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Summary

This thesis analyzes the impact of Artificial Intelligence (AI) on the economy,

focusing on its effect on growth, firm competition, automation, market concen-

tration and income inequality. The main feature of AI that we aim at assessing

in this thesis that makes it different from existing automation technologies is

its self-learning capacity, which allows AI to autonomously improve through

its application. In Chapter 2-4, we provide theoretical analyses of the effect

of AI on various economic outcomes. In addition, we discuss the effect of dif-

ferent policies affecting the income distribution, education, unemployment or

competition in times of an increasing importance of AI.

Chapter 2 focuses on modeling AI as self-learning capital, where its produc-

tivity increases with its use in applied research (AR). Within the three-sector

economy, an AI sector competes with an AR sector for high-skilled workers,

and both sectors produce intermediates for a final good sector. We determine

four tipping points, with entrepreneurs and high-skilled workers initially driv-

ing AI accumulation, which later reverses due to two-sided spillovers between

AI and AR. We propose using appropriate tax policies, such as an AI-tax, to

achieve socially optimal transitions of workers between sectors. Additionally,

we show the rise of income inequality resulting from the development of AI.

We investigate the impact of AI on firm competition in a growth model with

endogenous labor supply, heterogeneous agents and firms with heterogeneous

AI productivity in Chapter 3. Incorporating AI in production incurs vari-

able costs for acquiring software and fixed costs for AI infrastructure, where

the latter can present market barriers for less productive firms. Although

infrastructure investments in AI promote the continuous improvement of self-

learning AI algorithms, especially trained and tailored for the production of

large firms, they can also be the foundation for increasing divergence in firm

productivity, amplified market concentration, high markups and rising income

vii
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inequality between heterogeneously-skilled agents. Based on our theoretical

insights, we discuss policies in the realm of data sharing, intellectual property

rights or competition law that help avoiding excessive market concentration

in AI-intensive industries, while promoting the economic integration of AI.

Moreover, we examine the role of education in shaping economic growth,

income inequality, and unemployment amidst the evolving impact of AI in

Chapter 4. In our task-based growth model with overlapping generations,

as industrial production becomes more reliant on AI, we assess the interplay

among AI, education, and inequality. Our findings indicate that human spe-

cialization in specific tasks can mitigate AI-induced automation risks and re-

duce income inequality. Furthermore, we discuss how different unemployment

and education policies impact economies in which AI can take on an increasing

number of tasks.

In Chapter 5, we explore the increasing importance of software, data, and

AI and the potential implications for competition. We find empirical evidence

that high investments in intangible assets such as software and data are as-

sociated with higher market concentration, markups, and lower labor shares.

However, due to the lack of an appropriate database, clear conclusions regard-

ing AI’s specific effects on competition remain elusive. Nonetheless, we discuss

a modernization of competition policy and antitrust legislation to counter po-

tential competition deficiencies in AI-intensive economies. To be more specific,

we advocate the implementation of an early warning system to identify trends

that obstruct competition in digital markets. Furthermore, we stress the cru-

cial importance of establishing a uniform international legal framework for AI.

In Chapter 6, we provide a brief conclusion and outlook to this thesis that go

beyond our explorations. The Appendix in Chapter 7 presents supplementary

material.

To sum up, this dissertation underscores AI’s transformative power in var-

ious economic aspects. While AI may pose challenges in terms of competition

and income inequality, the implementation of appropriate mechanisms, such

as an AI tax, new competition regulations, and adequate education and un-

employment policies, can harness and foster its potential for economic growth

while ensuring an adequate distribution of its benefits.
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Zusammenfassung

In dieser Dissertation untersuchen wir die ökonomischen Auswirkungen der

Künstlichen Intelligenz (KI), wobei wir uns auf deren Einfluss auf Wachstum,

Wettbewerb zwischen Unternehmen, Marktkonzentration und Einkommensun-

gleichheit konzentrieren. Das Hauptmerkmal der KI, welches wir in dieser

Dissertation analysieren möchten und welches sie von bestehenden Automa-

tisierungstechnologien unterscheidet, ist ihre Fähigkeit zum
”
selbstständigen

Lernen“, was der KI ermöglicht, sich autonom durch ihre Anwendung zu ver-

bessern. Darüber hinaus diskutieren wir die Auswirkungen verschiedener po-

litischer Maßnahmen, welche die Einkommensverteilung, Bildung, Arbeitslo-

sigkeit oder das Wettbewerbsrecht in Zeiten zunehmender Bedeutung von KI

betreffen. Im Folgenden beschreiben wir kurz den Inhalt der vier behandelten

Projekte.

Kapitel 2 konzentriert sich auf die Modellierung der KI als selbstlernendes

Kapital, bei dem ihre Produktivität mit ihrer Anwendung in angewandter For-

schung (AF) steigt. In dem makroökonomischen Wachstummodell konkurriert

ein KI-Sektor mit einem AF-Sektor um hochqualifizierte Arbeitskräfte, und

beide Sektoren produzieren Zwischenprodukte für einen Endverbrauchssektor.

Wir bestimmen vier Kippunkte, bei denen Unternehmer und hochqualifizier-

te Arbeitskräfte anfänglich die KI-Akkumulation antreiben, was sich später

aufgrund beidseitiger Spillover-Effekte zwischen KI und AF umkehrt. Im An-

schluss dikutieren wir, wie adäquate politische Eingriffe, wie beispielsweise eine

KI-Steuer oder Gewinnsteuer sozial optimale Transitionen der Arbeitskräfte

zwischen den Sektoren unterstützen können. Darüber hinaus zeigen wir den

Anstieg der Einkommensungleichheit als Ergebnis der Entwicklung der KI.

In Kapitel 3 untersuchen wir die Auswirkungen von KI auf den Wett-

bewerb zwischen Unternehmen in einem Wachstumsmodell mit endogenem

Arbeitsangebot, heterogenen Agenten und Unternehmen mit heterogener KI-
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Produktivität. Die Integration von KI in die Produktion verursacht variable

Kosten für den Erwerb von KI-Software und Fixkosten für KI-Infrastruktur,

wobei letztere Marktbarrieren für weniger produktive Unternehmen darstellen

können. Obwohl Investitionen in KI-Infrastruktur die Weiterentwicklung von

selbstlernenden KI-Algorithmen fördern, welche zunehmend für die Produkti-

on großer Unternehmen zugeschnitten sind, bilden sie auch die Grundlage für

eine zunehmende Divergenz in der Produktivität der Unternehmen, verstärkte

Marktkonzentration, Preisaufschläge und steigende Einkommensungleichheit

zwischen heterogenen Agenten. Basierend auf unseren theoretischen Erkennt-

nissen diskutieren wir politische Maßnahmen im Bereich des Datenaustauschs,

geistigen Eigentumsrechts oder Wettbewerbsrechts, die dazu beitragen können,

übermäßige Marktkonzentration und Preisaufschläge in KI-intensiven Bran-

chen zu vermeiden, während die wirtschaftliche Integration von KI gefördert

wird.

Darüber hinaus beleuchten wir in Kapitel 4 mit Hilfe eines multi-sektoralen

und aufgabenabhängigen Modells die Rolle von Bildung für wirtschaftliches

Wachstums, Einkommensungleichheit und Arbeitslosigkeit bei zunehmender

Entwicklung von KI. In unserem Modell mit überlappenden Generationen wer-

den die Wechselwirkungen zwischen KI, Bildung und Ungleichheit untersucht.

Unsere Ergebnisse zeigen, dass die menschliche Spezialisierung in bestimmten

Aufgaben und den entsprechenden Sektoren die Risiken der KI-induzierten Au-

tomatisierung abschwächen und die Einkommensungleichheit verringern kann.

Darüber hinaus diskutieren wir, wie politische Massnahmen insbesondere im

Bezug auf Bildung und Arbeitslosigkeit digitale Ökonomien beeinflussen, in

welcher KI eine steigende Anzahl an Aufgaben übernehmen kann.

In Kapitel 5 diskutieren wir die zunehmende Bedeutung von Software,

Daten und KI sowie deren potenzielle Auswirkungen auf den Wettbewerb.

Wir finden erste deskriptive Evidenz dafür, dass Investitionen in immaterielle

Vermögenswerte mit einer höheren Marktkonzentration, höheren Aufschlägen

und niedrigeren Lohnanteilen einhergehen. Aufgrund des Fehlens einer geeigne-

ten Datenbank bleiben klare Schlussfolgerungen hinsichtlich der spezifischen

Auswirkungen der KI auf den Wettbewerb jedoch schwer fassbar. Dennoch

befürworten wir eine Modernisierung der Wettbewerbspolitik und des Kar-

tellrechts, um potenzielle Wettbewerbsdefizite in KI-intensiven Ökonomien

frühzeitig zu bekämpfen. In Kapitel 6 geben wir eine kurze Zusammenfas-

sung und einen Ausblick auf diese Arbeit, die über unsere Untersuchungen
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hinausgehen. Der Anhang in Kapitel 7 beinhaltet ergänzendes Material.

Zusammenfassend betont diese Dissertation die transformative Kraft der

KI in verschiedenen wirtschaftlichen Aspekten. Obwohl die KI Herausfor-

derungen in Bezug auf Wettbewerb und Einkommensungleichheit mit sich

bringen kann, kann die Umsetzung geeigneter politischer Maßnahmen wie

einer KI-Steuer, neuer Wettbewerbsvorschriften und angemessener Bildungs-

und Arbeitslosigkeitspolitiken ihr Potenzial zur Förderung des wirtschaftlichen

Wachstums nutzen und dabei für eine angemessene Verteilung ihres Nutzens

sorgen.
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Chapter 1

Introduction

Artificial Intelligence (AI) is currently in the spotlight, with discussions in-

creasingly centered on its potential to drive economic growth and boost firm

productivity. However, it also raises concerns about hampering competition

and exacerbating inequality. This doctoral dissertation examines the intricate

relationship between AI and four economic domains: Economic Growth, Com-

petition, Education, and Regulation. The goal of this thesis is to provide an

understanding of how AI interacts with these domains, shedding light on the

economic, social, and political challenges and opportunities that arise from its

rapid ascent. The primary objective is to develop theoretical economic models

for understanding the effects of AI on the abovementioned outcomes. Given

the challenges in predicting the development of AI, we construct frameworks to

conceptualize its potential impact on the economy. We build upon established

economic theory, but additionally introduce new (parametric) assumptions

about the growth patterns of AI, for the sake of feasibility and quantifiability

of our models.

Economic literature has extensively examined the impact of robots and

automation on a variety of outcomes, with special attention given to the field

of data, software and AI in recent years.1 This thesis primarily focuses on

evaluating the unique aspect of AI we define as self-learning, distinguishing

it from traditional definitions for automation technologies or robots in the

economic literature. The self-learning feature of AI refers to its ability to au-

1See, e.g., Aghion et al. (2017); Korinek and Stiglitz (2017); Agrawal et al. (2018); Varian
(2018); Jones and Tonetti (2020); Trammell and Korinek (2020); Acemoglu (2021); Korinek
and Stiglitz (2021) and Gries and Naudé (2022).
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tonomously improve through its testing, training and application—a concept

akin to “learning by doing”, adapted to technological advancements, and the

notion of “machine intelligence” (Hanson, 2001). This self-learning feature of

AI, that we especially define in Chapter 2, sets AI apart from conventional

“brute-force” machines (Makridakis, 2017). AI algorithms can self-improve

(without human intervention), using algorithms from deep machine learning

or reinforcement learning (Lu, 2020). These algorithms, when applied, facil-

itate tasks like logical reasoning, search operations, pattern recognition, in-

ference, and planning, steadily improving AI performance through iterative

application.

New chances and challenges due to the rising economic importance of self-

learning AI algorithms are the focus of this dissertation. It is divided in four

chapters, followed by a short conclusion and outlook. All chapters are indi-

vidual papers and parts of this thesis have already been published in working

papers or conference proceedings. Chapter 2–4 focus on the inclusion of the

concept of self-learning AI into economic models to assess its interplay with,

e.g., growth, competition and education. Chapter 5 is a policy report where

we provide descriptive insights into the link between AI and several measures

for competition. In Chapter 2–4, we additionally discuss policy measures such

as educational policies, an AI tax or a basic income for unemployed agents to

promote the growth-enhancing potential of AI and distribute its benefits fairly.

Moreover, policy recommendations for supporting the corporate AI integration

as well as legal adjustments of competition and anti-trust policy to prevent

market concentration in increasingly digital economies at an early stage are

in particular discussed in Chapter 5. Finally, Chapter 6 presents a summary,

highlights essential insights, and broadens the discussion to show perspectives

beyond the dissertation, indicating potential avenues for future studies. We

provide supplementary material in the Appendix (Chapter 7).

Outline of the Dissertation Our research questions are the following:

• Chapter 2: Does AI drive technological progress and growth and if

yes, how? Is there too much or too little AI? How could policy foster

socially desirable transitions to AI-based economies and correct ensuing

mis-allocations of high-skilled workers across an Applied Research (AR)

and AI sector?
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• Chapter 3: When and why do firms prefer to implement AI, even if

additional fixed and variable costs have to be borne? How do differ-

ent groups benefit from AI implementation in industrial production?

How does AI implementation affect market concentration, input factor

allocation, markups and factor income shares? Which governmental in-

terventions might guarantee the optimal economic integration of AI to

distribute the benefits of AI to all population groups?

• Chapter 4: When do agents face unemployment due to AI-induced

automation? How can task-specific education enable agents to remain

employed in AI-based economies? Is there a trade-off between inequal-

ity, education, and AI development and how can unemployment and

education policies affect the economy?

• Chapter 5: How are markups and market concentration associated with

investments in software, data and AI? Which policy interventions may

decrease the risk of declining competition in digital economies? How can

the introduction of an early warning system help detecting competition-

hampering trends in digital economies?

Chapter 2: AI and Economic Growth In Chapter 2, we construct a

Romer (1990)-type growth model with self-learning AI. The model encom-

passes three sectors: a final good sector, an AI sector, and an Applied Re-

search sector. The final good sector utilizes AI and AR as intermediates. The

AR sector operates within a perfectly competitive environment, while firms

in the AI sector face monopolistic competition. In the AR sector, blueprints

are generated for the creation and commercialization of products, translating

ideas into marketable goods. In contrast, firms in the AI sector produce AI

algorithms, which improve in quality when they are applied in the AR sector,

implying that AI can be regarded as a form of self-learning capital. The final

good sector produces finished products, using a combination of labor, AI, AR,

and physical capital. The quantities of the three stocks—–AI, AR, and physi-

cal capital—–grow through the processes of application, research, and savings,

respectively. The desirable feature of this model is that it highlights how the

self-learning ability of AI encloses a growth process with tipping points.

We concentrate on modeling the development of an economy, starting from

a state devoid of AI, to analyze the transitions of heterogeneous agents across
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sectors, the evolution of AI and AR, and to determine a balanced growth path.

Our model focuses on the labor market decisions of agents with varying skills.

We consider three groups of agents: Entrepreneurial-skilled individuals, who

can work in all sectors, including the ability to found AI firms; high-skilled

individuals, who can work across all sectors but lack entrepreneurial skills; and

low-skilled workers, confined in employment in the final good sector.

The economy is subject to five distinct regimes, characterized by four tip-

ping points, until it reaches a steady state. Initially, when all workers are

engaged in final good production, entrepreneurial-skilled individuals first have

an incentive to move to the AI sector, as they receive a profit share by running

AI firms and thus can receive an overall income that is higher than in other

sectors. Once AI has reached a certain level, which leads to increasing wages

in the AI sector, an employment in AI becomes attractive for high-skilled

individuals. Subsequently, as AI’s self-learning potential is depleting, employ-

ment in the AR sector becomes more attractive, first prompting high-skilled

individuals to transition from AI to AR. After some time, in the final phase,

also entrepreneurs shift from AI to AR, making the economy to converge to

a steady state. In the long-run, all entrepreneurs and high-skilled workers are

employed in the AR sector, low-skilled agents work in the final good firm, and

AI improves autonomously.

The socially optimal transitions between sectors can be enforced through

a combination of various policy instruments. However, we note that as AI

accumulates, a widening income gap emerges, since only entrepreneurs reap

the profits from AI firms. In the long run, if increasing wages in the AR sector

exclusively benefit high-skilled workers and entrepreneurs, the labor share of

low-skilled workers will converge to zero. Thus, we present a macroeconomic

justification for the implementation of an AI tax, if AI significantly benefits

from its learning capacity. The proposed AI tax serves as a mechanism to

redistribute AI income to those who cannot directly benefit from AI profits.

Finally we discuss additional mechanisms encouraging a more timely and op-

timal reallocation of high-skilled individuals from the AI sector to the AR

sector, fostering the optimal integration of AI into the economy.

Chapter 3: AI and Competition In order to maintain the tractability

of our model, we do not incorporate learning through final output in Chapter

2, but via AR, which allows for tractable analytical results. Nonetheless, in
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Chapter 3 and 4, we model the self-learning of AI via output, which leads

to more parametric flexibility when modeling the growth pattern of AI. Yet,

tractable results of our models are difficult to obtain, so that we cannot provide

detailed algebraic results but show quantitative statics and numerical quan-

tifications of our findings. The growth trajectory of AI is conceptualized as an

S-shaped curve, characterized by an initial period of acceleration, followed by

gradual attenuation, and ultimately converging to zero growth.

In Chapter 3, our main motivation is to theoretically examine how the

incorporation of AI—a self-learning intangible asset—in industrial production

may affect market concentration and factor income shares. We model an econ-

omy with an industrial sector in which firms produce a consumable good and

an AI sector, where companies develop AI algorithms. We set up a neoclassi-

cal economy with heterogeneous agents where agents’ savings and consumption

are endogenized and labor supply is elastic. Industrial firms that produce a

single consumption good employ a nested constant elasticity of substitution

production function that incorporates AI as a non-rival input factor in addi-

tion to the rival inputs labor and capital. If industrial firms decide to employ

AI in production, they need to invest in infrastructure for AI (fixed costs)

in addition to the acquisition of AI software (variable costs). Depending on

whether entrepreneurs, ordinary workers, or a benevolent social planner con-

stitute the stakeholders that decide on the AI infrastructure investments of

industrial firms, we examine the evolving economic growth trajectory with a

rising level of AI.

Firm-owning entrepreneurs have an incentive to invest in AI infrastruc-

ture, not only to enhance their firm-specific productivity but also to drive

competing firms out of the market for increasing their own market share. This

allows them to set higher price markups and to obtain a higher income. De-

pending on the stakeholder and the AI productivity distribution that develops

with the self-learning of AI algorithms, we observe varying levels of market

concentration and markups. While investments in AI infrastructure promote

the continuous improvement of self-learning AI algorithms, especially tailored

for the production of large firms, they also constitute the basis for the rising

divergence in firm productivity and increasing income inequality.

