddc96a/mnist/main.py

CHAPTER 8. NEURAL STATUS REGISTERS 93

sifying an image provides a direct supervision signal for the CNN to learn
to distinguish images. In this comparison task, the only supervision signal
for the CNN is if an image is larger/equal to another digit. To identify the
digit, we need to compare the same image to many others. The comparison-
aligned architecture of the NSR allows it to outperform the other models on
this task, again with the most clear difference on the equality comparison.

Recurrent Problems
We now use the NSR in two recurrent scenarios. First, we are learning the
minimum out of a sequence of numbers. Second, we count how often the
first element occurs in the rest of the sequence. To find the minimum, we
iterate the sequence and compare the current number with our belief of the
minimum in the NSR. We then update our minimum as the NSR-weighted
average of the current number and our previous minimum. For counting,
we also iterate the sequence and increment a counter with the NSR output,
comparing the current element against the first sequence element (the ele-
ment we want to count).

We train the minimum search with 400 sequences of length 5 with numbers
randomly chosen from [1, 10]. We train counting by sampling 6 elements
where the last five are at most 5 different. For testing, we extrapolate to
larger numbers by multiplying the upper limit with powers of two, and we
extrapolate to larger sequences in steps of 5 up to 50 (51) elements. We use
LSTMs [Hochreiter and Schmidhuber, 1997] as additional baselines, which
can count as shown by Suzgun et al. [2019a,b], Weiss et al. [2018]. Fig-
ure 8.10 shows the results for LSTMS and the previous comparison models.

The NSR is the only method to learn both problems and extrapolate in both
dimensions consistently. Consistent with existing literature, LSTMs learn
to count in the training set but fail to learn the minimum and to extrapolate
to more difficult counting problems. The previous baselines make mistakes
in the training set for both tasks. They show resilience to extrapolating to
larger numbers but not to larger sequences.

8.2.1 Shortest Paths with Graph Neural Networks
Finally, we combine the NSR with our main thesis topic: message-passing
graph neural networks [Gilmer et al., 2017, Battaglia et al., 2018] (GNNs).
GNNs require an aggregation of messages in one round of message passing.
Motivated by the strong results of learning a minimum with the NSR, we
use it as the aggregation function in learning a shortest path setting. Tech-

CHAPTER 8. NEURAL STATUS REGISTERS 94

23
25

27
29

M
in

im
um

In
pu

t S
ca

le

LSTM MLP NALU NAU NSR

10 20 30 40 50

Sequence Length

23
25

27
29

Co
un

t
In

pu
t S

ca
le

10 20 30 40 50

Sequence Length

10 20 30 40 50

Sequence Length

10 20 30 40 50

Sequence Length

10 20 30 40 50

Sequence Length

0.0

0.5

1.0

1.5

2.0

Figure 8.10: Combining comparisons models recurrently with themselves
to learn the minimum in a sequence and to count occurrences. The NSR
learns and extrapolates both problems, while baselines either struggle with
the task themselves or with extrapolation.

nically, predicting with the NSR over a sequence has no guarantee of being
permutation invariant, but if we learn successfully, we learn a permutation
invariant function. Unlike current GNN architectures for shortest paths that
we give the information to use the minimum/maximum, our NSR-GNN will
learn this aggregation. Formally we contrast against IterGNN [Tang et al.,
2020] and NEG [Velickovic et al., 2020]:

NEG/IterGNN:hl+1 = UPDATE(hl, min
v∈N(v)

(MESSAGE(v)))

NSR-GNN:hl+1 = NSR(hl, ‖
v∈N(v)

(MESSAGE(v)))

N(v) contains the neighbors of v, MESSAGE and UPDATE are linear functions.
Compared to NEG, IterGNN uses MESSAGE and UPDATE functions that must
be homomorphic; NEG makes no restriction.

For training, we follow Velickovic et al. [2020] and learn to imitate the
Bellman-ford algorithm with supervision per iteration. We create 10 graphs
with 10 nodes each and randomly sampled edge weights from [1, 10]. We
base graphs on a randomly chosen spanning tree to which we add on expec-
tation one random edge. Additionally, we add self-loops to every node to
retain their previous information. We train for 1000 epochs and then test
in two extrapolation dimensions: First, we increase the number of nodes by
multiplying the training size with powers of two. Second, we also scale the
upper edge weight by powers of two. Figure 8.11 shows the mean average

CHAPTER 8. NEURAL STATUS REGISTERS 95

error between predictions and the actual distances.

10 20 40 80 16
0

32
0

64
0

Weight Scale

10
20
40
80

160
320
640

Gr
ap

h
Sc

al
e

NEG

10 20 40 80 16
0

32
0

64
0

Weight Scale

IterGNN

10 20 40 80 16
0

32
0

64
0

Weight Scale

NSR-GNN

0

2

4

Figure 8.11: Learning and extrapolating shortest paths. The top left cor-
ner equals the training setting. Along the x-axis, we increase the maximum
edge weights. Along the y-axis, we increase the graph size. All models can
extrapolate to larger graphs. The NSR is the only architecture extrapolating
in both dimensions.

All models show extrapolation capability to larger graphs. However, NEG
struggles with extrapolating to larger weights. The homomorphic functions
of IterGNN allow for better extrapolation than NEG. The NSR also outper-
forms IterGNN with almost perfect extrapolation in both dimensions.

Resolution Limit Ablation on λ

In most previous examples, the input numbers required the NSR to find
differences of 1 or larger. We now conduct an ablation on λ to show that
smaller or larger differences are fine, as suggested by the MNIST experiment
(where the intermediate state had no guarantees of minimum differences).
We copy the setup for simple comparisons but rescale the inputs by differ-
ent powers of 10, such that the smallest difference δ between two non-equal
numbers varies from 10−3 to 105. Orthogonally, we vary lambda 10−3 to
103. Figure 8.12 shows the mean average error for the training set. We
observed that training errors of 0 extrapolate, so we emit test errors for
conciseness.