Given our assumption that ordinary workers derive benefits from their cap-

ital and labor income, whereas entrepreneurs additionally benefit from selling

AI algorithms and firm profits, we examine how the level of AI impacts the
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income of these agents. We illustrate that changes in factor income shares

and the endogenous labor supply hinge on the elasticity of substitution be-

tween labor, capital and AI, making it challenging to arrive at a definitive

conclusion regarding AI’s effects on the labor market. We observe a signifi-

cant divergence between the capital and consumption rates of entrepreneurs

and workers in our economy with self-learning AI, particularly in the case of

imperfect firm competition. This divergence results in an increasing profit

share, exacerbating income inequality promoted by AI. Consequently, we dis-

cuss potential policy interventions aimed at mitigating income disparities in an

AI-based economy. These interventions include considering the introduction

of a profit tax, modernizing competition and merger laws, and re-evaluating

data sharing and intellectual property rights.

Chapter 4: AI and Education In Chapter 4, we show how investments in

education can contribute to economic growth and mitigate income inequality

and automation risk in an economy with self-learning AI in a multi-sector and

task-based growth model with overlapping generations.

While many economic models assume a production function with a (time-)

constant elasticity of substitution between labor and new technologies, we set

up a model where the elasticity of substitution between human labor and AI

is more dynamic and depends on the level of AI. Thus, to obtain a more com-

prehensive framework to assess the labor-market effect of AI, we assume that

firms adapt their production technologies over time, starting from a labor-

intensive regime, then transitioning to a stage where labor and AI serve as

complements, and ultimately reaching a regime with AI-intensive production.

We thus aim at capturing the concept of an evolving elasticity between labor

and AI with the rise of AI. In our model, individuals can invest in educa-

tion, which enhances their human capital and allows them to perform more

tasks that require higher skills. We analyze firms’ production regime which

maximizes their output, based on the level of AI, as the AI-intensive produc-

tion regime gains a relative productivity advantage over labor-intensive and

complementary production regime over time. We assume overlapping gener-

ations to model the decisions of agents with regard to consumption, savings

and education investments and assess how the costs of education affect the

risk of AI-induced unemployment. Our model defines the long-run steady-

state dynamics where the economy reaches a state with complete AI-induced
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automation. Nonetheless, the primary goal of this project is to illustrate po-

tential trajectories of the interplay between AI, education, and inequality in

the preceding transitory period and to discuss the effectiveness of policies fo-

cused on education and unemployment. Our findings indicate that human

specialization in specific tasks can mitigate AI-induced automation risks and

reduce income inequality.

There is a complex trade-off between postponing full AI-induced automa-

tion and reducing income inequality either by a re-distributive measure aiming

at promoting education or by providing a basic income for unemployed agents.

When considering methods for prolonging the timeline to complete automa-

tion, a policy that redistributes the costs of education proves more effective

than a mechanism focused on unemployment. Nevertheless, the effectiveness of

these re-distributive mechanisms in addressing income inequality is contingent

on factors like tax rates and educational costs, rendering broad generaliza-

tions of the mechanisms’ effectiveness challenging. However, we emphasize

the significance of educational policies that empower individuals to preserve

their comparative advantages in specific tasks, aiming to mitigate the potential

risks of AI-driven automation and job loss.

Chapter 5: AI and Regulation In Chapter 5, we abstract from the the-

oretical analyses that are described in Chapter 2–4, but discuss policy inter-

ventions for reducing the risk that AI could pose with regard to distortions in

competition in digital economies. Chapter 5 is meant as an extension to the

theoretical findings of Chapter 3.

Our aim is to explore the extent to which the growing significance of soft-

ware, data, and AI presents a competition-related threat that necessitates

heightened supervision and regulation within antitrust and competition poli-

cies. Using data from Europe and in particular, from Germany, we observe

increased market concentration and higher markups, particularly in industries

with large investments in intangible assets. While our descriptive findings pro-

vide first insights into the connection between software and data investments

and their link to market concentration and potential competition distortions, a

definitive conclusion regarding the specific effects of AI on competition remains

elusive, mainly due to the absence of an appropriate database.

To comprehensively assess the (causal) relationship between AI and com-

petition, we argue that more in-depth empirical research and new datasets
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that offer greater insights into the economic integration of AI are required.

Yet, we emphasize that the development of new private law concepts, adjust-

ments to antitrust regulations, and modernization of merger control laws are

essential to strike a balanced and flexible approach to regulation, promoting

the integration of data-driven applications while mitigating monopoly risks

in digital economies. Moreover, we suggest the implementation of an early

warning system to detect trends that hamper competition in digital markets

and underscore the importance of establishing a consistent international legal

framework for AI applications. We conclude that it is essential for economic

research to be concerned with potential competition risks posed by an in-

creased use of AI, especially in sectors already characterized by high market

concentration.

Chapter 6 and 7: Conclusion and Appendix Finally, we discuss po-

tential avenues for future research, summarize and conclude in Chapter 6.

Supplementary material and illustrations are in the Appendix in Chapter 7.
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AI and Growth

Chapter 2

AI and Growth: Artificial

Intelligence as Self-Learning

Capital∗

Abstract

We model Artificial Intelligence (AI) as self-learning capital: Its productivity

rises by its use. In our model, an AI sector and an applied research (AR)

sector produce intermediates for a final good firm and compete for high-skilled

workers—while benefitting from mutual spillovers. The economy displays a

sequence of four tipping points: First, entrepreneurs and second, high-skilled

workers drive the accumulation of self-learning AI. This is reversed in two

subsequent tipping points. In the steady state, AI accumulates autonomously

due to spillovers from AR and we show that suitable tax policies induce socially

optimal movements of workers. In particular, we provide a macroeconomic

rationale for an AI-tax. Moreover, we observe an increasing income divergence

due to the rise of AI.

∗This project is joint work with Hans Gersbach and Evgenij Komarov and based on Gers-
bach et al. (2022). We thank seminar participants at the SSES Conference 2023, University
of Luxembourg, the ISTP Colloquium Talks 2021 at ETH Zurich, INFER International
Workshop on Economic Growth and Macroeconomic Dynamics 2022, Renjie Cui and David
Hémous for valuable comments.
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2.1 Introduction

“Probably a truly intelligent machine will carry out activities which may best

be described as self-improvement” (McCarthy et al., 1955, p.1)

Motivation

Artificial Intelligence (AI) is on the rise: The last two decades have seen a

rapid increase of transistors in electronic devices and households using the

internet and social networks. The resulting computational power and avail-

ability of data have brought up what some call the “AI revolution” (Makri-

dakis, 2017). After several periods called “AI winter” (Floridi, 2020; Hendler,

2008), when AI received little attention and funding, IT specialists now face

an abundance of data and can use algorithms to perform increasingly compli-

cated tasks. These tasks range from facial recognition to composing pieces of

music and painting, as well as developing blueprints for products. New, pow-

erful computers perform such operations in seconds. AI is the set of learning

algorithms and their subsequent application in software tools and digital plat-

forms. Many consumer products rely heavily on AI, such as booking portals,

streaming websites and smartphones, to name only a few. Also, the world of

production and commerce is being reshaped by AI and “Tech Giants”, firms

such as Facebook (nowadays Meta), Google or Apple may be able to maintain

the monopoly position they built up in the software industry in recent years

by further integrating AI into their business model.

Moreover, AI is an increasingly diverse field, ranging from picture recogni-

tion of functional magnetic resonance imaging in the medical sector, to smart

robots in industrial production or personalized advertising in business mar-

keting. Although the human-machine relationship still plays a significant role,

autonomous and self-learning systems are increasing, e.g. in the field of auto-

matic speech recognition and natural language processing by AI programs such

as Alexa, Siri or Google Assistant (Ponnusamy et al., 2020). New AI programs

with increasingly broad applications are being developed, such as ChatGPT, a

chatbot launched by OpenAI that could have—after further versions—a last-

ing impact on the fields of text recognition and research, but also creative work

and general knowledge acquisition.2

2With AI being able to perform more and more cognitive tasks, some experts think
that AI puts jobs and professions at risk which have not been automated yet and were
considered unfit for automation until now. Moreover, the dangers of AI for fairness, privacy,
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In this paper, we examine the consequences of AI as a self-learning capi-

tal. We build a tractable model to highlight that such a self-learning ability

produces growth processes with tipping points. At each tipping point, the

amount of human capital for the development of AI changes—first increasing

re-allocations of human capital into the AI development until the self-learning

ability of AI reverses the allocation and human capital is channeled back into

research and development. The simple model highlights how AI drives tech-

nological progress and growth across the regimes between the tipping points.

In the second part of the paper, we adopt a normative view and exam-

ine whether there is too much or too little AI. The main insight from this

part is that policy should shift from an initial support of AI to taxation of

AI development when it is mature and benefits strongly from self-learning in

the economy. Policy could foster socially desirable transitions to AI-based

economies and correct ensuing mis-allocations of high-skilled workers across

AR and AI. We stress that the self-learning of AI occurs through its appli-

cation in AR as documented in recent innovation surveys (see e.g. Spescha

and Wörter (2022)) and can be illustrated with several examples.3 In order

to keep the tractability, we do not incorporate learning through final output.

Such additional learning possibilities would accelerate the regime shifts and

produce earlier tipping points.4

Model

Specifically, we construct a Romer (1990)-type growth model with self-learning

AI, where AI development is a result of learning by doing in AR. The model

comprises three sectors, a final good sector, an AI sector and an AR sector.

The final good sector uses AI and AR as intermediates. While AR is conducted

in a perfectly competitive environment, there is monopolistic competition in

the AI sector. The AR sector produces blueprints for the development and

commercialization of products. In short, AR commercializes ideas. Firms in

democratic institutions as well as various adverse social consequences of AI are discussed
by e.g. Acemoglu and Restrepo (2022) and Gersbach (2020).

3AI-driven software development is pivotal for autonomous driving (Falcini et al., 2017),
might also benefit agriculture by enhancing production and quality control (Patŕıcio and
Rieder, 2018), and improve supply chain management and resource logistics Cioffi et al.
(2020). Moreover, it has promising applications in algorithmic trading, pathology diagnosis,
and legal contract review (Ernst et al., 2019).

4Since AR is an input into final production, additional learning of AI from final output
scales the self-learning gains of AI.
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the AI sector, which we call Tech Giants, produce AI algorithms whose quality

increases through their application in AR, entailing that AI can be interpreted

as a type of self-learning capital. A final good is produced, using labor, AI,

AR and physical capital. The three stocks—AI, AR and physical capital—

increase through application, research and savings, respectively. We focus on

the development of an economy, starting from a state without AI, to examine

workers’ transitions between sectors, the dynamics of the development of AI

and AR, and to specify a Balanced Growth Path (BGP).

The reason is that we focus on the particular property of AI, namely that

it can evolve itself through autonomous self-learning, as opposed to robots or

existing automation technologies. An illustration how we model the learning

behavior of AI and the spillovers with the AR sector is in the development

of germ-resistant vegetable varieties to improve agricultural practices. The

AR sector develops blueprints for germ-resistant varieties that are sold to the

vegetable-producing final good sector. The AI sector develops algorithms for

image recognition of potential plant diseases. The more vegetable crops are

investigated and cultured in the applied research sector, the larger the field

of application of the self-learning AI algorithms fostering their development.

Furthermore, the AR sector benefits from the software developers in the AI

sector, who support the development of AR blueprints for germ-resistant veg-

etable crops through knowledge spillovers. In order to highlight the sequence

of tipping points in a simple and tractable model, we do not consider poten-

tial labor-replacing and capital-augmenting properties of AI and, for the sake

of simplicity, assume perfect substitutability of labor and AI in final good

production.

Our model focuses primarily on labor market decisions of agents with het-

erogeneous skills. Such decisions yield transitions between sectors, resulting

from increasing levels of AI. We assume three different types of agents. First,

we have entrepreneurial-skilled individuals who are able to work in all sectors.

They are called “entrepreneurs”, as they are qualified to start running AI

firms. Second, high-skilled individuals can work in all sectors, but are lacking

entrepreneurial skills. Third, low-skilled workers can only work in the final

good firm. Agents can decide in which sector to work, provided that they

have a sufficient skill-endowment to work in the AI sector or the AR sector.

Hence, the AI sector and AR sector compete for entrepreneurial-skilled and

high-skilled workers. The model involves two-sided spillovers between the AI
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sector and AR sector. A detailed account of these capabilities are given in

Section 2.3. On the one hand, AI benefits from its application in AR, where

AI algorithms can exploit their self-learning capabilities. On the other hand,

there are knowledge spillovers of agents working in the AI sector on the devel-

opment of AR.

Findings and Implications

Our analysis reveals four main insights. First, until the economy converges to

a steady state, the economy runs through five regimes characterized by four

tipping points. Starting from a point where all workers are employed in final

good production, entrepreneurial-skilled individuals first have an incentive to

move to the AI sector, as they receive a profit share by running AI firms and

thus can receive an overall income that is higher than elsewhere. Once AI has

reached a certain level, which leads to increasing wages in this sector, an em-

ployment in AI becomes attractive for high-skilled individuals. Subsequently,

when the self-learning potential of AI is sufficiently exhausted, employment

in AR becomes more attractive and high-skilled individuals transition from

AI to AR. Finally, also entrepreneurs move from AI to AR and the economy

converges to a steady state in which all high-skilled workers and entrepreneurs

are employed in AR.

Second, the social planner’s solution yields transitions between sectors at

tipping points that differ from the ones in a decentralized economy. This is

the case due to five phenomena: (i), A slow-fast Wage Effect, which is the

markdown on wages resulting from monopolistic distortions in the AI sec-

tor in a decentralized economy. It delays the entry of high-skilled workers in

the AI sector, but also leads to their premature transition from AI to AR.

(ii), Entrepreneurs benefit from AI profits, which is called the Profit Effect

and which motivates entrepreneurs to start investing in AI. For entrepreneurs,

the Profit Effect neutralizes the Wage Effect. Hence, entrepreneurs’ transi-

tions are not distorted despite the monopolistic competition in the AI sector.

(iii), Agents in a decentralized economy do not take into account Knowledge

Spillovers from AI on AR development. This causes a delay in the transition of

entrepreneurial-skilled and high-skilled workers to AI and a too fast transition

back to AR. (iv), The social planner takes into account that AI can increas-

ingly use its self-learning capabilities with a growing stock of AR, which we

call Application Gains. (v), The social planner takes into account the influence
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of the AR stock today on the AR stock tomorrow, which we define as Inter-

temporal Spillovers. The two effects (iv) and (v) result in earlier allocations

of high-skilled workers and entrepreneurs from AI to AR in the social planner

solution than in a decentralized economy. Taken all five together, the social

planner’s solution converges to the steady state sooner than in a decentralized

economy.

Third, socially optimal transitions between the sectors can be implemented

by three policy instruments: (i) an early development of AI can be pro-

moted through a subsidy that corrects for the Wage Effect and the Knowledge

Spillovers, (ii) the Profit Effect can be corrected by a profit tax, (iii) once a

sufficient level of AI has been reached, the AI subsidization turns into an AI-

tax. This tax ensures that agents do not remain in AI software development

for too long, but move to the AR sector at the point when AI can grow to

a sufficient degree due to self-learning, without the help of human labor. An

AI-tax optimally balances the Application Gains of AI through a rising AR

stock against the Inter-temporal Spillovers that fosters future AR from rising

AR today. To sum up, we provide a macroeconomic rationale for imposing a

tax on the price for AI (an AI-tax) once the accumulation of AI has sufficiently

progressed. When there are restrictions on profit taxes (or OECD minimal tax

standards are used), the AI-tax has to be higher.

Finally, we observe increasing income divergence when AI accumulates. We

observe large income differences during a period with strong AI growth, as

only entrepreneurs benefit from profits of AI firms. In the long-run, when only

high-skilled workers and entrepreneurs benefit from growing wages in the AR

sector, especially low-skilled workers are relatively worse off.

Organization

The paper is organized as follows: In Section 2.2, we relate our research to the

literature. In Section 2.3, we introduce the model. After defining equilibrium

conditions in the economy in Section 2.4 in a decentralized economy, we focus

on potential tipping points to set a light on transitional dynamics between the

sectors in Section 2.5. Subsequently, we define long run steady state conditions

in Section 2.6 and consider the social planner’s solution of our optimization

problem in Section 2.7. We investigate possible policy interventions in Section

2.8, and present a numerical example to illustrate our model in Section 2.9.

We discuss the results and interpretations of our model in Section 2.10 and
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conclude in Section 2.11. We provide potential extensions in the Appendix in

Section 7.1.

2.2 Relation to the Literature

Definition of AI and AR

Alan Turing, one of the pioneers in the field of computer science and machine

intelligence, was asking himself as early as 1950 to what extent a “thinking

machine” could be developed (Turing, 1950). Above all, the question of the

extent to which computers can imitate human activities is still one of the most

challenging questions in this field of research. Understanding the capability of

machines to learn and to form habits of “intelligent” behavior has been in the

spotlight of many fields such as information science, psychology or philosophy

(Michalski et al., 2013).

We define Artificial Intelligence (AI) as the development of algorithms

and their application in software tools and digital platforms. It can simplify

tasks such as logical or search operations, pattern recognition or planning.

In contrast to pre-programmed machines whose actions are based on logic

and “brute-force” solution formation (Makridakis, 2017), we focus on the at-

tribute that programs can improve their output (i.e. learn) from experience:

So-called “machine learning systems” are designed to improve themselves over

time (Brynjolfsson et al., 2017). Especially machine learning algorithms like

“neural networks” can be trained and improved through repeated application

using real data. Typical applications of AI are, for instance, speech recogni-

tion, computer vision, natural language processing or heuristic classification.

The level of AI can increase itself by e.g. deep machine learning or reinforce-

ment learning (Lu, 2020). Thus, AI can be interpreted as a kind of self-learning

and intangible capital.

Applied Research (AR) is defined by the OECD (2002) [p. 30] as the “origi-

nal investigation undertaken in order to acquire new knowledge. It is, however,

directed primarily towards a specific practical aim or objective” and is a major

element of Research and Development (R&D). Moreover, “the results of AR

are intended primarily to be valid for a single or limited number of products,

operations, methods or systems. The knowledge or information derived from it

is often patented but may be kept secret” (OECD, 2002, p. 78). The economic

implications of “learning by doing” by human beings were already assessed as
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early as 1962 by Arrow (1962). He points out that “learning is a product of

experience” [p.155] and highlights its importance for productivity increases.