In any case, the NSR learns successfully when the differences δ between
numbers are large. The same is not true for small distances because of

CHAPTER 8. NEURAL STATUS REGISTERS 96

10
3

10
2

10
1

10
0

10
1

10
2

10
3

10
4

10
5

10 3

10 2

10 1

100

101

102

103

Learning >

10
3

10
2

10
1

10
0

10
1

10
2

10
3

10
4

10
5

Learning =

0.0

0.2

0.4

Figure 8.12: Mean average error of the NSR for learning > and = when
we vary the distance between different digits (δ, x-axis) and internal scaling
parameter λ. If both δ and λ are small, we experience the first resolution
error, and the NSR fails to learn >. If both δ < λ−1, we experience the
second resolution error, and the NSR fails to learn =.

the resolution limit. We can see that the NSR fails to learn > when the
difference between δ and λ becomes too large, in our case, three orders of
magnitude or more. For learning = we even need λ to be as large as δ−1.
Both plots show that values of λ satisfying these conditions can counteract
the effects of smaller minimum differences.

Redundancy Ablation
Last, let us conduct an ablation on the effect of redundant units in the NSR.
We revisit the piecewise-defined functions with an identical setup, except we
vary the redundant units in the NSR from 1 to 15. Figure 8.13 shows the
mean average error of the testing set without extrapolation for each redun-
dancy level.

Both functions benefit from at least some level of redundancy. For learning
f it seems already sufficient to have 2 or more NSR units. On the other
hand, learning g requires 9 or more redundant NSR units to train robustly.

CHAPTER 8. NEURAL STATUS REGISTERS 97

1 2 3 4 5 6 7 8 9 101112131415
Redundancy

0
5

10
15
20

M
AE

f
g

Figure 8.13: Mean average error for the NSR with varying redundancy
to learn piecewise-defined functions from Table 8.8. At least some level of
redundancy is required to learn either function robustly.

9
Conclusion

In this thesis, we study two major angles to improve current message-passing
Graph Neural Networks: Understanding what GNNs learn and how to ex-
plain their decision-making to humans. On the other hand, understanding
the limits of the message-passing model and improving on the limits.

We examined the improvements of the new GNN architecture on many early
benchmark datasets. The novelty in GNNs is their ability to combine si-
multaneous reasoning over features and edges. We proposed a measure to
evaluate how much the datasets require this superior reasoning. We also
evaluated several GNN architectures to what extent they leverage this com-
bined reasoning practically. The notion we use for both measurements is
solvable nodes. Solvable nodes are nodes that a model can consistently pre-
dict correctly. We also compare agreement between different GNN archi-
tectures. It might be interesting to investigate the solvable and unsolvable
nodes with explanation methods to understand systematic successes or fail-
ures of GNNs. Furthermore, future work could try to leverage disagreement
between GNN architectures to build better models through ensembling.

We then proposed two new methods to explain GNN predictions. For the
first method, we highlighted the importance of finding explanations consis-

98

CHAPTER 9. CONCLUSION 99

tent with the training data distribution. Otherwise, we might mistake adver-
sarial attacks on a model as explanations for it. Our proposed Contrastive
Graph Explanation (CoGE) method uses a contrastive approach that com-
pares a graph against other examples in the training set. We can ensure that
these explanations are consistent with the training distribution since expla-
nations consist of training graphs. Our second model, GraphChef, allows
for a new level of explanation: While current explanation models highlight
what parts of the input are important, they do not reveal how the GNN
uses the inputs and why they are important. GraphChef reveals the full
decision process: Which inputs are important, and how are these inputs
used. We consider improving the performance on high-dimensional datasets
as the main angle to improve Graphchef in future work.

Finally, we showed several problems that the currently-used benchmarks to
evaluate explanation methods have. These problems allow a GNN model to
solve the benchmarks differently from our expectations. Explaining such a
GNN and comparing these explanations against our expectations will sug-
gest that the explanation method performs poorly, which may not be true.
We proposed three new benchmarks that avoid these problems. However,
we do not believe the proposed benchmarks are exhaustive for GNN usages,
so future work should investigate further benchmarking sets.

We also investigated how to break the current limits of message-passing
GNNs and identified that message aggregation aggravates many problems.
We proposed a new framework for GNNs with asynchronous communication
(GwAC) that avoids aggregation completely and handles every message in-
dividually. This framework shows promising improvements on many GNN
problems: Expressiveness bounds by 1−WL, Oversmoothing, and Under-
reaching. However, we only briefly studied how to train GwAC models ef-
fectively and robustly. For future work, we might investigate how to adapt
techniques for GNN training, such as residual connections, dropouts, or
normalizations. Another promising line for future work is building more
efficient implementations for GwAC.

Finally, we investigated the seemingly simple problem of number compar-
isons with neural networks. We found that current architectures, including
architectures built for arithmetics, struggle to learn and extrapolate this
problem. We proposed the Neural Status Register (NSR) architecture that
is algorithmically well-aligned to solve comparisons. We used the NSR in
various comparison-related experiments and got improvements. Future work
might incorporate the NSR as a building block in more complex algorithmic
reasoning architectures.

Bibliography

Emmanuel Abbe. Community detection and stochastic block models: recent
developments. The Journal of Machine Learning Research, 2017.

Julius Adebayo, Justin Gilmer, Michael Muelly, Ian Goodfellow, Moritz
Hardt, and Been Kim. Sanity checks for saliency maps. In Conference
on Neural Information Processing Systems (NeurIPS), Montreal, Canada,
December 2018.

Chirag Agarwal, Marinka Zitnik, and Himabindu Lakkaraju. Probing gnn
explainers: A rigorous theoretical and empirical analysis of gnn explana-
tion methods. In International Conference on Artificial Intelligence and
Statistics, pages 8969–8996. PMLR, 2022.

Chirag Agarwal, Owen Queen, Himabindu Lakkaraju, and Marinka Zitnik.
Evaluating explainability for graph neural networks. Scientific Data, 2023.

Uri Alon and Eran Yahav. On the bottleneck of graph neural networks
and its practical implications. In International Conference on Learning
Representations (ICLR), 2021.