Hatch and Dyer (2004) come to the conclusion that human capital has a sig-

nificant impact on learning, but is most valuable when it is firm-specific and

inimitable. Indeed, the learning feature of human capital guarantees a com-

petitive advantage for a firm as long as the application of what was learned

remains in the firm. In contrast to learning of human capital, we focus on

the self-learning features of intangible AI assets i.e. algorithms that can be

further improved only by their widespread use in other firms. In our model,

we presume that the higher the stock of AR, the larger the application area

for AI and the more the development of AI will benefit.

Our model builds on Romer (1986, 1990) and incorporates AI as self-

learning capital. This unique feature of AI distinguishes it from automation.

Particularly, it has the characteristic that it can build on its own and produce

new ideas by the creative act of recombining existing knowledge (Weitzman,

1998). Agrawal et al. (2018) construct a model where AI helps researchers to

carry the “burden of knowledge” (Jones, 2009) by finding the most promising

combination of existing know-how. Jones and Tonetti (2020) refer to the so-

called “economics of data” and interpret data as a factor that improves the

quality of an idea and can be used by several firms in a non-rival way to pro-

duce blueprints. Farboodi and Veldkamp (2021) show how the accumulation of

data spurs economic growth—even if the technological level is fixed—as data

serves as an input for research. The importance of intangible assets and their

role for the emergence of market power has been discussed by e.g., Eeckhout

(2021); De Ridder (2019) and Haskel and Westlake (2017).

We contribute to this literature as follows: We model AI as self-learning

capital that is developed by workers with a sufficient skill level. We incorporate

that the self-learning of AI via its application in AR, as well as knowledge

spillovers from workers in AI on AR development, may fuel economic growth

and may induce sufficiently-skilled workers to move to AI production and later

to AR. A detailed rationale is provided in Section 2.3.

We study the emergence and subsequent evolution of the AI sector with

Tech Giants. The main focus of the paper is to analyze the tipping points

in the labor movements of heterogeneously-skilled agents and to assess how

economic policy could help to induce socially optimal transitions. Moreover,
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we will provide a macroeconomic rationale for an AI-tax.

2.3 Model

We build a three-sector model in which the outputs of the AR sector and the

AI sector are used as intermediates in the final good firm. Growth is driven by

technological progress achieved by the development of AI algorithms and AR

blueprints. An individual lives forever and is indexed by the discrete parameter

η ∈ {U,H,E}. Depending on their index, individuals have the qualification to

work in different sectors. In particular, we assume three disjoint labor forces,

characterized by the index η. First, we have the group of entrepreneurial-

skilled individuals with index η = E, who are able to work in all sectors and

can run new AI businesses and make up the amount lE of the total labor force.

Second, there is the group of high-skilled agents with index η = H and mass

lH , who can work in all sectors, but are not eligible to start running AI firms,

as they lack entrepreneurial characteristics. Third, low-skilled workers with

index η = L and who make up the amount lU of the total labor force, can only

work in the final good firm. The total labor force is defined as L = lU+lH+lE.

We consider a continuum of individuals of mass one represented by the interval

[0, 1], so that L = 1. All agents in the economy are myopic and the size of

each agent is atomistic.

The model incorporates a simple task-complexity skill relationship, where

workers with a higher skill level can execute more tasks and tasks with higher

complexity.5 Conditional on being able to work in a particular sector, workers

are equally productive. It means in effect that when workers with different

skill levels work in the final good firm, they have the same productivity. Cor-

respondingly, high-skilled agents, working in AI or AR, have the same produc-

tivity as entrepreneurial-skilled individuals, if both groups decide to work in

the same sector.

2.3.1 AI Sector

We assume that there are N ≥ 1 distinct firms in the AI sector. Different

values of N concern different levels of market power in the AI industry. The

5For a treatment of more refined task-complexity-skill relationships see Gersbach and
Schmassmann (2019).
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literature on intangible assets (Bajgar et al., 2021; De Ridder, 2019; Diez et al.,

2021) suggests that N might be rather small which can be rationalized by high

entry costs.6 Firms can employ workers, with skills η ∈ {E,H}, to produce

AI algorithms which are used as intermediates in the final good production.

There is monopolistic competition in the AI sector and each AI firm produces

a variant of AI. Firms can employ workers, with skills η ∈ {E,H}, to produce

AI algorithms which are used as intermediates in the final good production.

There is monopolistic competition in the AI sector and each AI firm produces

a variant of AI. This may reflect the current market structure, with several

large firms dominating the market. Companies in the software industry have

been able to build up their market dominance in recent years, in particular

through the increasing use of information and communication technologies,

and we assume that the oligopolistic market structure will also be maintained

in times of an increasing relevance of AI.

AI is a type of learning capital and improves itself through applications

in the real world, in particular, through its use in AR. Moreover, we assume

that AI does not depreciate over time. Hence, the effective AI stock of firm j

evolves according to

ASt,j = Rq
t−1(1 + θAl

A,D
t,j ), (2.1)

where lA,Dt,j is the amount of labor demanded and θA ∈ (0, 1) the corresponding

worker productivity parameter in the AI sector. Throughout the paper, we

use the notation S for the index representing the supply, whereas D refers to

the demand. Accordingly, ASt,j is the supply of intermediates produced by AI

firm j in period t. Furthermore, Rt−1 is the stock of blueprints produced in

the AR sector until period t − 1. Through the application of AI in AR, AI

learns how to perform better. The higher the stock of AR blueprints, the more

applications are provided for AI to exploit its self-learning feature and thus the

higher the level of AI. Still, new AI algorithms need to be produced by software

developers lAt , working in the AI sector. In line with the arguments of Agrawal

et al. (2018), the function depicting the accumulation of AI is not linear but

concave in AR, entailing that marginal benefits from spillovers from AR to AI,

defined by q, are declining, which is reflected by assuming q ∈ (0, 1).7 In other

6In equilibrium, the entry costs that rationalize a patent value of N can be explicitly
calculated.

7Already Arrow (1962) assumed that learning through repeated application has dimin-
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words, self-learning of AI through practical application in AR has diminishing

returns. Thus, each individual AI company has diminishing marginal returns

from the application of AI algorithms in AR, as does the AI sector as a whole.

As AI learns by being applied in AR, as described in Eq. (2.1), the level of

AR, given by Rt, needs to be strictly positive such that AI algorithms have an

application area for their development. We stress that our approach is in line

with recent innovation surveys such as Gasteiger and Prettner (2022).

Profit maximization of AI-producing firms boils down to profit maximiza-

tion for each period, since the current production of AI does not depend on

the previous AI production, but only on the AR stock Rt−1 of the previous

period which cannot be influenced by AI firms. Applying Eq. (2.1) yields the

profits of an AI firm j

ΠA
t,j = pt,jA

S
t,j − wAt l

A,D
t,j = pt,jR

q
t−1(1 + θAl

A,D
t,j )− wAt l

A,D
t,j , (2.2)

where pt,j is the price firm j sets for its AI intermediate and wAt is the wage

workers in the AI sector receive. Since workers in the AI sector are equally

productive at all AI firms, there is a single wage wAt in the AI sector. Individual

outputs of firms are aggregated to a composite AI supply, defined by the

following aggregate CES function (Acemoglu, 2009) with constant elasticity of

substitution σ between AI variants from different AI firms:

ASt =

(
N∑
j=1

π
1
σ
j (A

S
t,j)

σ−1
σ

) σ
σ−1

,

with the weights πj such that
∑N

j=1 π
1
σ
j = 1. The “distribution parameter πj”

(Klump et al., 2012) can be interpreted as the share of an AI variant j in the

provision of the composite AI supply. We assume that the set of entrepreneurs

lE is partitioned into N disjunct subsets of measure lE

N
, with each of the N

groups owning a single AI firm. Hence each AI firm is owned by infinitely

many entrepreneurs of mass lE

N
, with each entrepreneur receiving the share N

lE

of firm j’s profit ΠA
t,j. We assume a certain degree of substitutability between

the AI variants and suppose that σ ∈ R>1. Thus, the final good firm may

replace an AI intermediate from a specific firm with variants from different

ishing returns. We discuss the special case q = 1 in more detail in the Appendix in Section
7.1, as the self-learning of AI may display constant returns to scale in an extreme scenario.
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AI-producing firms.

2.3.2 AR Sector

We consider a finite number of symmetric and price-taking firms in the AR

sector, that operate in a competitive market to produce AR blueprints. Thus,

we can restrict ourselves to the behavior of a single representative firm pro-

ducing the AR intermediate. The representative AR firm produces blueprints

that accumulate over time. Only skilled workers with η ∈ {H,E} can be hired

for the development of AR blueprints which are used as intermediates in the

final good production. AR blueprints are sold to the final good firm in each

period. In each period, the entire accumulated knowledge, stored in the AR

blueprints from the previous period Rt−1, can be used in an open-source man-

ner. This is equivalent to saying that the protection of blueprints generated by

the representative AR firm lasts one period. There are several interpretations

for this duration of protection. For instance, the complexity of the interme-

diate takes one period for competitors to replicate. Another interpretation

is that intermediates may be protected by patents which last one period or

become valueless through new intermediates after one period. Only AR firms

can use blueprints and they are provided with an initial stock of blueprints at

period t = 0 free of charge. The representative AR firm has the capability to

transform this open-source knowledge in period t into a new intermediate that

can be sold to the final good production. Consequently, the stock of blueprints

produced by the representative AR firm in period t is given by

RS
t = Rt−1(1 + θRl

R,D
t + ψAl

A,D
t ), (2.3)

where lR,Dt and lA,Dt are the demand for workers in AR and in AI, respectively.

The parameter θR ∈ (0, 1) depicts the workers’ productivity in AR, whereas

ψA ≥ 0 measures spillovers from AI to AR. We assume that workers are more

productive in performing AR than in developing new AI and thus assume

that θR > θA. We allow for knowledge spillovers from AI on AR via the

working force lA,Dt in AI. In this respect, we follow Balconi and Laboranti

(2006) that there are knowledge exchanges of researchers who produce new

technologies and consequently take into account that AR development benefits

from cooperating with software developers from AI. We assume that θR >

ψA > 0 to model that the direct effect of the labor demand of AR has a larger
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effect on Rt than AI spillovers via lA,Dt . The profit of the representative AR

firm will be denoted by

ΠR
t = γtR

S
t − wRt l

R,D
t , (2.4)

where the stock of blueprints, produced by lR,Dt workers, is given by Eq. (2.3)

and γt is the price for AR intermediates at period t and wRt is the wage for

workers in AR. Since the AR sector is competitive, the representative AR firm

takes γt and w
R
t as given—in any equilibrium with an active AR sector such

that the wage for a worker in AR equals its marginal benefit, which yields the

following:

wRt = γtRt−1θR. (2.5)

Otherwise, due to the linearity of producing the next AR level, the represen-

tative firm would either demand an infinite amount of workers or none. Both

constellations cannot occur in equilibrium. With this condition, we will see in

Section 2.4 that the representative AR firm makes positive profits. We assume

that ownership of the representative AR firm is uniformly-distributed in the

society so that each agent obtains a profit share. This assumption is irrelevant

for the evolution of the economy, but of course matters for the income distri-

bution. It should be noted at this point that we assume a strict separation of

the AI and AR sector in our model for the sake of tractability. Although, it is

realistic that many firms are working on the development of both AI and AR

in parallel, which should not be neglected in the interpretation of our results.

2.3.3 Final Good Production

Finally, we introduce a final good firm where labor, capital, AI and AR are

used to produce a consumption good Yt in the following way:

Yt = B

lDt + ϕRR
D
t + ϕA

(
N∑
j=1

π
1
σ
j (A

D
t,j)

σ−1
σ

) σ
σ−1

1−α

(KD
t )

α, (2.6)

where lDt is the demand for low-skilled workers, KD
t stands for the demand for

physical capital, ADt,j for the demand for AI algorithms developed by firm j and

RD
t for the demand for AR blueprints. The parameter α ∈ [0, 1) represents the
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share of capital in production and ϕA and ϕR
8 capture the relative advantage

of AI and AR over low-skilled labor, respectively. Total factor productivity is

defined as B ∈ R+. We assume that AR and AI intermediates fully depreciate

after utilization in the final good production and thus have to be re-acquired in

every period in their latest version. This is a stark assumption. It suffices that

the depreciation is sufficiently strong such that the final good firm is better off

by using the current intermediates than older ones. The profits Πt of a final

good firm depend on the production Yt minus the costs for the input factors,

namely low-skilled workers, capital, AI and AR

Πt = Yt − wtlDt − rtKD
t −

N∑
j=1

pt,jA
D
t,j − γtRD

t . (2.7)

The marginal costs of low-skilled labor and capital are given by the wage

wt in the final good firm and the interest rate rt, respectively. Throughout

the paper, we normalize the price of the final good to one. In addition, the

final good firm pays the prices pt,j and γt for the AI and AR intermediates,

respectively.

2.3.4 Household Optimization

We assume infinitely many agents of mass 1. Individuals of any skill level do

not only work, but also save and consume, maximizing the following life-time

utility:

Uη =
∞∑
t=0

βtu(ct,η), (2.8)

where u(ct,η) is some instantaneous concave utility function, depending on

agent η’s consumption ct,η in period t. The parameter β is the discount factor

of individual consumption. The individual endowment consists of an inelastic

labor supply fixed at lU+ lH+ lE = L = 1 and the capital supply KS
t,η which an

agent with skill level η rents out to firms in period t. Some part of the capital

8We set ϕA > ϕR, such that AI has a comparative advantage over AR in production.
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depreciates at rate δ, so that an individuals’ capital stock evolves according to

KS
t+1,η = (1− δ)KS

t,η + st,η, (2.9)

where st,η are the savings made by an agent with skill level η in period t. Since

entrepreneurs and high-skilled agents can work in different sectors, the budget

constraints depend on the labor allocation. Figure 2.1 shows the structure of

the economy for a constellation where high-skilled workers are employed in

AR, entrepreneurial-skilled workers are employed in AI and low-skilled agents

work in the final good firm. Figure 2.1 illustrates the spillovers effects and the

flow of intermediates to the final good firm. All agents receive an equal share

of the AR profits and the final good profits, whereas entrepreneurs share AI

profits among themselves. Entrepreneurs (E) obtain the AI wage, high-skilled

workers (H) obtain the wage from the AR sector and low-skilled agents (U)

obtain the wage from the final good firm. In this labor market constellation,

the budget constraint of a single agent with index η in period t is as follows:9

ct,η + st,η = wt + rtKt,η +Πt +ΠR
t for η ∈ {U} in final good production,

(2.10)

ct,η + st,η = wRt + rtKt,η +Πt +ΠR
t for η ∈ {H} in AR, (2.11)

ct,η + st,η = wAt + rtKt,η +Πt +ΠR
t +

N

lE
ΠA
t,j for η ∈ {E} in AI, (2.12)

with K0,η given,

where wt, w
A
t and wRt are the wages in the final good sector, AI sector and

AR sector, respectively. In line with this notation, Πt and ΠR
t are the sector-

specific profits of the final good firm and the AR sector, while ΠA
t,j are the

profits of AI firm j, of which infinitely many entrepreneurs of mass lE

N
share

ownership.

Note that profits of AI are allocated symmetrically, so that each entrepreneur

receives the same share of the AI profits ΠA
t . The profits of the final good

firm, Πt, and from the AR sector, ΠR
t , are evenly-distributed to all agents in

the economy. Since the measure of individuals is one, aggregate profits in the

final good firm and AR sector are equal to per-capita profits. We maximize

9Since individuals will optimally rent out all capital Kt,η = KS
t,η, where Kt,η is the

capital an individual with skill level η has rented out to firms, we will only use Kt,η.
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Figure 2.1: Diagram of the Structure of the Economy.

individual lifetime utility (3.12) subject to the evolution of the capital stock

(2.9) and the individual budget constraint—(2.10), (2.11) or (2.12)—which

depends on the sector of employment. This yields the usual Euler equation

which is indeed independent of the individual skill level10

u′(ct,η)

u′(ct+1,η)
= β(1− δ + rt+1). (2.13)

2.4 Equilibrium Definition

Depending on the employment of the heterogeneously-skilled agents in the

economy, there are different equilibria in our model. Therefore, we have to

distinguish between equilibrium conditions that are valid for all employment

constellations and conditions for specific constellations. General equilibrium

conditions are as follows:

Definition 2.1. An equilibrium is a sequence of prices (γt, {pt,j}Nj=1, rt, wt, w
A
t ,

10A detailed derivation of the Euler equation in a decentralized economy is provided in
Appendix in Section 7.1.
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wRt )
∞
t=0 and a set of allocations ({ct,η, st,η, Kt,η}η∈{U,H,E}, Rt, {At,j}Nj=1, lt, l

R
t ,

{lAt,j}Nj=1, Yt,Πt, {ΠA
t,j}Nj=1,Π

R
t )

∞
t=0 that maximize the individuals’ utilities, the

profits of the AI firms and the profits of the representative final good firm and

AR firm. The conditions that clear the goods market, the labor market and

the market for AI and AR are denoted by∑
η∈{U,H,E}

(ct,η +Kt+1,η) =

(1− δ)
∑

η∈{U,H,E}

Kt,η + wtlt + wAt l
A
t + wRt l

R
t +

N∑
j=1

ΠA
t,j +Πt +ΠR

t , (2.14)

lt + lRt +
N∑
j=1

lAt,j = lt + lRt + lAt = L, (2.15)

KD
t = KS

t = Kt and ADt,j = ASt,j = At,j , RD
t = RS

t = Rt ∀j, ∀k , ∀t;
(2.16)

where ASt,j and RS
t are the intermediate supplies in period t by firm j

operating in the monopolistic AI sector or by the representative firm in the

competitive AR sector, respectively. Equation (2.14) can be interpreted as the

aggregate budget constraint. We notice that Condition (2.15) and Condition

(2.16) are market clearing conditions for labor, capital, AI and AR. Finally,

we recall that the price pt,j is set by monopolistic AI firms and γt is the

competitive price in the AR sector. In addition to these general conditions,

we define equilibrium conditions which depend on the employment distribution

of the heterogeneously-skilled agents across the sectors.