Kenza Amara, Rex Ying, Zitao Zhang, Zhihao Han, Yinan Shan, Ulrik
Brandes, Sebastian Schemm, and Ce Zhang. Graphframex: Towards sys-
tematic evaluation of explainability methods for graph neural networks.
arXiv preprint arXiv:2206.09677, 2022.

Marco Ancona, Enea Ceolini, Cengiz Öztireli, and Markus Gross. Towards
better understanding of gradient-based attribution methods for deep neu-
ral networks. In International Conference on Learning Representations
(ICLR), Vancouver, Canada, April 2018.

100

BIBLIOGRAPHY 101

Baruch Awerbuch. Complexity of network synchronization. Journal of the
ACM, 1985.

Caglar Aytekin. Neural networks are decision trees. arXiv preprint
arXiv:2210.05189, 2022.

Steve Azzolin, Antonio Longa, Pietro Barbiero, Pietro Liò, and Andrea
Passerini. Global explainability of gnns via logic combination of learned
concepts. arXiv preprint arXiv:2210.07147, 2022.

Mohit Bajaj, Lingyang Chu, Zi Yu Xue, Jian Pei, Lanjun Wang, Peter
Cho-Ho Lam, and Yong Zhang. Robust counterfactual explanations on
graph neural networks. In Conference on Neural Information Processing
Systems (NeurIPS), volume 34, 2021.

Federico Baldassarre and Hossein Azizpour. Explainability techniques for
graph convolutional networks. arXiv preprint arXiv:1905.13686, 2019.

Pablo Barceló, Egor Kostylev, Mikael Monet, Jorge Pérez, Juan Reutter,
and Juan-Pablo Silva. The logical expressiveness of graph neural networks.
In International Conference on Learning Representations (ICLR), 2020.

Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-
Gonzalez, Vinicius Zambaldi, Mateusz Malinowski, Andrea Tacchetti,
David Raposo, Adam Santoro, Ryan Faulkner, et al. Relational in-
ductive biases, deep learning, and graph networks. arXiv preprint
arXiv:1806.01261, 2018.

Beatrice Bevilacqua, Fabrizio Frasca, Derek Lim, Balasubramaniam Srini-
vasan, Chen Cai, Gopinath Balamurugan, Michael M. Bronstein, and
Haggai Maron. Equivariant subgraph aggregation networks. In
International Conference on Learning Representations (ICLR), 2022.

Richard Bland. Learning XOR: exploring the space of a classic problem. De-
partment of Computing Science and Mathematics, University of Stirling,
1998.

Olcay Boz. Extracting decision trees from trained neural networks. In
ACM SIGKDD international conference on Knowledge discovery and data
mining (KDD), 2002.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Ka-
plan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sas-
try, Amanda Askell, et al. Language models are few-shot learners. Neural
Information Processing Systems (NeurIPS), virtual, 2020.

BIBLIOGRAPHY 102

Rickard Brüel-Gabrielsson, Mikhail Yurochkin, and Justin Solomon.
Rewiring with positional encodings for graph neural networks. arXiv
preprint arXiv:2201.12674, 2022.

Chen Cai and Yusu Wang. A simple yet effective baseline for non-
attributed graph classification. In International Conference on Learning
Representations (ICLR)Workshop on Representation Learning on Graphs
and Manifolds, 2018.

Jonathon Cai, Richard Shin, and Dawn Song. Making neural program-
ming architectures generalize via recursion. In International Conference
on Learning Representations (ICLR), Toulon, France, 2017.

Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. Measur-
ing and relieving the over-smoothing problem for graph neural networks
from the topological view. In AAAI Conference on Artificial Intelligence
(AAAI), 2020a.

Jialin Chen and Zhitao Ying. Tempme: Towards the explainability of
temporal graph neural networks via motif discovery. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023.

Jialin Chen, Shirley Wu, Abhijit Gupta, and Zhitao Ying. D4explainer: In-
distribution explanations of graph neural network via discrete denoising
diffusion. In Thirty-seventh Conference on Neural Information Processing
Systems, 2023.

Kaiyu Chen, Yihan Dong, Xipeng Qiu, and Zitian Chen. Neural arithmetic
expression calculator. arXiv preprint arXiv:1809.08590, 2018.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Sim-
ple and deep graph convolutional networks. In International Conference
on Machine Learning (ICML), 2020b.

Ting Chen, Song Bian, and Yizhou Sun. Are Powerful Graph Neural Nets
Necessary? A Dissection on Graph Classification. ArXiv, 2019a.

Zhengdao Chen, Lei Chen, Soledad Villar, and Joan Bruna. On the equiv-
alence between graph isomorphism testing and function approximation
with gnns. In Conference on Neural Information Processing Systems
(NeurIPS), 2019b.

Mark Craven and Jude Shavlik. Extracting tree-structured representations
of trained networks. In Conference on Neural Information Processing
Systems (NeurIPS), 1995.

BIBLIOGRAPHY 103

Enyan Dai and Suhang Wang. Towards Self-Explainable Graph Neural Net-
work. In ACM International Conference on Information & Knowledge
Management (CIKM), 2021.

Darren Dancey, Dave Mclean, and Zuhair Bandar. Decision Tree Extrac-
tion from Trained Neural Networks. In International Florida Artificial
Intelligence Research Society Conference (FLAIRS), 2004.

Asim Kumar Debnath, Rosa L. Lopez de Compadre, Gargi Debnath, Alan J.
Shusterman, and Corwin Hansch. Structure-activity relationship of mu-
tagenic aromatic and heteroaromatic nitro compounds. Correlation with
molecular orbital energies and hydrophobicity. Journal of Medicinal
Chemistry, 1991.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and
Lukasz Kaiser. Universal transformers. In International Conference on
Learning Representations (ICLR), 2018.

Amit Dhurandhar, Pin-Yu Chen, Ronny Luss, Chun-Chen Tu, Paishun
Ting, Karthikeyan Shanmugam, and Payel Das. Explanations based on
the missing: Towards contrastive explanations with pertinent negatives.
In Conference on Neural Information Processing Systems (NeurIPS),
Montreal, Canada, December 2018.