Definition 2.2. We recall that lU + lH + lE = L = 1 and distinguish between

the following mutually exclusive labor market equilibrium constellations:

lt = L, lAt = 0, lRt = 0; (2.17)

lt = lU + lH , lAt = lE lRt = 0; (2.18)

lt = lU , lAt = lH + lE, lRt = 0; (2.19)

lt = lU , lAt = lE, lRt = lH ; (2.20)

lt = lU , lAt = 0, lRt = lH + lE. (2.21)

The five constellations capture all combinations how the different skill
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groups can be possibly allocated across sectors in an equilibrium. Which

constellation will arise depends on the state of the economy and in particular

on the development of AR, which determines the relationship between wages

in AI, AR and the final good sector. Different relationships between the wages

are associated with one of the employment patterns (2.17) to (2.21). This will

be characterized in Section 2.5.

2.4.1 Intra-period Equilibrium

We will next look at intra-period conditions that hold in all constellations. In

each sector, firms maximize their profits in each period.

Final Good Firm

By maximizing the profit function of the final good firm (2.7) with respect to

the inputs KD
t and lDt , we obtain the following conditions for the interest rate

and the wage in the final good firm:

rt = α
Yt
KD
t

, (2.22)

wt = (1− α) Yt
lDt + ϕAADt + ϕRRD

t

. (2.23)

Furthermore, the we see that the inverse demand of a final good firm for an

AI intermediate j is given by

ADt,j =

(
pt,j
ϕAwt

)−σ

πjA
D
t , (2.24)

for the derivation see the Appendix in Section 7.1.

AI Sector

An intermediate-producing AI firm, operating in a monopolistically compet-

itive market, takes the inverse demand of the final good firm (2.24) as given

and maximizes its profit. In the Appendix in Section 7.1, we show that the

profits can be written as:

ΠA
t,j = p1−σt,j (ϕAwt)

σπjA
D
t −

((
pt,j
ϕAwt

)−σ
πjA

D
t

Rq
t−1

− 1

)
wAt
θA
, (2.25)
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After maximizing profits with respect to the price of AI, pt,j and determining

the wage in the AI sector, wAt , in the Appendix in Section 7.1, the profits read:

ΠA
t,j =

wAt
σ − 1

[
σ

θA
+ lA,Dt,j

]
= pt,jR

q
t−1

[
1 +

θAl
A
t,j

σ

]
. (2.26)

The profits of AI firms are the sum of two components: On the one hand, there

are revenues from selling the existing stock of AI that the entrepreneurs do

not have to produce and thus do not have to pay wages for, i.e. pt,jR
q
t−1. On

the other hand, there are the revenues from the newly created AI algorithms,

of which the share 1/σ is turned into profit due to the mark-down on wages.

The respective term is pt,jR
q
t−1θAl

A
t,j/σ. We summarize important comparative

static properties in the following proposition:

Proposition 2.1. Profits of an AI firm increase in the productivity parameter

θA and decrease with a higher elasticity of substitution σ. The higher the

existing stock of AR, given by Rt−1, the price pt,j for each intermediate sold,

and the more workers lAt,j develop new algorithms, the higher the profits of an

AI firm.

AR Sector

The representative intermediate-producing AR firm takes the price of its out-

put (7.2) as given and maximizes its profit. Substituting γt from (7.2) into

(2.5), we deduce that wages in the AR sector are given by

wRt = wtϕRRt−1θR. (2.27)

When we insert (2.5) into (2.4) using Eq. (2.27), we obtain

ΠR
t = γtRt − wRt l

R,D
t = γtRt−1(1 + ψAl

A
t ). (2.28)

We observe that the representative AR firm makes positive profits due to the

freely accessible AR blueprints Rt−1 from the previous period and the spillovers

from the AI sector. We summarize relevant comparative statics properties in

the following proposition:

Proposition 2.2. Profits of the representative AR firm increase with larger

spillovers from the AI sector, given by ψAl
A
t . The higher the existing stock of

AR, Rt−1, and the price γt for each blueprint sold, the higher the profits.
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Clearly, each intra-period equilibrium in the AI sector is symmetric, since the

demand from the final good firm is the same for each variant of AI,At,j = At ∀j.
It follows that lAt,j = lE

N
∀j, i.e, the labor supply of entrepreneurs, is equally

divided among the N AI firms. It is irrelevant whether a single entrepreneur

works at the firm s/he co-owns or by another AI firm as all firms pay the

same wages and entrepreneurs benefit from the entire profit generated by all

AI firms. Yet, it is convenient to simplify the presentation by assuming that

entrepreneurs are hired by the firm they own.11 Combining our findings on

the intra-period equilibrium conditions from the final good firm and the AI

sector and the AR sector, we obtain:

Proposition 2.3. Given Rt−1 and Kt−1, there exists a unique and symmet-

ric intra-period equilibrium. In such an equilibrium, the general conditions

(2.14)-(2.16) and of the mutually exclusive and constellation-specific condi-

tions (2.17)-(2.21) hold. The unique intra-period equilibrium is defined by

the following conditions on the wages, prices and profits that hold in all labor

market constellations:12

Final Good AI AR

Wage wt =
(1−α)Yt

lDt +ϕAA
D
t +ϕRR

D
t

wAt = (σ−1)
Nσ

θAϕAwtR
q
t−1 wRt = wtθRϕRRt−1

Price 1 pt =
ϕAwt
N

γt = ϕRwt

Profit Πt = 0 ΠA
t,j =

ϕAwtR
q
t−1

N

[
1 +

θAl
A
t,j

σ

]
ΠR
t = ϕRwtRt−1[1 + ψAl

A
t ]

Table 2.1: Intra-period Conditions on the Wages, Prices and Profits.

As N firms are operating in the AI sector the overall profit in the AI sector

is NΠA
t . This encloses that the profits of each AI firm are symmetric in the

equilibrium. Since the profit of the final good firm exhibits constant returns

to scale and the market for the final good is competitive, the profit of the final

good firm is zero and Πt = 0.13

11The symmetric outcome implies that π
1
σ
j = 1

N . Combining this finding with the sym-
metry of AI variants and Equation (7.3), it has to hold that pt,j = pt. Thus, the more
firms operate under monopolistic competition in the AI sector, the higher the markdown on
wages.

12In each equilibrium, the interest rate is given by rt = α Yt

KD
t
.

13This can be verified by inserting (2.22), (2.23), (7.2) and (7.6) into (2.7).
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2.5 Endogenous Rise of AI

Using the unique equilibrium for each labor market constellation denoted

above, we next consider transitions of agents between the sectors to deter-

mine the sequential order of the constellations. Our objective is to analyze the

transition dynamics in the economy before reaching a steady state. We study

the development of the employment in the specific sectors, depending on the

skill level of certain workers. We derive strict conditions for tipping points

that characterize the transitions of agents between the sectors.

2.5.1 First Tipping Point

At t = 0, all agents—irrespective of their abilities—work in the final good

firm. This state is defined as the initial constellation, given by Condition

(2.17). To be precise, we assume the following environment: R0 is sufficiently

small, so that wRt and wAt are smaller than wt and no high-skilled worker has

an incentive to change the sector.14 AI firms already exist and their profits go

to the entrepreneurs. However, entrepreneurs do not work in the AI sector,

denoted by lAt = 0, and thus the stock of AI is stagnant. Yet, entrepreneurs

could decide to change their sector of employment. Hence, they initially have

three options. First, they can remain in the production of the final good, earn

wt and obtain the constant and aggregate profits of AI firms, given by NΠA
t .

In all constellations, where nobody is employed in AI, the aggregate profits in

the AI sector are as follows:

N∑
j=1

Πt,j
A = ϕAwtR

q
t−1. (2.29)

In this way, we obtain what will be referred to as the overall income of en-

trepreneurs if they work in the final good firm

N∑
j=1

ΠA
t,j + wtl

E.

14This can be guaranteed by setting R0 such that (σ−1)
Nσ θAϕAR

q
0 < 1 and θRϕRR0 < 1.
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Recall that lE denotes the amount of entrepreneurs in the labor force. Second,

entrepreneurs can move to the AR sector, earn the wage payments wRt from

the representative AR firm and obtain the aggregate AI profits ΠA
t . Third,

entrepreneurs can commit their labor to AI firms. A single AI firm generates

profits and wage payments which go to the entrepreneurs that own this firm

and work at the firm:

ΠA
t,j + wAt l

A
t,j =

1

N
wtϕtR

q
t−1

[
1 + θAl

A
t,j

]
.

This holds for all lAt,j, i.e. independently of how many entrepreneurs work in the

single AI firm. Thus, all AI firms generate the total income of entrepreneurs

which is

N∑
j=1

ΠA
t,j +

N∑
j=1

wAt l
A
t,j = ϕAwtR

q
t−1

[
1 + θAl

A
t,j

]
=

N∑
j=1

ΠA
t,j + lEwAt ,

as
∑N

j=1 l
A
t,j = lE. If a group of lE

N
entrepreneurs works in an AI firm, it in-

creases the level of AI in that firm by At,j = Rq
t−1(1 + θA

lE

N
). If entrepreneurs

move to the AI sector, they receive a higher profit, as they work in the de-

velopment of new AI algorithms. In this case, the aggregate profits in the AI

sector are given by

N∑
j=1

Π̂A
t,j = ϕAwtR

q
t−1

[
1 +

θAl
e

Nσ

]
. (2.30)

Thus, entrepreneurs move to the AI sector if15

N∑
j=1

ΠA
t,j + wtl

E <

N∑
j=1

Π̂A
t,j + wAt l

E, (2.31)

where the left-hand-side represents their potential income if they stay in the

final good firm and the right-hand-side the one if they move to the AI sector.16

15We formulate the decision of the entrepreneurs as a group decision, since all en-
trepreneurs face the same decision. The individual problem is ΠA

t,j
N
lE

+wt < Π̂A
t,j

N
lE

+wA
t —

which is equivalent to (2.31) and also yields (2.32).
16In general, all individuals are price-takers and wage-takers, and thus do not con-

sider their potential impact on those variables if they change the sector. For instance,
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Substituting (2.30) and (2.29) into (2.31) and using the equilibrium wages

specified in Table 2.1, we obtain(
1− σ − 1

σN
ϕAθAR

q
t−1

)
< Rq

t−1

ϕAθA
Nσ

, or simply

R∗
t1
>

(
N

ϕAθA

(
1

σ
+
σ − 1

σ

)−1
) 1

q

. (2.32)

The lower bound on the level of AR blueprints needed for the development

of AI to take place—the first tipping point—will be denoted by R∗
t1
. If Rt

is below R∗
t1
, entrepreneurs remain in the final good production and do not

move to the AI sector to actively increase the level of AI. The product of the

parameters ϕA and θA and the AR stock of the preceding period, Rq
t−1, can

be understood in the following way: When an agent with one unit of labor

moves from the final good firm to the AI sector, s/he forfeits the wage wt. In

the AI sector, s/he creates algorithms which, in turn, produce the final good

and effectively replace him/her. S/He increases the level of AI by one unit,

multiplied with the productivity θA. In final good production, AI is ϕA-times

more productive than a unit of labor. Finally, the increase of AI by using one

unit of additional labor is scaled by Rq
t−1 due to the spillovers from AR. Thus,

in total, AI benefits by Rq
t−1θAϕA.

In addition, in (2.32), a markdown σ−1
σ

on wages, originating from monop-

olistic competition in the AI sector which we call the Wage Effect, plays an

important role. As we assume that σ > 1, it holds that σ−1
σ
< 1 and that the

Wage Effect—in an isolated assessment—delays transitions of entrepreneurs

from final good production to AI due to monopolistic markdowns on wages

compared to a competitive market. We observe that the higher the Wage Ef-

fect, the lower the markdown on wages in AI and the earlier the transition of

entrepreneurial-skilled agents from the final good firm to AI.

Due to the profit share of entrepreneurs in the monopolistic AI sector,

entrepreneurs additionally include the term 1
σ
in their decision as they reap the

profits from AI, which we interpret as the Profit Effect. As we assume that σ >

entrepreneurs consider wt as independent of their choice and thus as being the same in both
cases, i.e. whether they remain in the final good production or change to the AI sector.
Thus, individual rationality for each agent in the economy guarantees that the group of all
agents would simultaneously transition between the sectors.
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1, the Profit Effect—in an isolated assessment—leads to an earlier transitions

of entrepreneurs than of high-skilled workers from final good production to

AI. The higher σ, the better AI variants can be substituted for each other,

and entrepreneurs can therefore only skim off lower profits, as they can only

charge smaller markups on AI prices. This can also be verified by noting that
∂ΠAt
∂σ
≤ 0. Therefore, the higher the Profit Effect, the earlier the transition

of entrepreneurs from the final good firm to AI. We note that 1
σ
+ σ−1

σ
= 1.

Hence, the combined influence of the Wage Effect and Profit Effect shows that

the monopolistic distortion in the AI sector has no effect on the timing of the

transition of entrepreneurs from final good production to AI. The two forces

offset each other since entrepreneurs are the recipients of all revenues of AI, in

the form of profits or wages that they pay themselves. Moreover, the variable

N in (2.32) captures the scarcity of entrepreneurs, as they have to be allocated

between AI firms. The decision of entrepreneurs to move from the final good

sector to the AI sector is therefore determined by the technology to produce

AI and the scarcity of entrepreneurs. They start working in the AI sector

once it is productive enough. After passing this first tipping point R∗
t1
, the

economy reaches the second labor market constellation, given by Condition

(2.18). Entrepreneurs work in the AI sector, whereas all other workers are still

employed in the final good firm. In order to ensure that entrepreneurs move

from the final good firm to the AI sector and not to the AR sector, it has to

hold that

wRt1l
E +

N∑
j=1

ΠA
t,j < wt1l

E +
N∑
j=1

ΠA
t,j < wAt1l

E +
N∑
j=1

Π̂A
t,j, which simplifies to

1

θRϕR
> R∗

t1
>

(
N

ϕAθA

(
1

σ
+
σ − 1

σ

)−1
) 1

q

=

(
N

ϕAθA

) 1
q

, (2.33)

where the second inequality stems from (2.32). Note that wRt1l
E +

∑N
j=1 Π

A
t,j <

wt1l
E +

∑N
j=1Π

A
t,j is equivalent to wt1 > wRt1 , which is fulfilled if 1

θRϕR
> R∗

t1
.

Thus, Inequality (2.33) determines restrictions on the vector of parameters

values for {q, θR, ϕR, θA, ϕA, N} that we assume to be fulfilled in the following.

Inequality (2.33) is fulfilled for instance if θRϕR is not too large compared to

θAϕA.

An important remark is in order. Our model predicts that first research
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occurs in the AI sector and then high-skilled workers move to AR. Of course,

this should not be interpreted that AR has not taken place before, e.g. Chat

GPT and variants of it are developed. The model of our economy simply starts

at a point in time when AR has been developed sufficiently and AI starts

to develop strongly inducing an allocation of entrepreneurial skills and high-

skilled labor to the AI sector. In order to ensure tractability, we allow complete

shifts of the relevant human capital to the AI sector. Yet, one could add the

condition that keeping up AR requires a minimal amount or researchers and

thus, the economy experiences smoother regime shifts across the tipping points.

2.5.2 Second Tipping Point

Note that once entrepreneurs have dedicated their labor to AI development

at period t1, the spillovers from AI to AR, characterized by (2.3), kick in and

the stock of AR blueprints increases. Hence, as long as entrepreneurs work in

the AI sector, the level of AI and AR will increase in every period, leading to

a larger amount of blueprints. The next question is when workers with a skill

index η ∈ {H} decide to relocate from the final good firm to the AI sector.

Their choice is simpler than that of entrepreneurs, as they only compare wt
and wAt , taking wt as given under both choices. Workers have an incentive to

work in the AI sector if it holds that wAt > wt, implied by

(σ − 1)

Nσ
θAϕAR

q
t−1 > 1,

where we used the equilibrium wages in the final good firm and the AI sector,

specified in Table 2.1. This condition is quite intuitive and denotes the rela-

tionship between the marginal product of labor in the final good production

and the wages paid to high-skilled workers in the AI sector. Hence, wAt > wt
holds if

R∗
t2
>

(
N

ϕAθA

(
σ − 1

σ

)−1
) 1

q

. (2.34)

The level R∗
t2
of AR blueprints is reached in period t2 and defines the second

tipping point in our model. We observe that R∗
t2
is very similar to R∗

t1
, apart

from the term 1
σ
. The reason for this is that, unlike entrepreneurs, high-skilled
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workers do not receive a share of the AI profits. Yet, we again note that the

previously explained Wage Effect, given by (σ−1)
σ

< 1, delays the transition

of high-skilled agents from final good production to AI in a decentralized

economy. From t2 on, a labor market equilibrium constellation, defined by

Condition (2.19), occurs. Entrepreneurial-skilled and high-skilled agents are

employed in the AI firm, whereas low-skilled agents work in the final good

production.

Comparing (2.32) with (2.34), we see that t1 < t2. As in the case for

entrepreneurs, we have to ensure that high-skilled agents move from the final

good firm to the AI sector and not to the AR sector. Therefore, it has to hold

that

wAt2 > wt2 > wRt2 and thus

1

ϕRθR
> R∗

t2
>

[
N

ϕAθA

(
σ − 1

σ

)−1
] 1
q

. (2.35)

Note that since the right-hand side of (2.35) is greater than that of (2.33), the

latter is always fulfilled if the former holds. This means that if high-skilled

workers prefer the AI sector to the AR sector and Condition (2.35) is fulfilled,

it implies that entrepreneurs also prefer the AI sector to the AR sector and

(2.33) is fulfilled.

2.5.3 Third Tipping Point

Now, we compare the wages in AI and AR to assess which sector pays the

higher wage. Unlike wages in the AR sector, wages in the AI sector benefit

only to a reduced extent from a rising stock of AR blueprints Rt, due to

q ∈ (0, 1). In each equilibrium, the condition wRt > wAt holds if

wtθRϕRRt−1 >
(σ − 1)

Nσ
θAϕAwtR

q
t−1.

Hence, a transition of high-skilled workers to the AR sector is preferable,

starting from a certain level of AR blueprints. Thus, we define the third

tipping point, when high-skilled agents move away from AI to AR. It is more
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attractive to work in the AR sector if

R∗
t3
>

(
(σ − 1)

Nσ

ϕAθA
ϕRθR

) 1
1−q

. (2.36)

This level is reached in period t3, with the required stock of AR blueprints

being R∗
t3
. At this point, we want to highlight that the Wage Effect now has

an opposite impact on the transitions of high-skilled agents from AI to AR.

The Wage Effect leads to earlier transitions of high-skilled agents from AI to

AR. The higher the Wage Effect, the lower the markdown on wages in AI,

which, in turn, means that AR is more attractive than AI at a later date. The

decision of high-skilled agents is driven by the wage difference which, in turn

is determined by technological variables, the Wage Effect and the scarcity of

entrepreneurs, given by 1
N
.