Amit Dhurandhar, Tejaswini Pedapati, Avinash Balakrishnan, Pin-Yu Chen,
Karthikeyan Shanmugam, and Ruchir Puri. Model agnostic contrastive
explanations for structured data. arXiv preprint arXiv:1906.00117, 2019.

Honghua Dong, Jiayuan Mao, Tian Lin, Chong Wang, Lihong Li, and Denny
Zhou. Neural logic machines. In International Conference on Learning
Representations (ICLR), New Orleans, USA, 2019.

Alexandre Duval and Fragkiskos D Malliaros. Graphsvx: Shapley value
explanations for graph neural networks. In Joint European Conference on
Machine Learning and Principles and Practice of Knowledge Discovery in
Databases (ECML PKDD), 2021.

Yuval Emek and Roger Wattenhofer. Stone age distributed computing. In
ACM Symposium on Principles of distributed computing (PODC), 2013.

Federico Errica, Marco Podda, Davide Bacciu, and Alessio Micheli. A
fair comparison of graph neural networks for graph classification. In
International Conference on Learning Representations (ICLR 2020), 2020.

BIBLIOGRAPHY 104

Richard Evans and Edward Grefenstette. Learning explanatory rules from
noisy data. Journal of Artificial Intelligence Research, 2018.

Lukas Faber and Roger Wattenhofer. Asynchronous message passing: A new
framework for learning in graphs, 2023a. URL https://openreview.net/
forum?id=2_I3JQ70U2.

Lukas Faber and Roger Wattenhofer. Neural status registers. In
International Conference on Machine Learning, pages 9508–9522. PMLR,
2023b.

Lukas Faber, Amin K Moghaddam, and Roger Wattenhofer. Contrastive
graph neural network explanation. arXiv preprint arXiv:2010.13663, 2020.

Lukas Faber, Amin K. Moghaddam, and Roger Wattenhofer. When com-
paring to ground truth is wrong: On evaluating gnn explanation meth-
ods. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining, pages 332–341, 2021a.

Lukas Faber, Yifan Lu, and Roger Wattenhofer. Should graph neural net-
works use features, edges, or both? arXiv preprint arXiv:2103.06857,
2021b.

Junfeng Fang, Wei Liu, Xiang Wang, Zemin Liu, An Zhang, Yuan Gao, and
He Xiangnan. Evaluating post-hoc explanations for graph neural networks
via robustness analysis. In Conference on Neural Information Processing
Systems (NeurIPS), 2023.

Zachary Feinstein. It’s a trap: Emperor palpatine’s poison pill. arXiv
preprint arXiv:1511.09054, 2015.

Qizhang Feng, Ninghao Liu, Fan Yang, Ruixiang Tang, Mengnan Du, and
Xia Hu. DEGREE: decomposition based explanation for graph neural net-
works. In International Conference on Learning Representations (ICLR),
2022.

Wenzheng Feng, Jie Zhang, Yuxiao Dong, Yu Han, Huanbo Luan, Qian Xu,
Qiang Yang, Evgeny Kharlamov, and Jie Tang. Graph random neural
networks for semi-supervised learning on graphs. In Conference on Neural
Information Processing Systems (NeurIPS), 2020.

John K. Feser, Marc Brockschmidt, Alexander L. Gaunt, and Daniel Tarlow.
Neural functional programming. In International Conference on Learning
Representations (ICLR), Toulon, France, 2017.

https://openreview.net/forum?id=2_I3JQ70U2
https://openreview.net/forum?id=2_I3JQ70U2

BIBLIOGRAPHY 105

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with
PyTorch Geometric. In ICLR Workshop on Representation Learning on
Graphs and Manifolds, 2019.

Matthias Fey, Jan E Lenssen, Christopher Morris, Jonathan Masci, and
Nils M Kriege. Deep graph matching consensus. arXiv preprint
arXiv:2001.09621, 2020.

Jean Feydy, Thibault Séjourné, François-Xavier Vialard, Shun-ichi Amari,
Alain Trouve, and Gabriel Peyré. Interpolating between optimal transport
and mmd using sinkhorn divergences. In Proceedings of the International
Conference on Artificial Intelligence and Statistics (AISTATS), Naha,
Japan, April 2019.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Find-
ing sparse, trainable neural networks. In International Conference on
Learning Representations (ICLR), New Orleans, USA, 2019.

Karlis Freivalds and Renars Liepins. Improving the neural gpu architecture
for algorithm learning. arXiv preprint arXiv:1702.08727, 2017.

Vikas Garg, Stefanie Jegelka, and Tommi Jaakkola. Generalization and rep-
resentational limits of graph neural networks. In International Conference
on Machine Learning (ICML), 2020.

Johannes Gasteiger, Janek Groß, and Stephan Günnemann. Directional
message passing for molecular graphs. In International Conference on
Learning Representations (ICLR), 2020.

Simon Geisler, Daniel Zügner, and Stephan Günnemann. Reliable graph
neural networks via robust aggregation. Advances in Neural Information
Processing Systems, 33:13272–13284, 2020.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and
George E Dahl. Neural message passing for quantum chemistry. In
International Conference on Machine Learning (ICML), 2017.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of train-
ing deep feedforward neural networks. In International Conference on
Artificial Intelligence and Statistics (AISTATS. JMLR Workshop and
Conference Proceedings, 2010.

Alex Graves. Adaptive computation time for recurrent neural networks.
arXiv preprint arXiv:1603.08983, 2016.

BIBLIOGRAPHY 106

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines.
arXiv preprint arXiv:1410.5401, 2014.

Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Dani-
helka, Agnieszka Grabska-Barwińska, Sergio Gómez Colmenarejo, Ed-
ward Grefenstette, Tiago Ramalho, John Agapiou, et al. Hybrid com-
puting using a neural network with dynamic external memory. Nature,
2016.

Edward Grefenstette, Karl Moritz Hermann, Mustafa Suleyman, and Phil
Blunsom. Learning to transduce with unbounded memory. In Neural
Information Processing Systems (NeurIPS), Montreal, Canada, 2015.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning
for networks. In Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining, 2016.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation
learning on large graphs. In Conference on Neural Information Processing
Systems (NeurIPS), volume 30, 2017.