After passing this tipping point, the economy reaches the fourth labor mar-

ket constellation, given by Condition (2.20). Entrepreneurs still develop new

software in the AI sector, high-skilled workers are employed in the AR sector,

and low-skilled workers remain in the final good production. Comparing R∗
t3

and R∗
t2
it is a priori not clear which value is larger. Subsequently and for the

rest of the paper, we assume that for small values of R,— e.g. for values be-

low one—R∗
t2
is smaller than R∗

t3
, so that the second tipping point does occur

before the third, and we have t2 < t3.
17

We note that high-skilled workers will leave the AI sector only to work in

the AR sector but not in the final good sector. The respective condition for

high-skilled workers not choosing the final good sector is wRt3 > wt3 , which is

exactly the condition for the second tipping point. This means that once the

economy passes through the second tipping point and Rt−1 is such that wages

wAt in the AI sector are larger than wages in the final good sector wt, the wage

gap increases with Rt. Therefore, it is never optimal for high-skilled individuals

to return to the final good sector. This logic carries over to entrepreneurs who

also never go back to the final good firm. However, they can benefit from

moving to the AR sector, as we show in the next section.

17This can be guaranteed by assuming that
(

(σ−1)
Nσ

ϕAθA
ϕRθR

) 1
1−q

>
(

N
ϕAθA

(
σ−1
σ

)−1
) 1

q

.
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2.5.4 Fourth Tipping Point

The final tipping point stipulates when entrepreneurs supply their labor to

AR and stop actively developing new AI. Their decision is governed by the

following inequality:

wRt l
E + wtϕAR

q
t−1︸ ︷︷ ︸∑N

j=1 Π
A
t,j

> wAt l
E + wtϕAR

q
t−1

[
1 +

θAl
E

Nσ

]
︸ ︷︷ ︸∑N

j=1 Π̂
A
t,j

,

where the left-hand-side displays the total income of entrepreneurs after chang-

ing to the AR sector, where they receive the wage payment wRt and earn the AI

profit share NΠA
t , even without an employment in the AI sector. The right-

hand-side shows their income if they remain in the AI sector and continue

to increase the AI stock by supplying their labor to develop new algorithms.

Plugging in wRt and wAt from Table 2.1 yields

R∗
t4
>

(
1

N

(
1

σ
+
σ − 1

σ

)
ϕAθA
ϕRθR

) 1
1−q

, (2.37)

denoting the fourth tipping point R∗
t4
at period t4. Again, as

1
σ
+ σ−1

σ
= 1, the

combined effect of the Wage Effect and Profit Effect has no influence on the

transition timing of entrepreneurs from AI to AR.

Thus, we find a condition under which entrepreneurs finally move from AI

to AR such that the economy reaches the fifth labor market constellation, given

by Condition (2.21). All entrepreneurs and high-skilled workers are employed

in the AR sector, and low-skilled agents work in the final good firm. It is easy

to see that R∗
t3
< R∗

t4
, so that the third tipping point occurs before the fourth.

An economic explanation for this is that since entrepreneurs obtain profits

from the AI sector, they stay in the AI sector longer than high-skilled agents

who do not benefit from AI profits. When entrepreneurs leave the AI sector in

period t4, they supply their labor to the AR sector, but they remain the owners

of the AI firms. From then on, the level of AI increases autonomously, solely

via a growing stock of AR, as defined in (2.1), but not because of human effort,

as lAt = 0. This demonstrates that after passing the fourth tipping point, the

self-learning nature of AI is particularly pronounced. Still, the resulting stock

of AI algorithms continues to be used as an intermediate in the final good
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production. Let us define the value of R that fulfills (2.32) with equality as

Rcrit. We summarize our findings in the following proposition and Table 2.2:

Proposition 2.4. If the initial condition that R0 ≥ Rcrit is fulfilled, we can

identify the following tipping points, where we claim that it holds that t1 <

t2 < t3 < t4:

(i) Entrepreneurs move to the AI sector in t1, defined in (2.32), increase the

stock of AI and set the economy on a growth path.

(ii) High-skilled workers move from the final good firm to the AI sector in

period t2, which is defined in (2.34).

(iii) High-skilled workers move from the AI sector to the AR sector in period

t3, which is defined in (2.36).

(iv) Entrepreneurs move from the AI sector to the AR sector in period t4,

which is defined in (2.37).

Tipping Point Decentralized Solution

Production to AI (lE) R∗
t1
>
(

N
ϕAθA

(
1
σ
+ σ−1

σ

)−1
) 1
q

Production to AI (lH) R∗
t2
>
(

N
ϕAθA

(
σ−1
σ

)−1
) 1
q

AI to AR (lH) R∗
t3
>
(

1
N

(σ−1)
σ

ϕAθA
ϕRθR

) 1
1−q

AI to AR (lE) R∗
t4
>
(

1
N

(
1
σ
+ σ−1

σ

)
ϕAθA
ϕRθR

) 1
1−q

Table 2.2: Tipping Points in a Decentralized Economy.

We note that the tipping points arise due the the relative productivity differ-

ences between the three sectors and due to the fact that AI firms are owned

by entrepreneurs. This leads to the described transitions between the sectors.

After the last tipping point, we arrive at a situation in which no agent chooses

to work in the AI sector. This result is quite stark and arises due to our model

assumptions which we made for analytical tractability. In order to guarantee

that AI firms continue to employ some labor, we could assume that AI requires

some minimal amount of human labor to improve itself after the last tipping

point.
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2.6 Steady State

In Section 2.4, we showed which wage constellations can occur and defined

equilibrium conditions. Then, we highlighted the resulting transitions be-

tween the sectors in Section 2.5 and showed which employment pattern the

economy will approach in the long run. We now start from the point where all

tipping points have been passed. We see that we have constant employment

in all three sectors in the long run—no employment in the AI sector, while

low-skilled workers are employed in final good production and high-skilled and

entrepreneurial-skilled workers are employed in AR. Recall that this constella-

tion is characterized by Condition (2.21). Such constant employment suggests

the existence of a path for the economy along which output grows asymp-

totically at a constant rate. This section is devoted to the study of such a

path, which we call a Balanced Growth Path (BGP). Therefore, we propose

the following:

Proposition 2.5. For the initial conditions k0 > 0, R0 > 0, A0 > 0 and if

the initial endowment satisfies R0 ≥ Rcrit, the economy will pass the described

tipping points and reach a unique steady state.

We know that in the long run, Constellation (2.21) is reached and all

entrepreneurial-skilled and high-skilled workers are employed in AR and none

in AI. Thus, we have lRt = lH+lE in the long run. Since the spillovers from AR

to AI are described by a concave function (2.1), growth will be dominated by

the increase in AR in the long run. Therefore, along a BGP, output growth is

driven by the increase of the effective labor force lt+ϕAAt+ϕRRt through the

growing stock of blueprints Rt. From the equation of motion of AR, specified

by Equation (2.3), we derive that

∆Rt = Rt+1 −Rt = Rt

(
θRl

R,D
t+1 + ψAl

A,D
t+1

)
.

As nobody is employed in AI (lAt = 0) and all entrepreneurs and high-skilled

individuals work in AR (lRt = lH + lE), we obtain gR = θR(l
H + lE). Simul-

taneously, the stock of AI only grows due to spillovers. Due to the concave

function determining the spillovers from AR to AI, as defined by (2.1), the
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growth rate of AI on a BGP is defined as18

gA = (1 + gR)
q − 1.

We see that even without agents employed in the AI sector, the level of AI and

the profits in this sector are growing at rate gA, where gA < gR, as q ∈ (0, 1).

Our Euler Equation (2.13) allows for a steady state along which consumption

grows at a constant rate, and the return to capital is constant. As the return

depends on the ratio of output to physical capital, output and capital must

grow at the same rate, i.e. gC = gY = gK .Hence, taking the logarithm of our

Cobb-Douglas production function we obtain

gY = αgR + (1− α)gK and thus gY = gK = gR.

The previous findings have an impact on the growth rate of consumption. We

summarize our findings in the following proposition:

Proposition 2.6. The economy has an asymptotic steady state along which

the following holds:

(i) Employment in final good production l = lU and employment in the AR

sector lR = lH + lE, as well as the rental rate of capital rt and the wage

in the productive sector wt, remain constant.

(ii) Output Yt, capital Kt, aggregate consumption Ct and the wage in the AR

sector wt
R grow at the constant rate gR = θR(l

H + lE).

(iii) Noone is employed in the AI sector, lA = 0, entailing wt
A = 0. The level

of AI and the profits in the AI sector ΠA
t grow at rate gA = (1+gR)

q−1,

due to spillovers from AR.

In the Appendix in Section 7.1, we provide a detailed analysis of the con-

vergence of the model to the steady state.

2.7 The Social Planner’s Problem

We now identify the dynamics in the social planner’s solution and compare it

to the decentralized solution. We suppose that A0, R0 and k0 are given and

18The derivation of gA is provided in the Appendix in Section 7.1.
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consider the problem under the general conditions given in Section 2.3. It has

to hold in the social planner’s solution that ct,η = ct and At,j = At. Hence,

the optimization problem reads as follows:

max
{ct,Kt+1,At,lAt ,Rt,l

R
t }

∞∑
t=0

βtu(ct) s.t.

Yt = B(l + lH − lAt − lRt + ϕAAt + ϕRRt)
1−αKα

t ,

Kt+1 = Yt − ct + (1− δ)Kt,

At = Rq
t−1(1 + θA

lAt
N
),

Rt = Rt−1(1 + θRl
R
t + ψAl

A
t ),

lZ ≥ lAt + lRt .

The planner allocates the entire labor force to the three sectors. Since no

profit shares are distributed to any agent in the social planner’s solution, the

planner makes no distinction between entrepreneurial-skilled and high-skilled

workers and we thus define lZ = lH + lE. In spite of that, it still holds that

low-skilled workers lU can only be employed in final good production.

The social planner aims at finding the optimal allocation of high-skilled

workers and entrepreneurs to AI and AR. Agents in the AI sector have to be

equally distributed among all symmetric AI firms in the social planner solu-

tion. In this way, each AI firm produces AI intermediates with the production

function At = Rq
t−1(1+ θA

lAt
N
). Moreover, the social planner takes into account

the agents’ savings st = Yt − ct and the stock functions for At, Rt and Kt,

given by (2.1), (2.3) and (2.9), respectively. The first order conditions provide

the Euler equation in the social planner’s optimization:

u′ (ct,η)

u′ (ct+1,η)
= β

[
αYt+1

Kt+1

+ 1− δ
]
= β (1− δ + rt+1) . (2.38)

The social planner allocates consumption equally across individuals and we

note that the Euler equation is identical to the one in the decentralized solution

(see Equation 2.13).
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2.7.1 Allocation to AI

As in the analysis of the decentralized economy, we first examine transitions of

entrepreneurial-skilled and high-skilled agents from the final good firm to the

AI sector. In the Appendix in Section 7.1, we show that the following holds:

Rq
t−1θAϕA
N

+
ψA
θR︸︷︷︸

Knowledge Spillovers

= 1. (2.39)

The left-hand-side of the equation can be interpreted as the social benefits of

AI, as workers of mass 1 that move from the final good firm to the AI sector

increase the AI stock by
Rqt−1θA
N

. The additional AI stock is more productive

than low-skilled workers by the factor ϕA leading to the overall benefit of AI

in final good production. In addition, the term called Knowledge Spillovers

shows that the social planner takes into account the spillovers from the AI

sector to the AR sector, which are given by ψA
θR

> 0. An additional unit of

labor in the AI sector has the productivity ψA in the AR sector, while the labor

that is actually employed in the AR sector has the productivity θR. Hence,

the net effect of the spillovers is given by the ratio of the two terms. We note

that the benefits outweigh the marginal costs of one additional unit of labor

in AI if Rt−1 is sufficiently large. For this reason, the social planner prefers to

allocate all high-skilled agents from the final good firm to the AI sector if

R∗
P1

= R∗
P2
>

(
(1− ψA

θR
)
N

ϕAθA

) 1
q

. (2.40)

As the social planner does not distinguish between entrepreneurs and high-

skilled agents, their corresponding tipping points for a transition from the

final good firm to the AI sector are identical and R∗
P1

= R∗
P2
.

After deriving the tipping points in both the decentralized solution and the

social planner’s solution, we now assess the differences concerning the timing of

the tipping points for transitions from final good production to the AI sector.

Recall that transitions of workers with skills η = {H} from the final good firm

to the AI sector take place if wAt > wt in a symmetric decentralized economy.
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As defined by Equation (2.34), we write the corresponding threshold as

Rq
t−1θAϕA
N

=
σ

σ − 1︸ ︷︷ ︸
Wage Effect

. (2.41)

As explained in Section 2.5, the markdown on wages in the monopolistic AI

sector, given by the Wage Effect, delays the transition of high-skilled agents

from the final good firm to AI, since σ−1
σ
< 1. On the opposite, wages do not

exist in the social planner’s problem and all agents receive the same level of

consumption, so that we can think of wRt , w
A
t and wt as being the same. The

social planner is indifferent between an allocation of high-skilled agents to the

final good firm or the AI sector if

Rq
t−1θAϕA
N

+
ψA
θR︸︷︷︸

Knowledge Spillovers

= 1. (2.42)

The right-hand-side of (2.42) can be interpreted as the marginal costs of AI,

whereas the left-hand-side represents the marginal benefits. We note that the

difference in the tipping points of high-skilled workers between the decentral-

ized and the social planner’s solution arises because of the Wage Effect in

(2.41) and the Knowledge Spillovers in (2.42). Due to the disregard of Knowl-

edge Spillovers and the markdown on wages, expressed by the Wage Effect,

transitions of high-skilled workers from final good production to AI are delayed

in a decentralized economy, compared to the social planner’s solution.

Now, we focus on the transition of entrepreneurs from the final good firm

to the AI sector. As shown in (2.32), entrepreneurs prefer to work in AI if

their total income is higher when they move to the AI sector than if they stay

in the final good production. Recall that this is the case above the threshold

defined by

Rq
t−1θAϕA
N

 1

σ︸︷︷︸
Profit Effect

+
σ − 1

σ︸ ︷︷ ︸
Wage Effect

 = 1.

As explained in Section 2.5, transitions of entrepreneurs from final good pro-
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duction to AI are not affected by monopolistic distortions in the AI sector in

a decentralized economy, as 1
σ
+ σ−1

σ
= 1, since entrepreneurs receive all the

revenues of AI and do not care about market distortions. Since the social

planner does not distinguish between entrepreneurs and high-skilled workers,

and considers perfect competition in the AI sector, the respective condition

for the allocation of entrepreneurs to AI is the same as for high-skilled agents

in the social planner’s solution, namely Condition (2.42). We see that the

difference between the tipping points for entrepreneurs in the decentralized

and the social planner’s solution depends solely on the Knowledge Spillovers,

since theWage Effect and Profit Effect cancel each other out. Due to the dis-

regard of Knowledge Spillovers, transitions of entrepreneurs from final good

production to the AI sector are generally delayed in a decentralized economy,

compared to the social planner’s solution.

2.7.2 Allocation to AR

In a decentralized economy, high-skilled agents are indifferent between being

employed in the final good sector or in the AR sector if wRt = wt, which

eventuates if

θRϕRRt−1 = 1.

The optimal transition from the final good firm to AR is described by the

following equation:

(I)︷ ︸︸ ︷
βu′(ct+1)

u′(ct)

Vt
Vt+1

Yt+1

Yt

Rt−1

Rt


(II)︷ ︸︸ ︷

(1 + θRl
R
t+1 + ψAl

A
t+1)+

(III)︷ ︸︸ ︷
ϕAθRqR

q
t (1 + θA

lAt+1

N
)


+ θRϕRRt−1 = 1. (2.43)

The right-hand-side of (2.43) can be interpreted as the marginal costs of AR,

whereas the left-hand-side represents the marginal benefits. AR benefits today

amount to θRϕRRt−1. A worker who moves from final good production to the

AR sector increases the AR stock by θRRt−1. The additional AR stock is more

productive than low-skilled workers by the factor ϕR leading to the overall
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benefit. Furthermore, there are benefits of AR that occur tomorrow and are

given by (II) and (III), with (I) being an effective social discount rate. We

describe these benefits in turn:

The social planner considers the Inter-temporal Spillovers, as s/he considers

the effect of a higher AR stock today on the AR stock tomorrow, given by (II).

Moreover, s/he takes into account the effect of a higher AR stock today on

the AI stock tomorrow. If the stock of AR increases, AI algorithms can train

and develop on a wider application area. We thus define the term (III) as the

Application Gains of AI development which arise due to a greater application

area of AI in AR if the stock of AR grows. Application Gains increase in

the productivity ϕA of AI in production, the value of returns from AR to AI,

given by q, and the productivity θR of workers in AR. We observe that the

multiplicative effect of (I), (II) and (III) yields an increase of the marginal

benefits of AR. From the period on where (2.43) holds and which we label as

R∗
P3
, the social planner favors an allocation of all high-skilled agents from the

final good firm to the AR sector. As a general closed form solution for R∗
P3

cannot be derived, we will focus on the graphical illustration of this tipping

point in a numerical example in Section 2.9.

2.7.3 Allocation to AI or AR?

In the two previous subsections, we separately compared an allocation of high-

skilled workers and entrepreneurs to the final good firm with an allocation to

the AI sector or AR sector, respectively. The final question is whether the

social planner favors an allocation of those agents to the AI or the AR sector.

In a joint comparison, the sector with a larger net gain will employ all high-

skilled workers and entrepreneurs. The net gain is the difference of marginal

benefits minus marginal costs in a given sector. The difference in net gains

between the two sectors can be studied by comparing (2.43) with (2.39). The

social planner is indifferent between allocating all high-skilled agents to the

AR or AI sector if the following condition holds:

βu′(ct+1)

u′(ct)

Vt
Vt+1

Yt+1

Yt

Rt−1

Rt

[
(1 + θRl

R
t+1 + ψAl

A
t+1) + ϕAθRqR

q
t (1 + θA

lAt+1

N
)

]
+ ϕRθRRt−1 =

Rq
t−1θAϕA
N

+
ψA
θR
. (2.44)
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The right-hand-side of the equation denotes the benefits of AI, whereas the left-

hand-side characterizes the benefits of AR. The equation implies the threshold

R∗
P4
, from which on the benefits of AR are higher than of AI, such that the

social planner wants to employ all workers in AR. We explained the equation

on the left side after (2.43), showing that the social planner considers the Ap-

plication Gains of AR to AI and the Inter-temporal Spillovers of AR which

play no role in the agents’ decisions in a decentralized economy. Moreover,

we see on the right-hand-side that the social planner takes the Knowledge

Spillovers from AI to AR into account, given by ψA
θR

. We see that the greater

the Application Gains of AR to AI and the Inter-temporal Spillovers of AR

compared to the Knowledge Spillovers of AI, the earlier an allocation from

AI to AR is being preferred in the social planner’s solution compared to a

decentralized economy. Nonetheless, it is not possible to derive a closed form

solution for R∗
P4
. This is the reason why no general sequence of the tipping

points can be determined. We summarize the five causes leading to differences

between the decentralized economy and the social planner’s solution in Sum-

mary 1. Moreover, we illustrate in Table 2.3 how each cause—in an isolated

assessment—impacts the inefficiency of a decentralized economy.