Arman Hasanzadeh, Ehsan Hajiramezanali, Shahin Boluki, Mingyuan Zhou,
Nick Duffield, Krishna Narayanan, and Xiaoning Qian. Bayesian graph
neural networks with adaptive connection sampling. In International
Conference on Machine Learning (ICML), 2020.

Niklas Heim, Tomáš Pevnỳ, and Václav Šmídl. Neural power units. Neural
Information Processing Systems (NeurIPS), remote, 2020.

Mark Heimann, Haoming Shen, Tara Safavi, and Danai Koutra. Regal: Rep-
resentation learning-based graph alignment. In International Conference
on Information and Knowledge Management (CIKM), Turin, Italy, Oc-
tober 2018.

Anna Himmelhuber, Mitchell Joblin, Martin Ringsquandl, and Thomas
Runkler. Demystifying Graph Neural Network Explanations. In Joint
European Conference on Machine Learning and Principles and Practice
of Knowledge Discovery in Databases (ECML PKDD), 2021.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 1997.

Sara Hooker, Dumitru Erhan, Pieter-Jan Kindermans, and Been Kim.
A benchmark for interpretability methods in deep neural networks.
In Proceedings of 33th Conference on Neural Information Processing
Systems, pages 9737–9748, 2019.

BIBLIOGRAPHY 107

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren,
Bowen Liu, Michele Catasta, and Jure Leskovec. Open graph benchmark:
Datasets for machine learning on graphs. Advances in neural information
processing systems, 33, 2020.

Qian Huang, Horace He, Abhay Singh, Ser-Nam Lim, and Austin R. Benson.
Combining Label Propagation and Simple Models Out-performs Graph
Neural Networks. International Conference on Learning Representations
(ICLR), 2021.

Qiang Huang, Makoto Yamada, Yuan Tian, Dinesh Singh, Dawei Yin,
and Yi Chang. GraphLIME: Local Interpretable Model Explanations for
Graph Neural Networks. ArXiv, 2020.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical Reparameteri-
zation with Gumbel-Softmax. International Conference on Learning
Representations (ICLR), 2016.

Lukasz Kaiser and Ilya Sutskever. Neural gpus learn algorithms. In
International Conference on Learning Representations (ICLR), San Juan,
Puerto Rico, 2016.

Segwang Kim, Hyoungwook Nam, Joonyoung Kim, and Kyomin Jung.
Neural sequence-to-grid module for learning symbolic rules. In AAAI
Conference on Artificial Intelligence (AAAI), remote, 2021.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980, 2014.

Thomas N. Kipf and Max Welling. Semi-supervised classification with
graph convolutional networks. In International Conference on Learning
Representations (ICLR), 2017.

Johannes Klicpera, Stefan Weißenberger, and Stephan Günnemann. Dif-
fusion improves graph learning. In Conference on Neural Information
Processing Systems (NeurIPS), 2019.

Narine Kokhlikyan, Vivek Miglani, Miguel Martin, Edward Wang, Bilal
Alsallakh, Jonathan Reynolds, Alexander Melnikov, Natalia Kliushkina,
Carlos Araya, Siqi Yan, and Orion Reblitz-Richardson. Captum: A uni-
fied and generic model interpretability library for pytorch, 2020.

Peter Kontschieder, Madalina Fiterau, Antonio Criminisi, and Samuel Rota
Bulo. Deep neural decision forests. In IEEE International Conference on
Computer Vision (CVPR), 2015.

BIBLIOGRAPHY 108

R. Krishnan, G. Sivakumar, and P. Bhattacharya. Extracting decision trees
from trained neural networks. Pattern Recognition, 1999.

Guillaume Lample and François Charton. Deep learning for symbolic mathe-
matics. In International Conference on Learning Representations (ICLR),
Addis Ababa, Ethiopia, 2020.

Hung Le, Truyen Tran, and Svetha Venkatesh. Neural stored-program mem-
ory. In International Conference on Learning Representations (ICLR),
Addis Ababa, Ethiopia, 2020.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk
Michalewski, Vinay Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag,
Theo Gutman-Solo, et al. Solving quantitative reasoning problems with
language models. Neural Information Processing Systems (NeurIPS), New
Orleans, USA, 2022.

Chengtao Li, Daniel Tarlow, Alexander L. Gaunt, Marc Brockschmidt, and
Nate Kushman. Neural program lattices. In International Conference on
Learning Representations (ICLR), Toulon, France, 2017.

Guohao Li, Matthias Muller, Ali Thabet, and Bernard Ghanem. Deep-
gcns: Can gcns go as deep as cnns? In IEEE international conference on
computer vision (ICCV), pages 9267–9276, 2019.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph
convolutional networks for semi-supervised learning. In AAAI Conference
on Artificial Intelligence (AAAI), 2018.

Wenqian Li, Yinchuan Li, Zhigang Li, Jianye Hao, and Yan Pang. DAG
matters! gflownets enhanced explainer for graph neural networks. In The
Eleventh International Conference on Learning Representations (ICLR),
2023.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard S. Zemel. Gated
graph sequence neural networks. In International Conference on Learning
Representations (ICLR), 2016.

Yanbin Liu, Linchao Zhu, Makoto Yamada, and Yi Yang. Semantic cor-
respondence as an optimal transport problem. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020.

Andreas Loukas. What graph neural networks cannot learn: depth vs width.
In International Conference on Learning Representations (ICLR), 2020.

BIBLIOGRAPHY 109

Ana Lucic, Maartje ter Hoeve, Gabriele Tolomei, Maarten de Rijke, and
Fabrizio Silvestri. Cf-gnnexplainer: Counterfactual explanations for graph
neural networks. ArXiv, 2021.

Scott M. Lundberg, Gabriel G. Erion, and Su-In Lee. Consistent Individu-
alized Feature Attribution for Tree Ensembles. ArXiv, 2018.

Dongsheng Luo, Wei Cheng, Dongkuan Xu, Wenchao Yu, Bo Zong, Haifeng
Chen, and Xiang Zhang. Parameterized explainer for graph neural
network. In Conference on Neural Information Processing Systems
(NeurIPS), 2020.