Summary 1. There are two forms of Monopolistic Distortions:

1. A slow-fast effect through wages (abbreviated asWage Effect). It arises

due to markdowns on wages in the monopolistic AI sector and affects

entrepreneurs and high-skilled workers, and

2. the countervailing Profit Effect that arises due to the distribution of

profits to entrepreneurs in the monopolistic AI sector.

In addition, three effects characterize the intertwining of AR and AI.

3. Knowledge Spillovers from AI to AR. Due to static knowledge ex-

changes, AR benefits from spillovers via AI software developers. The

more agents are developing AI today, the higher the knowledge spillovers

on AR today.

4. Application Gains of AR to AI. There are inter-temporal effects of the

stock of AR on the learning potential of AI. The higher the existing stock

of AR today, the larger the application area for AI and the better AI

algorithms can apply their self-learning characteristics, which increases

the level of AI tomorrow.
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5. Inter-temporal Spillovers of AR. There are inter-temporal effects of

the stock of AR today on the stock of AR tomorrow. The higher the

existing stock of AR today, the larger the stock of AR tomorrow.

Transition Timing
lE to AI lH to AI lH to AR lE to AR

Wage Effect ⊗ → ← ⊗
Profit Effect
Knowledge Spillovers → → ← ←
Application Gains → →
Inter-temporal Spillovers → →
Overall Effect → → (→) (→)

Table 2.3: Tipping Points in a Decentralized Economy Compared to the Social
Planner’s Solution

In short, the slow-fast Wage Effect, resulting from monopolistic distortions

in the AI sector in a decentralized economy, decelerates the entry of high-skilled

workers to the AI sector, but accelerates transitions from the AI sector to the

AR sector. For entrepreneurs, the slow-fast Wage Effect and Profit Effect

balance each other and do not affect their transition timing. A social planner

starts from the premise of a competitive AI sector and takes into account

Knowledge Spillovers, Inter-temporal Spillovers and Application Gains. In a

decentralized economy, agents do not consider Knowledge Spillovers, which

leads to delayed entries in AI, and premature transitions from AI to AR if

other externalities and market distortions are absent. Finally, as agents do

not consider the Application Gains of AI due to an increasing stock of AR

and Inter-temporal Spillovers of AR, they transition later from AI to AR in a

decentralized economy than in the social planner’s solution.

We summarize our findings on the tipping points in the social planner’s

solution in the following manner:

Summary 2. Let R0 be the economy’s initial endowment with blueprints and

R∗
P1
, R∗

P2
, R∗

P3
and R∗

P4
be the tipping points in the social planner’s solution.

We have the following possible constellations in the social planner’s optimum:

(i) If R0 < R∗
P1

and R0 < R∗
P3
, Constellation (2.17) is the labor market

equilibrium and the economy will not grow.
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(ii) If R∗
P3
≤ Rt < R∗

P1
, the social planner will employ all high-skilled workers

in AR but not in AI, as R∗
P3
≤ Rt < R∗

P1
and R∗

P4
≥ Rt. The economy

will grow and converge to the steady state described in Section 2.6.

(iii) If R∗
P1
≤ Rt < R∗

P3
, the social planner will employ all skilled workers in

AI but not in AR, as R∗
P1
≤ Rt < R∗

P3
and R∗

P4
< Rt. The economy will

grow and converge to the steady state described in Section 2.6.

(iv) As R∗
P1
< R∗

t1
, the social planner promotes the development of AI earlier

than in a decentralized economy.

The tipping points in the social planner’s solution differ from the ones

in the decentralized solution. It holds that the development of AI starts and

ends earlier in the social planner’s solution than in a decentralized economy. In

addition, in both the decentralized economy or the social planner’s solution—

after passing all tipping points, constant employment in all sectors is attained.

Therefore, following the same arguments as in Section 2.6, the economy in the

social planner’s solution will reach the same BGP as a decentralized economy.

At this point, we note that the overall effect of the abovementioned causes

for differences between the decentralized solution and social planner solution

regarding the transitions of entrepreneurs and high-skilled agents from AI to

AR is not obvious, since there is no closed form solution for R∗
P3

and R∗
P4
.

However, we observe that the larger the Application Gains and the Inter-

temporal Spillovers, and the lower the Knowledge Spillovers of AI, the earlier

the social planner will reallocate all agents from AI to AR. The first two forces

increase the marginal benefits of AR and thus the first line of Equation (2.44)

while the third force decreases the marginal benefits of AI and thus the second

line of (2.44). In general, we conjecture that the social planner allocates agents

earlier from AI to AR than in a decentralized economy, which we indicate with

(→) in Table 2.3.

2.8 Policy Implementation

In this section we explore whether and how the social planner’s solution can be

achieved by tax and subsidy policies in the decentralized solution. We showed

that an initial research stock—higher than in the social planner’s solution—is

necessary to encourage individuals to move from the final good firm to the
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AI sector in a decentralized economy. Furthermore, workers remain in the AI

sector for too long before they opt for employment in AR. We now examine

how to reduce these inefficiencies through policy taxes and subsidies, namely a

tax on the profits of AI firms, a subsidy on AI intermediates and an AI-tax on

the price for each AI intermediate. We assume that policy measures, if they

create a net burden for the government, will be financed through a lump sum

tax on all agents in order to avoid distortionary tax effects.

First, we consider a tax τt on the profits of AI firms, in combination with a

subsidy zt on the price for AI intermediates. The goal is to enforce a socially op-

timal timing of the transition of entrepreneurial-skilled and high-skilled work-

ers from final good production to the AI sector in a decentralized economy. We

assume that the government subsidizes each AI intermediate with zt ∈ (0, 1).

Hence, the effective price for the final good firm to buy an AI intermediate

is (1 − zt)pt,j. This subsidy shall be paid as long as not all entrepreneurial-

skilled and high-skilled workers have moved to the AI sector, that is as long

as lAt < lH + lE. Such a subsidy fosters transitions of workers from final good

production to AI and will be suspended when all entrepreneurial-skilled and

high-skilled individuals are employed in AI. As long as the subsidy is paid, the

profits of the final good firm, given by (2.7), can be rewritten as

Πt = Yt − wtlDt − rtKD
t −

N∑
j=1

(1− zt)pt,jADt,j − γtRD
t . (2.45)

Maximizing (2.45) with respect to ADt,j yields the following inverse demand

function for an AI intermediate of type j:

pt,j =

(
ADt,j
πjADt

)−1
σ
ϕAwt
1− zt

. (2.46)

Equating this inverse demand with the monopolistic price for AI, given by

Equation (7.6), we obtain the following wage in the AI sector when the subsidy

zt is applied:

wAt =
(σ − 1)θAϕAwtR

q
t−1

(1− zt)σ

(
ADt,j
πjADt

)−1
σ

. (2.47)
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We observe that due to the subsidy on the price for the AI intermediates, AI

firms pay higher wages to their employees.

As an additional policy instrument, we assume that a tax τt is applied to the

profits of the AI firms. The tax τt is always deducted, irrespective of the labor

market constellation. It eliminates the distortion in the monopolistic AI sector,

i.e. it eliminates the Profit Effect. Consequently, we intend to find the optimal

tax and subsidy rate, such that the transitions of entrepreneurial-skilled and

high-skilled employees to AI occur at the social planner’s optimum. In line with

the arguments provided in Section 2.5, we next show that the condition for the

transition of entrepreneurs from final good production to AI can be derived in

the following way: We rewrite Condition (2.31) in a setting with a profit tax

τt and an AI subsidy zt to (1−τt)
∑N

j=1 Π
A
t,j+wtl

E < (1−τt)
∑N

j=1 Π̂
A
t,j+w

A
t l
E,

which entails(
1− σ − 1

(1− zt)Nσ
ϕAθAR

q
t−1

)
< Rq

t−1

ϕAθA(1− τt)
Nσ

, or simply

Rtax
t1

>

(
N

ϕAθA

[
1− τt
σ

+
σ − 1

(1− zt)σ

]−1
) 1

q

. (2.48)

Besides, high-skilled agents prefer to work in the AI sector if it holds that

wAt > wt. In a setting with a subsidy zt on the price for the AI intermediates

and a profit tax τt, this holds if

(σ − 1)θAϕAwtR
q
t−1

(1− zt)Nσ
> wt, or simply

Rtax
t2

>

(
N(1− zt)σ
ϕAθA(σ − 1)

) 1
q

. (2.49)

We solve for the tax τt and subsidy zt that guarantee that transitions to AI

in a decentralized solution happen at the same level of AR as in the social

planner’s optimum. After equating (2.49) with (2.40), we find that

z∗ = 1− (θR − ψA)(σ − 1)

θRσ
, if lAt < lH + lE.

We note that the subsidy z∗ paid on the price for the AI intermediates con-

nects the inefficiencies that arise from Knowledge Spillovers that depend on
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ψA and θR, and markdowns on wages due to monopolistic competition in

AI, expressed in the Wage Effect σ−1
σ
. After solving for the optimal sub-

sidization rate z∗, we derive τ ∗ by equating (2.48) with (2.40) and obtain

τ ∗ = 1. This finding can be interpreted as follows: By introducing τ ∗ = 1,

entrepreneurs do not obtain any share of the profits that AI firms reap, as prof-

its are taxed away completely. Therefore, the difference between high-skilled

workers and entrepreneurs, namely the AI profit share for entrepreneurs, is

eliminated. Consequently, both groups solely make their decision to change

the sector based on wages. Thus, through the combination of z∗ and τ ∗, all

entrepreneurial-skilled and high-skilled individuals move from final good pro-

duction to AI at the socially optimum time even in a decentralized economy,

entailing Rtax
t1

= Rtax
t2

= R∗
p1

= R∗
p2
.

Having introduced ways to enforce agents’ transitions to AI at the socially

optimal time, we now introduce a tax that ensures that employees do not stay

in AI for too long, but move on to AR in a timely manner. If all skilled

agents have moved to the AI sector, the subsidy zt is suspended, the tax τt
on profits is kept, and a tax xt on the price for each AI intermediate sold is

introduced which we call AI-tax. The tax xt has to be deducted as long as all

entrepreneurs and high-skilled agents work in AI, given by lAt = lH + lE. With

an AI-tax xt, each AI firm has to pay a levy, deducted via each intermediate

sold. Thus, the profit function of a monopolistic AI firm j, taking the inverse

demand of the final good firm (7.4) as given, is denoted by

ΠA
t,j = (1− xt)pt,jADt,j − wAt l

A,D
t,j . (2.50)

It is straightforward to verify that maximizing (2.50) with respect to pt,j yields

the following monopolistic price for AI:19

pt,j =
σwAt

θA(σ − 1)Rq
t−1(1− xt)

. (2.51)

By equating pt,j from (2.51) with (7.4), we deduce that wages in the AI sector

19We substitute lA,D
t,j , using the AI production function, given by (2.1), and the price for

an AI intermediate, defined by (7.4).
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are given by

wAt =
(σ − 1)θAϕAwtR

q
t−1(1− xt)

σ

(
ADt,j
πjADt

)−1
σ

.

As entrepreneurs continue to have zero profits, the employment decision of all

entrepreneurial-skilled and high-skilled workers between AI and AR depends

solely on the wage relation between wRt and wAt . In an equilibrium where

At,j = At, the AR sector is preferred over the AI sector if wRt > wAt . This

holds if

θRϕRRt−1 >
(σ − 1)θAϕAR

q
t−1(1− xt)

Nσ
, or simply (2.52)

Rtax
t3

>

(
(σ − 1)(1− xt)

Nσ

ϕAθA
ϕRθR

) 1
1−q

. (2.53)

We note that the optimal tax x∗ is implicitly characterized by setting R∗
P3

=

Rtax
t3

. In a set-up with an AI-tax xt > 0, a lower stock of blueprints is sufficient

to make AR attractive. This AI-tax is necessary to internalize and to price

the Application Gains of AI via a growing stock of AR and the Inter-temporal

Spillovers of AR and is applied if lAt = lH+ lE. Thus, with the help of this tax,

a transition from AI to AR takes place earlier than in the unregulated decen-

tralized solution. However, the AI-tax only has to be imposed as long as all

entrepreneurial-skilled and high-skilled agents are employed in the AI sector,

i.e. as long as lAt > 0, to encourage high-skilled workers and entrepreneurs to

timely transition from AI to AR.

To sum up, we have to correct for the five causes that are responsible

for inefficiencies in a decentralized economy. Accordingly, we propose the

implementation of the following policy instruments:

Proposition 2.7.

1. To counteract the Wage Effect and Knowledge Spillovers, a subsidy

z∗ has to be paid on the price for AI in the time frame where lAt < lH + lE

holds to induce transitions of entrepreneurial-skilled and high-skilled agents

from final good production to the AI sector at the socially optimal time. It has

to be applied during the labor market Constellation (2.17) and Constellation

(2.18).
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2. The Profit Effect, as a result of monopolistic competition in AI, is cor-

rected through a profit tax τ ∗ to equalize the income of entrepreneurial-skilled

and high-skilled agents. It has to be deducted in each labor market Constella-

tion (2.17) - (2.21).

3. An AI-tax x∗ internalizes the inter-temporal Application Gains AI can

exploit with an increasing stock of AR and the Inter-temporal Spillovers of

AR, and motivates entrepreneurial-skilled and high-skilled agents to transition

from AI to AR in a timely manner. The AI-tax, that needs to be paid if lAt > 0

and is thus applied in labor market Constellation (2.18) - (2.20).

Proposition 2.7 describes how the socially optimal path of AI and AR

development can be replicated by the use of three policy instruments. To sum

up, to induce optimal economic growth, AI must first be promoted through tax

and subsidy policies when its level of development is low. When AI has reached

a sufficient level due to its self-learning characteristics, an AI-tax on the price

for AI can be justified. We can link our findings on the AI-tax with the results

of Gasteiger and Prettner (2022), who advocate for the introduction of a robot

tax. A robot tax redistributes robot income to labor income, raising per capita

output and welfare in the steady state, as it guarantees an optimal allocation

of investments to automation capital and physical capital. Our proposed AI

tax serves as a mechanism for redistributing AI income to non-beneficiaries

of AI profits with the aim of inducing an earlier and optimal reallocation of

high-skilled individuals to the AR sector. However, while a robot tax à la

Gasteiger and Prettner (2022) corrects the misallocations of investments, the

AI tax corrects a misallocation of high-skilled workers. Hence, both a robot

tax and an AI tax are complementary.

2.9 Numerical Example

In this section, we provide a numerical example for our theoretical model and

examine when the steady state is reached. Moreover, a numerical analysis of

the tipping points facilitates a comparison of the decentralized solution with

the social planner’s solution. The choice of our parameters is shown in Table

2.4.20

20Recall the condition that θR > ψA > 0 from our theoretical model. Moreover, the
choice of the parameter values in the numerical example guarantee that Inequality (2.33) is
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Production α = 0.3 ϕR = 1.5 ϕA = 9 B =1 δ = 0.05
AI θA = 6 q = 0.2
AR θR = 3 ψA = 0.3
Labor L = 1 lU = 0.6 lH = 0.3 lE = 0.1
Firms σ = 1.8 N = 5
Starting Values k0 = 2 R0 = 0.05 T = 50 ζ = 2 β = 0.96

Table 2.4: Parameters for the Numerical Example.

We note that for R0 = 0 and A0 = 0, entailing that AI and AR do not exist,

our model would be a Ramsey–Cass–Koopmans Model (Ramsey, 1928; Cass,

1965; Koopmans, 1963) with heterogeneously-skilled agents. We assume that

60% of the labor force are low-skilled workers. Moreover, 30% are high-skilled

workers that could work in the AI sector or in the AR sector. The remaining

10% are entrepreneurial-skilled agents. The substitutability between the AI

intermediates is captured by σ = 1.8. In the AI sector, five firms operate

under monopolistic competition. We assume low initial levels of AI and AR

to incentivize investments into these sectors from the start: R0 = 0.05 and

A0 =
√
0.05. Following Mankiw et al. (1992), we adopt a value of α = 1

3

in our numerical example. The remaining parameters are in Table 2.4. We

depict the tipping points in the decentralized solution for the first 50 periods

in Figure 2.2. Using a starting point, represented by t0 = 1, where all agents

are employed in the final good firm, Condition (2.32) defines the minimum

amount of initial blueprints required for the development of AI to take place.

In line with our parameter specifications, our initial level of blueprints R0 >

R∗
t1
= Rcrit = 0.000006 fulfills this condition.

At t0 = 1, entrepreneurs observe that they can earn a higher total in-

come by moving from final good production to the AI sector as R0 > Rcrit.

Therefore, entrepreneurs move to the AI sector in t∗1 = 2. Consequently, they

promote the development of AI—and indirectly, the number of new blueprints

in the AR sector. Starting from t∗2 = 4, the wage in the AI sector is higher than

in the final good firm and high-skilled agents move to the AI sector. Later,

at the first period where AR wages exceed AI wages, high-skilled agents move

from the AI sector to the AR sector at t∗3 = 33. Finally, to work in AR will also

be attractive for entrepreneurs, as they can obtain the highest total income in

satisfied.
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Figure 2.2: Tipping Points and Transitions between Sectors in a Decentralized
Economy.

this sector from t∗4 = 37 onwards.

To illustrate the timing inefficiencies of a decentralized economy, we compare

our findings with the social planner’s optimum which is depicted in Figure

2.3. For the decentralized solution, an initial value of R0 ≥ R∗
t1

is necessary,

such that investments in AI take place. However, the social planner requires

a smaller initial amount of blueprints R0 ≥ R∗
t1
≥ R∗

P1
= 0.000004 to start

developing AI. As the initial blueprint level is sufficiently high, the social

planner allocates all skilled individuals to the AI sector from the beginning

at P ∗
1 = 1. Equation (2.44) shows at which period the net benefit of AR is

higher than in AI production, which is the case at P ∗
4 = 28. From then on, the

social planner allocates all entrepreneurial-skilled and high-skilled workers to

the AR sector. Analogously to the decentralized solution, all entrepreneurial-

skilled and high-skilled workers are employed in the AR sector and low-skilled

workers are employed in final good production in the long run. Nonetheless, we

observe that the steady state in the social planner’ solution is reached earlier,

at P ∗
4 = 28, compared to t∗4 = 37 in a decentralized economy.
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Figure 2.3: Tipping Points and Transitions between Sectors in the Social Plan-
ner’s Solution.