Ge Lv and Lei Chen. On data-aware global explainability of graph neural
networks. Proceedings of the VLDB Endowment, 2023.

Jing Ma, Ruocheng Guo, Saumitra Mishra, Aidong Zhang, and Jundong Li.
Clear: Generative counterfactual explanations on graphs. Advances in
Neural Information Processing Systems, 2022.

Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The Concrete Dis-
tribution: A Continuous Relaxation of Discrete Random Variables. In
International Conference on Learning Representations (ICLR), 2016.

Andreas Madsen and Alexander Rosenberg Johansen. Neural arithmetic
units. In International Conference on Learning Representations (ICLR),
Addis Ababa, Ethiopia, 2020.

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Prov-
ably powerful graph networks. In Conference on Neural Information
Processing Systems (NeurIPS), 2019.

Karolis Martinkus, Pál András Papp, Benedikt Schesch, and Roger
Wattenhofer. Agent-based graph neural networks. arXiv preprint
arXiv:2206.11010, 2022.

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton,
Jan Eric Lenssen, Gaurav Rattan, and Martin Grohe. Weisfeiler and le-
man go neural: Higher-order graph neural networks. In AAAI Conference
on Artificial Intelligence (AAAI), 2019.

Christopher Morris, Nils M Kriege, Franka Bause, Kristian Kersting, Petra
Mutzel, and Marion Neumann. Tudataset: A collection of benchmark
datasets for learning with graphs. arXiv preprint arXiv:2007.08663, 2020.

BIBLIOGRAPHY 110

Christopher Morris, Floris Geerts, Jan Tönshoff, and Martin Grohe. Wl
meet vc. arXiv preprint arXiv:2301.11039, 2023.

Peter Müller, Lukas Faber, Karolis Martinkus, and Roger Wattenhofer.
Graphchef: Learning the recipe of your dataset. In ICML 3rd Workshop
on Interpretable Machine Learning in Healthcare (IMLH), 2023.

Vu Nguyen, Tam Le, Makoto Yamada, and Michael A Osborne. Optimal
transport kernels for sequential and parallel neural architecture search. In
International Conference on Machine Learning, 2021.

Giannis Nikolentzos, Polykarpos Meladianos, and Michalis Vazirgiannis.
Matching node embeddings for graph similarity. In Conference on
Artificial Intelligence (AAAI), San Francisco, USA, February 2017.

Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose
expressive power for node classification. In International Conference on
Learning Representations (ICLR), 2020.

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The
pagerank citation ranking: Bringing order to the web. Technical report,
1999.

Pál András Papp, Karolis Martinkus, Lukas Faber, and Roger Wattenhofer.
Dropgnn: random dropouts increase the expressiveness of graph neu-
ral networks. In Conference on Neural Information Processing Systems
(NeurIPS), 2021.

David Peleg. Distributed computing: a locality-sensitive approach. SIAM,
2000.

Phillip E Pope, Soheil Kolouri, Mohammad Rostami, Charles E Martin,
and Heiko Hoffmann. Explainability methods for graph convolutional
neural networks. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2019.

J.R. Quinlan. Simplifying decision trees. International Journal of
Man-Machine Studies, 1987.

Scott E. Reed and Nando de Freitas. Neural programmer-interpreters. In
International Conference on Learning Representations (ICLR), San Juan,
Puerto Rico, 2016.

BIBLIOGRAPHY 111

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. " why should
i trust you?" explaining the predictions of any classifier. In ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD), 2016.

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge:
Towards deep graph convolutional networks on node classification. In
International Conference on Learning Representations (ICLR), 2020.

Halsey Lawrence Royden and Patrick Fitzpatrick. Real analysis. Macmillan
New York, 1988.

Benjamin Sanchez-Lengeling, Jennifer Wei, Brian Lee, Emily Reif, Peter
Wang, Wesley Wei Qian, Kevin McCloskey, Lucy Colwell, and Alexander
Wiltschko. Evaluating attribution for graph neural networks. Proceedings
of 34th Conference on Neural Information Processing Systems, 33, 2020.

Alberto Sanfeliu and King-Sun Fu. A distance measure between attributed
relational graphs for pattern recognition. IEEE transactions on systems,
man, and cybernetics, 1983.

Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman, Danupon
Nanongkai, Gopal Pandurangan, David Peleg, and Roger Wattenhofer.
Distributed verification and hardness of distributed approximation. SIAM
Journal on Computing, 2012.

Ryoma Sato. A survey on the expressive power of graph neural networks.
arXiv preprint arXiv:2003.04078, 2020.

Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Approximation ratios
of graph neural networks for combinatorial problems. Advances in Neural
Information Processing Systems, 32, 2019.

Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Fast unbalanced op-
timal transport on a tree. Advances in neural information processing
systems, 2020.

Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Random features
strengthen graph neural networks. In SIAM International Conference on
Data Mining (SDM), 2021.

David Saxton, Edward Grefenstette, Felix Hill, and Pushmeet Kohli.
Analysing mathematical reasoning abilities of neural models. In
International Conference on Learning Representations (ICLR), New
Orleans, USA, 2019.

BIBLIOGRAPHY 112

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and
Gabriele Monfardini. The graph neural network model. IEEE transactions
on neural networks, 2008.

Nina Schaaf, Marco F. Huber, and Johannes Maucher. Enhancing De-
cision Tree based Interpretation of Deep Neural Networks through L1-
Orthogonal Regularization. 2019 18th IEEE International Conference On
Machine Learning And Applications (ICMLA), 2019.

Michael Sejr Schlichtkrull, Nicola De Cao, and Ivan Titov. Interpreting
graph neural networks for NLP with differentiable edge masking. In
International Conference on Learning Representations (ICLR), 2021.

Daniel Schlör, Markus Ring, and Andreas Hotho. inalu: Improved neural
arithmetic logic unit. arXiv preprint arXiv:2003.07629, 2020.