Since the social planner takes the spillovers between the AI and AR sector

into account and does not face monopolistic distortions, the growth rates of

AI and AR are generally higher in the social planner’s solution than in a

decentralized economy, which we illustrate in Figure 7.1 in the Appendix in

Section 7.1. Nonetheless, it can be noticed that in both, the decentralized

solution and the social planner’s solution, the AR stock grows at rate gR and

the AI stock at rate gA after reaching the steady state. On this BGP, the

self-learning feature of AI is particularly easy to assess, because—although

no one is employed in the AI sector in the long run—the level of AI grows

autonomously with rate gA.

Moreover, we depict the development of the labor income shares of workers

and entrepreneurs in Figure 2.4. In particular, we illustrate the share of wages

and profits to total labor income21 and for this purpose, we assume that the

group of low-skilled workers, high-skilled workers and entrepreneurs have the

21We disregard capital income in this exercise, which is the same for all agents, namely
rtKt.
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same size. Before the introduction of AI (before t0), all agents work in final

good production and obtain the same wage. With the introduction of AI at

t0, entrepreneurs benefit from the profits of AI firms. Until period t4, when

entrepreneurs leave the AI sector and move to the AR sector, profits of AI

firms are the largest share of total labor income. We note that in the period

between t∗2 and t∗3 where entrepreneurs and high-skilled agents work in the

AI sector, entrepreneurs obtain more than 85% of total labor income. In the

long run, the wage in the final good sector remains constant, but the wage

in the AR sector grows at rate gR. The economy converges to a state, where

total labor income only consist of the growing wages for entrepreneurs and

high-skilled workers who are employed in the AR sector. To sum up, there is

a large income divergence associated with a rising level of AI for the following

reasons: Firstly, AI profits are distributed only to entrepreneurs. Secondly,

since low-skilled workers can only work in final good production and thus

cannot benefit from growing wages in the AR sector.

To sum up, we note that in a decentralized economy, several timing inef-

ficiencies can be documented in our numerical example, as predicted by our

theoretical model. First, a higher initial blueprint stock would be needed to

make AI attractive and put the economy on a growth path. Second, high-

skilled workers and entrepreneurs transition too late to the AI sector, due to

the distorted wage scheme resulting from monopolistic competition in the AI

sector. Third, high-skilled workers and entrepreneurs transition too late to

AR, as they do not internalize the positive spillovers between the AI sector

and AR sector and do not consider the dynamic advantages of the AR sector.

In our numerical example, besides a 100 per cent taxation of the profits of

the AI firms, a 92.00 per cent subsidy on the price for AI has to be applied

in the period where AI is underdeveloped. When AI has sufficiently benefited

from its self-learning characteristics due to a high AR stock, an AI-tax of 17.68

per cent is implemented to enforce socially optimal transitions of agents from

AI to AR.

In particular, we underline the macroeconomic rationale for the introduc-

tion of an AI-tax. Recall that the AI-tax internalizes the inter-temporal Ap-

plication Gains of AI with an increasing stock of AR and the Inter-temporal

Spillovers of AR. Although a general closed form solution for R∗
P3

cannot be

derived which implicitly determines the AI-tax, we discuss the effect of selected

parameters on the AI-tax x∗ based on local derivatives at Rtax
t3

, defined by Eq.
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Figure 2.4: Income Share by Group (Adjusted by Group Size).

(2.53). The higher q, which implies amplified self-learning characteristics of

AI, the higher the AI-tax needs to be to motivate entrepreneurial-skilled and

high-skilled agents to transition from AI to AR at a socially desirable point

in time. In addition, we observe that with a higher AR productivity in pro-

duction, given by ϕR, or a higher worker productivity in AR, given by θR, a

higher AI tax is optimal. The opposite holds with regard to ϕA and θA, where

larger values cause a lower optimal AI-tax. In summary, greater self-learning

capabilities of AI can justify a higher AI tax. Furthermore, if AR has a rel-

ative productivity advantage over AI, a higher AI tax should be introduced

to prevent workers from remaining too long in AI development. In order to

guarantee transitions from AI to AR of workers in the social optimum in the

decentralized economy, an AI tax of 17.68% is needed, if we assume 100%

profit taxation that is necessary for socially optimum transitions from final
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good to AI. If we only assume profit taxation at the level of the minimum

standards planned by the OECD of 15%, the (second-best) optimal AI tax is

about 24%.

Furthermore, we observe increasing income divergence associated with the

rise of AI. During the phase, where high-skilled agents choose to work in the AI

sector, large income differences between the different groups can be observed

as only entrepreneurs benefit from profits in the AI sector. In the long-run,

when only high-skilled workers and entrepreneurs benefit from growing wages

in the AR sector our findings parallel Prettner and Strulik (2020) as low-skilled

agents face a relative decline of their income.

2.10 Discussion

Finally, we would like to address some issues that connect our results to other

issues discussed in the literature.

Market Power of AI Firms

Korinek and Stiglitz (2021) and Autor et al. (2020a) assess that the production

of upcoming information technologies—such as AI—involves the rise of natu-

ral monopolies or so-called “superstar firms”. Today, Tech Giants are gaining

market power and may even influence important election processes (Rathi,

2019). In general, market distortions due to a concentration of market power

in a handful of firms may offset certain benefits of innovation. This could jus-

tify political interventions. For example, some firms’ great bargaining power

may have an influence on wage negotiations and may increase fluctuations in

unemployment (Lu, 2020). Moreover, the huge market capitalization and eco-

nomic power of Tech Giants facilitates the acquisition of promising start-ups

(Makridakis, 2017; Gersbach, 2020), enhances the growth potential of these

companies and may reinforce their monopolistic position. In our model, we

assume from the beginning that AI firms operate under monopolistic compe-

tition. However, the monopoly position that some Tech Giants hold today is

relatively new. Therefore, it would be useful to set the market power of AI

firms in relation to the state of development of AI, as an extension to our

model.

Technological Unemployment
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As soon as AI is invented, it is probable that firms adjust their production

and start substituting human labor by AI, leading to potential labor mar-

ket frictions. For instance, Autor and Salomons (2018) refer to technological

process as “employment-augmenting but labor-displacing”. However, we do

not examine the potential replacement of human labor by AI. Moreover, we

do not consider labor market frictions or technological unemployment, issues

that are addressed by e.g. Hémous and Olsen (2022); Korinek and Stiglitz

(2017); Acemoglu and Restrepo (2018a,b), who analyze the effects of modern

technology—not only of AI—on the labor market. Nonetheless, even if full

employment was preserved, our theoretical model shows an increasing wage

divergence between high-skilled and low-skilled workers, due to different wage

growth rates in the sectors, leading to greater inequality (Furman and Sea-

mans, 2019). Especially developing countries may lack the institutional set-up

to counteract the rise in inequality induced by unequally-distributed skill lev-

els and technological advances (Korinek and Stiglitz, 2021). This should not

be ignored in future research.

Industry-specific Effects of AI on the Factor Shares in Production

Jones and Romer (2010) point out that already during the 20th century, there

were concerns that increasing technological progress would render one of the

prominent Kaldor facts untrue (Kaldor, 1961)—a constant labor share in na-

tional income. The coming decades will show whether this statement stays

relevant for economies with growing levels of AI. Indeed, Autor and Salomons

(2018) reveal that the trend of a decreasing labor share was apparent in many

countries in the last decades. The explanation of Karabarbounis and Neiman

(2014) for this decline is that especially advances in information technology

that affect the price of investment goods led to a factor shift from labor to capi-

tal. Yet, AI will have disparate effects on factor shares in specific industries, as

technology-induced effects on employment are indubitably industry-dependent

(Bessen, 2019). In particular, the link between capital and labor (Korinek and

Stiglitz, 2021) and the substitution elasticity of human labor, capital and AI

in a specific industry play an essential role in the analysis of the effects of AI

on the factor shares in production.

Our model is characterized by the following elasticities of substitution:

σK,L = σK,A = σK,R = 1 and σA,L = σR,L =∞. For the sake of simplicity, we

do not model any complementarities in final good production between labor,
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AR and AI but assume perfect substitutability of labor and AI. In addition, we

do not include an industry-specific or time-dependent substitution elasticity

of the input factors in production. It could be particularly interesting to

explore whether AI is more likely to substitute with labor or capital by using

more flexible ways of modelling the elasticity of substitution between the input

factors. For example, it might be useful to extend our model with (i) a variable

elasticity of substitution (VES)—where input factors have a flexible elasticity

of substitution (Lu, 2020) that may change over time (Paul, 2019), depending

on the development of AI or (ii) an industry-specific AI productivity. In this

sense, the effects of AI on the factor shares in production, depending on the

elasticity of input factors and the industry-specific AI productivity, could be

examined in more detail.

2.11 Conclusion

This paper focuses on the effect of the emergence of AI and evolution of AI.

With a three-sector model with a final good sector that uses AR blueprints

and AI algorithms for production, transition dynamics of workers between the

sectors are examined which drive the dynamics of AI, AR and final output.

The novelty of our approach is that the self-learning feature of AI which allows

that AI can grow in the long-run even if little or no labor is employed for its

development.

Due to (i) monopolistic market distortions affecting both the wages and

profits in the AI sector, (ii) positive knowledge spillovers of workers employed

in AI on the development of AR, (iii) application gains of AI benefiting from an

increasing stock of AR, and (iv) inter-temporal spillovers of AR, a decentralized

economy does not yield a socially optimal development of AI—a finding we

also illustrate in a numerical example.

We provide a macroeconomic rationale for several policy interventions and

show how a mix of taxes and subsidies can promote the optimal integration

of AI into an economy. When the level of AI is low, subsidization of AI is

justified. In addition, taxing AI profits can promote the early development of

AI and reduce the monopolistic distortions in the AI sector. When AI is more

developed and sufficiently benefits from its self-learning ability by application

in AR, the introduction of an AI-tax on the price for AI prevents agents from

staying in AI development for too long which fosters growth-enhancing AR
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development. The introduction of the abovementioned policy instruments can

ensure that the balanced growth path replicates the socially optimal path.

Finally, we show how the rise of AI leads to increasing income divergence,

describe how basic research on AI and patenting of AR blueprints might affect

the development of AI and the labor market transitions of workers, and we

discuss the shortcomings of our model. Our discussion in Section 2.10 points

at several avenues for future research.
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Chapter 3

AI and Competition: Artificial

Intelligence and its Effect on

Competition and Factor Income

Shares∗

Abstract

We examine the impact of self-learning Artificial Intelligence (AI) on firm com-

petition in a growth model with endogenous labor supply and heterogeneous

agents. AI possesses the ability to improve autonomously through application,

testing, and training. When firms incorporate AI into their production pro-

cesses, they incur variable costs for acquiring the necessary software as well as

fixed costs for installing AI infrastructure. The latter indeed drive productiv-

ity increases and economic growth but can also function as an entry barrier

for competing firms. Therefore, we examine how the rise of AI affects market

concentration, firm competition, firm productivity and income inequality. We

discuss potential policy interventions such as a profit tax or the moderniza-

tion of competition and merger laws to prevent a significant increase in income

inequality within AI-intensive industries and to foster economic growth.
∗This project is single-authored work based on von Maydell (2023). We thank seminar

participants of the VfS Annual Conference 2023, 6th Economics of Digitization Workshop,
16th RGS Doctoral Workshop, 11th Oxford Workshop on Global Priorities Research, Con-
ference on Robots and Automation 2022, NIESR Workshop on Data Use and Productivity
in the UK 2022, INFER International Workshop on Economic Growth and Macroeconomic
Dynamics 2022, Rare Voices in Economics Conference 2022, ETH Astute Modelling Semi-
nar 2021, Hans Gersbach, Margrit Buser, David Hémous, Evgenij Komarov, Klaus Prettner,
John Sturm, Ata Atabek and Arthur Schichl for valuable comments.
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3.1 Introduction

The ascent of the “Tech-Giants”—e.g., Amazon, Alphabet, Meta or Apple—

has led to a significant increase in market power in the industries for soft-

ware, social media, or communication networks enclosing new policy challenges

(Stigler Committee, 2019). There are more and more calls for increased mar-

ket regulation of firms in the digital economy from the political and economic

side. An essential cornerstone for the success of the Tech Giants has been the

rise of Information and Communication Technologies (ICT)—and nowadays,

the steadily increasing relevance of Artificial Intelligence (AI). We define AI

as an intangible asset, as it is an “investment in organizational capabilities,

creating or strengthening product platforms that position a firm to compete

in certain markets” (Hulten, 2010). Other examples for intangible assets are

e.g., software, databases, R&D, design, training, market research, branding

or business process engineering (Haskel and Westlake, 2017). AI is distinct

from “brute-force” (Makridakis, 2017) machines and has the crucial charac-

teristic of being able to learn from application: AI is increasingly capable of

autonomously improving without human aid and can improve itself by e.g.,

deep machine learning or reinforcement learning (Lu, 2020). As information

can be broadly and cheaply assessed nowadays and evaluated using machine-

learning algorithms, AI can autonomously develop over time (Brynjolfsson

et al., 2017), which we call self-learning (Gersbach et al., 2022).

We suppose that a rise in AI algorithms will affect market concentration—

not only in the software industry, where it facilitated the ascent of the Tech

Giants, but also in industrial production. In the spirit of De Ridder (2019),

we assume that AI may decrease variable costs but comes in hand with in-

vestments in AI infrastructure for its implementation in industrial production

which we interpret as fixed costs. As a result, the main questions we address

using our theoretical model are the following: When and why do firms pre-

fer to implement AI, even if additional fixed and variable costs have to be

borne? How do different groups benefit from AI implementation in industrial

production? How does AI implementation affect market concentration, input

factor allocation, markups and factor income shares? What are governmental

interventions that guarantee an optimal economic integration of AI to broadly

distribute the benefits of AI to all population groups?

Our main motivation is to theoretically examine how the industrial incor-
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poration of AI—a self-learning intangible asset—may affect market concen-

tration and factor income shares. The new feature of our model is that we

endogenize the optimal AI infrastructure investments and analyze the result-

ing number of firms operating in industrial production in dependence of the

development of AI and the preferences of different stakeholding groups. There-

fore, the rise in market concentration is an endogenous result of our model.

We focus on a neoclassical economy with heterogeneous agents and elastic la-

bor supply and industrial firms that produce a single consumption good using

a nested CES production function that incorporates AI as a non-rival input

factor. In our model, firms with a high AI productivity have incentives to

invest in AI infrastructure—not only due to its positive effect on firm-specific

productivity, but also to oust competing firms from the market, to obtain

higher market shares and to be able to charge price markups. Depending on

the productivity differences between firms in industrial production, we observe

different levels of market concentration. In our approach, we focus on mod-

elling the optimally-chosen AI infrastructure investments—promoting firms’

AI productivity but inhibiting market entry of competing firms—that maxi-

mize the income of different groups. Since we assume that ordinary workers

benefit from their capital and labor income, whereas entrepreneurs addition-

ally benefit from the sale of AI algorithms and firm profits, we examine how

the level of AI affect the income of these agents. Our model shows that the

evolution of the factor income shares and the (endogenous) labor supply de-

pends on the elasticity of substitution between the input factors aggravating

a conclusive statement on the effects of AI on the labor market. Yet, we

generally observe an increase in market concentration, imperfect competition

and rising markups if firm-owners can collectively decide on the optimal AI

investments, leading to allocative inefficiency and socially suboptimal output.

Moreover, we observe a strong divergence of capital and consumption rates of

entrepreneurs and workers in our economy with AI, especially in case of im-

perfect firm competition leading to decreasing capital and labor shares and an

increasing profit share. This trajectory particularly supports wealth inequality

promoted by AI, based on which we discuss potential policy interventions to

counteract income divergence.

The remainder of the paper is organized as follows: In Section 3.2, we

present related literature. We describe the essentials of our theoretical model

in Section 3.3. Afterwards, the effects via which AI affects price markups
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and firm competition in industrial production, namely via investments in AI

infrastructure and resulting firm exit and productivity effects, are described

in Section 3.4. We define equilibrium conditions in Section 3.5 and describe

the optimization considerations of different stakeholding groups and show how

this affects AI growth and the long-run equilibrium in Section 3.6. For illus-

trative purposes, we provide a numerical exercise of the model in Section 3.7,

assess comparative statics of the model and outline the effect of AI on sev-

eral parameters of interest. We delineate inefficiencies in our economy and

counteracting policy interventions in Section 3.8 and discuss our findings and

portray the weaknesses of our model in Section 3.9. We conclude in Section

3.10. Additional graphs, tables and equations are relegated to the Appendix

in Section 7.2.

3.2 Relation to the Literature

There is a myriad of literature discussing the implications of automation and

robots for economic outcomes, e.g., by Acemoglu and Restrepo (2018a), Ace-

moglu and Restrepo (2018b) and Hémous and Olsen (2022). Particular at-

tention has been devoted to the effect of automation on the labor force for

assessing how new technologies may affect for example unemployment rates or

the labor income share (Prettner, 2019; Korinek and Stiglitz, 2017; Grossman

and Oberfield, 2021). Karabarbounis and Neiman (2014) describe that the

effect of a new technology on the labor force strongly depends on the industry

under consideration, as especially repetitive tasks that are easily routinizable

such as clerical or simple assembly occupations may be at risk with a rise of

automation. Trammell and Korinek (2020) state that automation allows cap-

ital to perform more tasks that were formerly performed by human labor and

Aghion et al. (2017) argue that automation is labor-augmenting as it allows

capital “to better complement to labor”. On the opposite, Hémous and Olsen

(2022) state that automation displaces especially low-skilled labor in the long-

run and leads to a decline in the labor income share providing evidence for the

connection between automation and the rise in income inequality which gets

underlined by Acemoglu and Restrepo (2022).22

22For more insights into the theoretical and empirical implications of task replacement
and automation on human labor we reference to Hémous and Olsen (2022); Acemoglu and
Restrepo (2018a,b, 2020).
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Increasingly, however, the topic of data and AI is also being considered sep-

arately in economic literature (Aghion et al., 2017; Jones and Tonetti, 2020).