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna
Vedantam, Devi Parikh, and Dhruv Batra. Grad-cam: Visual expla-
nations from deep networks via gradient-based localization. In IEEE
International Conference on Computer Vision (CVPR), 2017a.

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna
Vedantam, Devi Parikh, and Dhruv Batra. Grad-cam: Visual explana-
tions from deep networks via gradient-based localization. In Proceedings
of the IEEE international conference on computer vision, 2017b.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Gal-
ligher, and Tina Eliassi-Rad. Collective classification in network data. AI
magazine, 2008.

L. S. Shapley. 17. A Value for n-Person Games. Contributions to the Theory
of Games, 1953.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and
Stephan Günnemann. Pitfalls of graph neural network evaluation. arXiv
preprint arXiv:1811.05868, 2018.

Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning impor-
tant features through propagating activation differences. arXiv preprint
arXiv:1704.02685, 2017.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for
deep networks. In International Conference on Machine Learning (ICML),
Sydney, Australia, August 2017.

BIBLIOGRAPHY 113

Mirac Suzgun, Yonatan Belinkov, and Stuart M Shieber. On evaluat-
ing the generalization of lstm models in formal languages. Society for
Computation in Linguistics (SCiL), New York City, USA, 2019a.

Mirac Suzgun, Sebastian Gehrmann, Yonatan Belinkov12, and Stuart M
Shieber. Lstm networks can perform dynamic counting. In Association
for Computational Linguistics (ACL), Florence, Italy, 2019b.

Hao Tang, Zhiao Huang, Jiayuan Gu, Bao-Liang Lu, and Hao Su. Towards
scale-invariant graph-related problem solving by iterative homogeneous
gnns. Conference on Neural Information Processing Systems (NeurIPS),
2020.

Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xi-
aowen Dong, and Michael M Bronstein. Understanding over-squashing
and bottlenecks on graphs via curvature. In International Conference on
Learning Representations (ICLR), 2022.

Andrew Trask, Felix Hill, Scott E Reed, Jack Rae, Chris Dyer, and Phil
Blunsom. Neural arithmetic logic units. In Neural Information Processing
Systems (NeurIPS), Montreal, Canada, 2018.

Anton Tsitsulin, Davide Mottin, Panagiotis Karras, and Emmanuel Müller.
Verse: Versatile graph embeddings from similarity measures. In
Proceedings of the 2018 world wide web conference, 2018.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero,
Pietro Lio, and Yoshua Bengio. Graph attention networks. In
International Conference on Learning Representations (ICLR), 2018.

Petar Velickovic, Rex Ying, Matilde Padovano, Raia Hadsell, and Charles
Blundell. Neural execution of graph algorithms. In International
Conference on Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, 2020.

Clement Vignac, Andreas Loukas, and Pascal Frossard. Building powerful
and equivariant graph neural networks with structural message-passing.
In Conference on Neural Information Processing Systems (NeurIPS),
2020.

Minh Vu and My T Thai. Pgm-explainer: Probabilistic graphical model
explanations for graph neural networks. In Conference on Neural
Information Processing Systems (NeurIPS), 2020.

BIBLIOGRAPHY 114

Qing Wang, Dillon Ze Chen, Asiri Wijesinghe, Shouheng Li, and Muham-
mad Farhan. N-WL: A New Hierarchy of Expressivity for Graph Neu-
ral Networks. In The Eleventh International Conference on Learning
Representations, ICLR, Kigali, Rwanda, May 2023.

Runzhong Wang, Junchi Yan, and Xiaokang Yang. Learning combinatorial
embedding networks for deep graph matching. In International Conference
on Computer Vision and Pattern Recognition (CVPR), Long Beach, USA,
June 2019.

Xiaoqi Wang and Han-Wei Shen. Gnninterpreter: A probabilistic genera-
tive model-level explanation for graph neural networks. arXiv preprint
arXiv:2209.07924, 2022.

Roger Wattenhofer. Mastering Distributed Algorithms. Inverted Forest
Publishing, 2020.

Boris Weisfeiler and Andrei Leman. The reduction of a graph to canonical
form and the algebra which appears therein. nti, Series, 1968.

Gail Weiss, Yoav Goldberg, and Eran Yahav. On the practical com-
putational power of finite precision rnns for language recognition. In
Association for Computational Linguistics (ACL), Florence, Italy, 2018.

Jason Weston, Sumit Chopra, and Antoine Bordes. Memory networks. In
International Conference on Learning Representations (ICLR), San Diego,
USA, 2015.

Asiri Wijesinghe and Qing Wang. A new perspective on" how graph neural
networks go beyond weisfeiler-lehman?". In International Conference on
Learning Representations, 2021.

Fang Wu, Siyuan Li, Xurui Jin, Yinghui Jiang, Dragomir Radev, Zhangming
Niu, and Stan Z Li. Rethinking explaining graph neural networks via non-
parametric subgraph matching. In International Conference on Machine
Learning, 2023.

Mike Wu, Michael C. Hughes, Sonali Parbhoo, Maurizio Zazzi, Volker Roth,
and Finale Doshi-Velez. Beyond Sparsity: Tree Regularization of Deep
Models for Interpretability. In AAAI Conference on Artificial Intelligence
(AAAI), 2017a.

Zhanghao Wu, Paras Jain, Matthew Wright, Azalia Mirhoseini, Joseph E
Gonzalez, and Ion Stoica. Representing long-range context for graph neu-
ral networks with global attention. In Conference on Neural Information
Processing Systems (NeurIPS), 2021.

BIBLIOGRAPHY 115

Zhenqin Wu, Bharath Ramsundar, Evan N. Feinberg, Joseph Gomes, Caleb
Geniesse, Aneesh S. Pappu, Karl Leswing, and Vijay Pande. MoleculeNet:
A Benchmark for Molecular Machine Learning. Chemical Science, 2017b.

Wenwen Xia, Mincai Lai, Caihua Shan, Yao Zhang, Xinnan Dai, Xiang
Li, and Dongsheng Li. Explaining temporal graph models through an
explorer-navigator framework. In The Eleventh International Conference
on Learning Representations (ICLR), 2023.

Hongteng Xu, Dixin Luo, and Lawrence Carin. Scalable gromov-wasserstein
learning for graph partitioning and matching. In Conference on Neural
Information Processing Systems (NeurIPS), Vancouver, Canada, Decem-
ber 2019a.

Hongteng Xu, Dixin Luo, Hongyuan Zha, and Lawrence Carin Duke.
Gromov-wasserstein learning for graph matching and node embedding.
In International conference on machine learning (ICML), Long Beach,
USA, June 2019b.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi
Kawarabayashi, and Stefanie Jegelka. Representation learning on graphs
with jumping knowledge networks. In International Conference on
Machine Learning (ICML), 2018.

Keyulu Xu, Stefanie Jegelka, Weihua Hu, and Jure Leskovec. How Power-
ful are Graph Neural Networks? International Conference on Learning
Representations (ICLR), 2019c.

Keyulu Xu, Jingling Li, Mozhi Zhang, Simon S. Du, Ken-ichi
Kawarabayashi, and Stefanie Jegelka. What can neural networks reason
about? In International Conference on Learning Representations(ICLR),
Addis Ababa, Ethiopia, 2020.

Keyulu Xu, Mozhi Zhang, Jingling Li, Simon Shaolei Du, Ken-ichi
Kawarabayashi, and Stefanie Jegelka. How neural networks extrapolate:
From feedforward to graph neural networks. In International Conference
on Learning Representations (ICLR), remote, 2021.

Mengjiao Yang and Been Kim. Benchmarking attribution methods with
relative feature importance. arXiv, 2019.

Yongxin Yang, Irene Garcia Morillo, and Timothy M. Hospedales. Deep
Neural Decision Trees. ArXiv, 2018a.

BIBLIOGRAPHY 116

Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-
supervised learning with graph embeddings. In International conference
on machine learning (ICML), 2018b.

Ziyuan Ye, Rihan Huang, Qilin Wu, and Quanying Liu. Same: Uncovering
gnn black box with structure-aware shapley-based multipiece explana-
tions. In Thirty-seventh Conference on Neural Information Processing
Systems, 2023.

Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure
Leskovec. Gnnexplainer: Generating explanations for graph neural
networks. In Conference on Neural Information Processing Systems
(NeurIPS), Vancouver, Canada, December 2019.

Jiaxuan You, Zhitao Ying, and Jure Leskovec. Design space for graph neu-
ral networks. In Conference on Neural Information Processing Systems
(NeurIPS), virtual, December 2020.

Hao Yuan, Jiliang Tang, Xia Hu, and Shuiwang Ji. Xgnn: Towards model-
level explanations of graph neural networks. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, pages 430–438, 2020a.

Hao Yuan, Haiyang Yu, Shurui Gui, and Shuiwang Ji. Explainability in
graph neural networks: A taxonomic survey, 2020b.

Hao Yuan, Haiyang Yu, Jie Wang, Kang Li, and Shuiwang Ji. On Ex-
plainability of Graph Neural Networks via Subgraph Explorations. In
International Conference on Machine Learning (ICML), 2021.

Wojciech Zaremba and Ilya Sutskever. Reinforcement learning neural turing
machines-revised. arXiv preprint arXiv:1505.00521, 2016.

Wojciech Zaremba, Tomas Mikolov, Armand Joulin, and Rob Fergus. Learn-
ing simple algorithms from examples. In International Conference on
Machine Learning (ICML), New York City, USA, 2016.

Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolu-
tional networks. In European Conference on Computer Vision (ECCV),
Zurich, Switzerland, September 2014.

Bohang Zhang, Shengjie Luo, Liwei Wang, and Di He. Rethinking the
expressive power of gnns via graph biconnectivity. In The Eleventh
International Conference on Learning Representations, ICLR 2023,
Kigali, Rwanda, May 1-5, 2023, 2023.

BIBLIOGRAPHY 117

Zaixi Zhang, Qi Liu, Hao Wang, Chengqiang Lu, and Cheekong Lee.
ProtGNN: Towards Self-Explaining Graph Neural Networks. In AAAI
Conference on Artificial Intelligence (AAAI), 2021.

Zhen Zhang and Wee Sun Lee. Deep graphical feature learning for the fea-
ture matching problem. In International Conference on Computer Vision
and Pattern Recognition (CVPR), Long Beach, USA, June 2019.

Lingxiao Zhao and Leman Akoglu. Pairnorm: Tackling oversmoothing in
gnns. In International Conference on Learning Representations (ICLR),
2020.

Kaixiong Zhou, Xiao Huang, Yuening Li, Daochen Zha, Rui Chen, and
Xia Hu. Towards deeper graph neural networks with differentiable group
normalization. In Conference on Neural Information Processing Systems
(NeurIPS), 2020.

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and
Danai Koutra. Beyond homophily in graph neural networks: Current lim-
itations and effective designs. Advances in Neural Information Processing
Systems, 2020.

Daniel Zügner and Stephan Günnemann. Adversarial attacks on graph
neural networks via meta learning. In 7th International Conference on
Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9,
2019, 2019.

Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. Adversarial
attacks on neural networks for graph data. In Proceedings of the 24th
ACM SIGKDD international conference on knowledge discovery & data
mining, 2018.

	Introduction
	I Explaining Communication in Graph Neural Networks
	Understanding Communication
	Graph Neural Network Necessity
	A Metric for Correct Predictions
	Experiments

	Contrastive GNN Explanation
	CoGE: Contrastive GNN Explanations
	Experiments

	Decision Tree Recipes to explain GNNs
	GraphChef Recipes
	Recipe Improvements
	Experiments

	Explanation Evaluation Pitfalls
	Pitfalls for Explanation Evaluation
	Three New GNN Explanation Benchmarks
	Experiments

	II Improving Communication in Graph Neural Networks
	GwAC: Asynchronous GNNs
	Limitations of GNNs
	No Aggregation Asynchronous Communication
	The GwAC framework
	Expressiveness Analysis
	Underreaching and Oversmoothing
	Complexity and Efficiency

	Neural Status Registers
	Neural Status Registers
	Experiments

	Conclusion