In contrast to the definition of e.g., robots in economic literature, AI is not

simply a technology that can be used as a substitute for labor (Trammell and

Korinek, 2020) but rather a technology that improves endogenously via its

application. Inspired by Hanson (2001) who revises learning by doing in light

of new technological developments and the concept of machine intelligence, we

focus on the self-learning feature of contemporary AI algorithms as defined by

Gersbach et al. (2022). Moreover, AI is interpreted as a scalable intangible as-

set (Haskel and Westlake, 2017), as AI software can be used simultaneously by

different firms and, in contrast to many tangible assets, AI can be re-employed

repeatedly at a relatively little cost.

Being interpreted as a “general-purpose technology” (Eeckhout, 2021; Cock-

burn et al., 2019), AI has already a large impact not only on the Tech-industry,

but also on industrial production. In the automotive industry, for example,

software development is becoming part of the core business and AI plays a

decisive role e.g., to support the endeavor for autonomous driving (Falcini

et al., 2017). Patŕıcio and Rieder (2018) reveal in a meta-analysis that the

agricultural and food industry could benefit from AI, which could enhance

production, quality control or food security as it e.g., facilitates the detection

of plant diseases, grain classification or the determination of flowering stages.

Cioffi et al. (2020) state that AI may be applied in supply chain management

for demand forecasts, maintenance for predictive forecasts or improve the ef-

fective use and logistics of non-renewable resources. Ernst et al. (2019) refer to

the possible applications of AI, in particular in the area of algorithmic trading,

patients’ pathology diagnosis or the automated review of legal contracts.

Eeckhout (2021) states that although technological progress may displace

workers, it benefits everyone due to higher real income for everyone—yet, only

if markets are competitive. He determines different channels through which

technology may foster a rise in market concentration, namely through the sup-

ply side (e.g., ownership of railway tracks) or through the demand side (e.g.,

network effects on social media platforms). In particular, he mentions a third

factor affecting market power, namely learning, which becomes more impor-

tant in times of machine-learning algorithms and a vast amount of data and

cheap information. Goldin et al. (2020) analyze the link between the intensity

of intangible assets—which also comprise AI—in a given industry and a declin-
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ing degree of competition. De Ridder (2019) explains that the increasing use

of intangible inputs leads to an increasing importance of fixed costs compared

to variable costs. He assumes that expenditures on intangible inputs can re-

duce firms’ marginal production costs and highlights that the implementation

of intangible assets change the production process of a firm. Despite large

initial investments that have to be made for the infrastructure, development

or maintenance of intangibles—defined as fixed or overhead costs—, variable

costs decrease with scale, which makes the marginal costs converge to zero,

indicating the increased importance of fixed costs compared to variable costs.

Grossman and Oberfield (2021) note that the implementation of new tech-

nologies in the production process entails sizable fixed costs. In line with this

argument, De Loecker et al. (2021) assume that firms have to pay fixed costs

to enter an industry and to produce with a new technology or to pay noth-

ing and to not enter the market. Yet, Haskel and Westlake (2017) state that

intangible-intensive economies need new types of physical infrastructure and

refer to the common theme in public debate that high fixed costs can inhibit

economic growth. Schweitzer et al. (2022) point out that the training of AI al-

gorithms after investing in software development and infrastructure is at near

zero marginal costs. A well-known contribution to the industrial organization

literature on the effect of fixed costs and market barriers on market compe-

tition is provided by Dixit (1979). He models a duopolistic economy, where

an established firm faces potential competition from a prospective entrant and

assesses the effect of fixed costs on discontinuities on firms‘ reaction functions.

Moreover, he analyzes how the fixed costs of an established firm have to be

set to block the entry of a competing firm. Maskin and Tirole (1988) show

that fixed costs can be that large that only one firm can generate positive

profits on the market. Similarly, Osborne (1964) states that depending on the

fixed costs, the entry of competitors can be ineffectively impeded, effectively

impeded or, in an extreme case, even blockaded.

The concentration of production in a few firms does not necessarily hint

at weakened competition, but may also reveal that the most innovative and

productive firms have an increased market share (Autor et al., 2020a; Bajgar

et al., 2021). Nonetheless, Calvano et al. (2020) point out that the degree of

possible collusion on the market declines with a rising number of competitors.

Haskel and Westlake (2017) argue that due to the scalability of intangibles,

technologically-leading firms can outperform technological laggards, which fa-
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cilitates the emergence of large and profitable firms which they empirically

motivate by showing that the profitability of US domestic corporate busi-

nesses has recently become increasingly unequal. Bajgar et al. (2021) provide

empirical evidence that market concentration has been increasing, particularly

in markets with high levels of intangible assets, rising profits and markups and

declining business dynamism, primarily in globalized and digital-intensive in-

dustries. Calligaris et al. (2018) note that the decline in business dynamism

has been especially pronounced in information technology, telecommunication

and services but highlight that technologically-laggard firms benefit less from

the digital transformation as catching up to the technological frontier has be-

come more difficult. In this spirit, Autor et al. (2020a) observe that large

firms become more productive with more ICT and that intangible-intensive

firms show higher markups and lower labor shares. Diez et al. (2021) provide

empirical evidence that market concentration has especially risen in the dig-

ital economy, in particular in the ICT industry. Akcigit et al. (2021) state

that “market concentration has risen, firms’ price markups over costs have

increased [...] and profitability has doubled” in the last decades. Ernst et al.

(2019) point out that the digital nature of AI makes large “first-mover ad-

vantages” possible—leading to increased market concentration and economic

inequality. Babina et al. (2021) provide empirical evidence that AI contributes

to a rise in industry concentration as it especially benefits large firms. Li et al.

(2017) emphasize that the AI-induced changes to competitiveness and to social

and economic benefits need to be more thoroughly evaluated. On the opposite,

Diez et al. (2021) conclude that technological changes coming in hand with

rising fixed costs do not play a major role in explaining the rise in markups,

but caution against the observation that a rise in market concentration and

decline in competition may lead to imperfect factor allocation, welfare losses

or inequality.

In addition to our analysis of an AI-induced rise in fixed costs and markups,

we examine the effects of AI on factor income shares. Autor et al. (2020a)

provide empirical evidence for a declining labor income share (LIS) due to a

so-called rise of “superstar firms”. One of the main findings of De Loecker

et al. (2020) is a negative relation between the LIS and markups. Diez et al.

(2019) state that rising markups have a inverse effect on firms’ LIS and that

national income paid to workers has been decreasing since the 1980s. Empirical

studies reveal a decline in the LIS, both from a global perspective (Elsby et al.,
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2013) or specifically for the US, where a decline of around 7% in the labor

share can be observed since 2000 (Karabarbounis and Neiman, 2014). With

regard to industry-specific differences, Barkai (2020) points out that larger

declines of the LIS are especially observable in industries with strong market

concentration. There is a variety of reasons that are discussed in the literature

for explaining the decline of the labor income share. Whereas Karabarbounis

and Neiman (2014) hint at the decline in the relative price of investment goods,

the reasoning of Raurich et al. (2012) is based on a larger capital deepening

and price markups. Grossman et al. (2017) explain the decreasing LIS with the

human capital complementarity with physical capital. Trammell and Korinek

(2020) conclude that the reason for a decline in the LIS is that wages rise,

but less than output. In contrast to the literature showing that a decreasing

labor share comes hand in hand with an increasing capital share, Barkai (2020)

reveals that—independent of the industry—both labor and capital shares have

been declining, which has been re-balanced by increasing profit shares.

3.3 Model

For the sake of simplicity, we choose a neoclassical economy where agents’ sav-

ings and consumption are endogenized and labor supply is elastic. We model

an economy with an industrial sector in which firms produce a consumable

good and an AI sector, where companies produce AI algorithms. Industrial

firms with heterogeneous productivities use capital, labor and AI for produc-

tion. In the model, AI algorithms can autonomously develop by being applied,

tested and trained in industrial production. We focus on describing the supply

side in detail. We illustrate the main features of our model in Figure 3.1 before

subsequently explaining each feature in more detail. In an initial state (left

part of Figure 3.1), industrial firms with heterogeneous productivities (illus-

trated by dots with different intensities of red color) operate on a perfectly

competitive market, entrepreneurs and ordinary workers obtain a competitive

wage and industrial firms make zero profits. Yet, in particular, productive in-

dustrial firms have an incentive to build up AI infrastructure (e.g., the training

of workers, installation of servers, acquisition of data) serving as market bar-

riers that impedes market entry of industrial firms with a lower productivity,

leading to imperfect competition (right part of Figure 3.1). In such a set-

ting, we show that markets are more concentrated and industrial firms can
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charge higher markups, leading to lower wages and positive profit payments

for entrepreneurs.

Perfect Competition

Wage Payment 

AI

Inputs

Industry
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Figure 3.1: Diagram of the Model Concept.
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3.3.1 Individuals

There are atomistically small agents of mass L ∈ N+ in the economy. The

mass L of agents in the economy stays constant over time. In our growth

model, we assume a multi period but finite time horizon, where t ∈ {1, ..., T}
and T ∈ N≥1 is a discrete time index. All agents live for the entire time

period. The mass L of workers in the economy is endowed with L units of

labor that can be used for labor or leisure. We describe the labor leisure

trade-off in more detail at a later stage. Moreover, at t = 0, a total capital

endowment of K0 is uniformly distributed amongst all agents in the economy.

Capital can be accumulated over time and total capital in each period is given

by Kt ∈ R+. Individuals inelastically rent out their entire capital supply

to industrial production and obtain the interest rate rt. Individuals differ

with regard to their skill level η, with η ∈ {W,E}. First, agents with index

η = {W} are defined as ordinary workers, who work in industrial production.

Second, agents with skill index η = {E} have the same productivity as agents

with η = {W} but have entrepreneurial talent such that they own all firms in

industrial production in all periods. In addition, agents with entrepreneurial
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skills own companies that develop AI algorithms.23 Henceforth, we call agents

with entrepreneurial skills entrepreneurs as they own all industrial firms and

all AI-developing companies in the economy. Yet, all agents irrespective of

their skill-level work in industrial production.24 Total labor supply of agents

in the economy with endogenous labor supply is given by Lt = LWt +LEt , where

LEt is the labor supply of agents with entrepreneurial skills and LWt is the labor

supply of ordinary workers. We define the share of agents with entrepreneurial-

skills as lE = LE

L
∈ (0, 1) and of ordinary workers as lW = 1− LE

L
. The share

of entrepreneurs and workers stays constant over time, but the time spent on

leisure might change over time due to the labor leisure trade-off, such that we

define the amount of supplied labor by group η at time t as Lηt . The group of

agents collectively decide on the time spent on leisure, given by Nη
t = Llη−Lηt .

Moreover, there are AI algorithms that can be used in industrial production.

The concept of AI algorithms will be later described in more detail. A more

detailed definition of the income stream of all agents in the economy is provided

in Section 3.5.

3.3.2 Industrial Production

There are j ∈ {1, ..., N} firms with N ∈ N≥1 in industrial production. All in-

dustrial firms produce the same consumption good. The nested CES produc-

tion function of all j firms at time t in industrial production has the following

form:

Yj,t =

(
αK

ϵ−1
ϵ

j,t + (1− α)
[(
γL

ω−1
ω

j,t + (1− γ)(θj,tAt)
ω−1
ω

) ω
ω−1

] ϵ−1
ϵ

) ϵ
ϵ−1

. (3.1)

The production function of each firm j is concave, strictly increasing and

differentiable with respect to all input factors (Mas-Colell et al., 1995). Each

firm j uses capital Kj,t ∈ Kt, labor Lj,t ∈ Lt and AI At ∈ R+ as input

factors to produce the consumption good. The parameters ϵ ∈ (0,∞) and

ω ∈ (0,∞) define the elasticities of substitution between labor, capital and

23To avoid misunderstandings we use the term “firm” for corporations in industrial pro-
duction and “company” for corporations in the AI-developing sector.

24For the sake of simplicity and in contrast to Lankisch et al. (2019) who assume different
elasticities between automation and heterogeneously-skilled workers, all agents have the
same elasticity of substitution with AI in our approach.
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AI, and α ∈ (0, 1) and γ ∈ (0, 1) determine the respective factor income

shares. Moreover, we assume that labor Lt is not transferable across time,

whereas capital Kt and AI At accumulate over time. Industrial firms can

perform intra-period trade of labor and capital and can buy AI algorithms

from AI-developing companies.

Depending on the state of the economy, only mt ∈ {1, ..., N} firms are

active in industrial production. We consider two types of firms: Active firms

mt have a strictly positive demand for the input factors for production, whereas

N −mt passive firms do not produce and do not demand any input factors.

Only a limited amount of the input factors labor and capital can be employed

in production by each firm depending on the number of active firms mt ∈
{1, ..., N} at time t.25 As labor and capital are rival and excludable goods,

all mt firms that are active at time t compete for the available input factors.

We denote the labor and capital supply of firm j at time t depending on the

number of active firms m as Lj,t,m and Kj,t,m, respectively. Therefore, also

the production Yj,t,m of a firm j at time t depends on the number of m active

firms. We suppose that all industrial firms can acquire AI algorithms in a

non-rival, but excludable fashion (Eeckhout, 2021; Ernst et al., 2019; Wagner,

2020): every firm that buys AI software At can use it. Recall that non-rivalry

of AI implies that if one firm buys AI algorithms,it does not prevent other

firms’ use of AI (Acemoglu, 2009; Farboodi and Veldkamp, 2021). Yet, it is an

excludable good as only firms that buy AI software can use it for production.

A main assumption in our model is that all industrial firms have a het-

erogeneous AI productivity. Our approach stands in line with Aghion et al.

(2019), who assume that there is heterogeneity in firm-specific efficiency that

persists over time—in our case, in firm-specific AI productivity, given by θj,t.

Thus, each firm j has a time-variant productivity θj,t drawn from a fixed prob-

ability distribution Φ(θj,t). We assume that the firm with rank j = 1 draws

the highest productivity and the N -th firm draws the lowest from the distri-

bution.26

Assumption 3.1. Each firm j has a firm-specific AI productivity θj,t drawn

from a fixed productivity distribution Φ(θj,t). The higher the rank j of a firm,

25In the remainder of the paper we disregard the indices t if we use mt in equations and
only use m.

26The initial productivities θj,t0 of all firms are equal at t = 0 and the subsequent
dynamics of the productivity parameter are discussed at a later stage.
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the higher its productivity θj,t.

We assume that the productivity of each firm is discernible for all other

firms. In this way, every firm knows its own AI productivity and that of all

other firms. For the sake of simplicity, we suppose that the labor and capital

productivity of all firms are identical. Productivity changes over time are

disregarded.27 Thus, our model does not allow for i.e. firm-specific research

and development or innovation, which could improve firms’ AI productivity

over time.

3.3.3 AI Algorithms

Already in 1965, Moore observed that the number of transistors in a densely

integrated circuit doubles about every two years (Moore, 1998). This techno-

logical development gave rise to Information and Communication Technology

(ICT) that has shaped the path of economic development in the last decades.

Similarly, we assume that AI will grow exponentially in the upcoming years

due to its self-learning characteristics and the immense rise in data availability.

Typical applications of AI (currently) are speech recognition, image recog-

nition, natural language processing or shortest path derivation.

In our model, we conceptualize that the greater industrial production,

based on the production of each active firm given by Eq. (3.1), the greater the

application area for the testing and training of AI algorithms. Although a clear

distinction between generic data, data, information and communication tech-

nologies and algorithms is often hard to make, we focus on the term Artificial

Intelligence as we focus on the self-learning capabilities of AI algorithms. For

example, in the agricultural industry, the greater total production of wheat

grain, the better AI algorithms can be trained to detect grain diseases. In

an example with autonomously-driving cars, the more cars are produced and

sold, the more observations can be assessed and the better the learning of an

AI-supported autonomous driving software. Therefore, we interpret total in-

dustrial production as the “training set” for AI algorithms and suppose that

AI is an input factor that autonomously grows through its application in in-

27Nonetheless, it could be an avenue for future research to examine how a stochastic
evolution of the firm-specific AI productivity would affect the economy in more detail. For
instance, De Loecker et al. (2021) model the productivities of firms entering the market as
AR(1) processes.

74



Model AI and Competition

dustrial production. In this sense, as stated by Trammell and Korinek (2020),

“the production process itself contributes to the generation of productivity-

increasing ideas”. Thus, our model is in the fashion of Romer (1986, 1990),

stating that knowledge is a result of learning by doing in production and builds

on a comparable assumption as Farboodi and Veldkamp (2021) stating that

“data is a by-product of economic activity”.

Motivated by Gersbach et al. (2022), we simplify our model and assume

that AI has reached a stage at which it can develop autonomously due to its

self-learning characteristics. This autonomous development implies that no

labor or capital is required for the accumulation of AI—nonetheless, this ex-

treme assumption has to be interpreted with caution and is only imposed for

the sake of simplicity. Due to its autonomous development over time, AI is

distinct from automation that serves as a substitute for labor or a technology

that affects total factor productivity but does not learn by application. In-

spired by an energy system analysis of Höök et al. (2011), we assume bounded

growth, such that AI may grow interminably, but the rate of growth converges

to zero in an infinite time horizon. In the spirit of their arguments, we suppose

that the upper bound of AI may be virtually non-existent, but the steps in self-

learning of AI software become increasingly smaller, thus slowing its growth

process. For the sake of tractability and viability of our model, we assume that

there is an upper bound B for the level of AI, caused by restricted hardware

availability necessary for the implementation of AI in industrial production.28

We model the level of AI as follows:

At+1 = min[B,At

(
1 + b

(
m∑
j=1

Yj,t,m

))
], (3.2)

where A0 > 0. We assume that b(0) = 0 and b is strictly positive for x > 0.

There is a unique company in the AI sector that develops AI algorithms.

The AI company produces self-learning algorithms that autonomously accu-

mulate over time without using any labor and capital as described in Eq.

(3.2). Entrepreneurs collectively own the AI-developing company. The AI

company sells AI algorithms to firms in industrial production. Laatikainen

28Even if we can assume that the hardware evolves together with the software, we suppose
on the basis of the findings of Kumar (2015) that there are still physical scaling limits that
restrict the growth of AI software. Moreover, also Farboodi and Veldkamp (2021) assume
an upper bound of data productivity in their analysis of a data economy.
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and Ojala (2014) argue that a “flexible and well-designed architecture” makes

different pricing models for “software-as-a-service” possible, leading to firm-

specific prices for the AI software. Therefore, we assume that entrepreneurs

owning the AI company can apply competitive differentiation and can per-

fectly price-discriminate industrial firms that buy AI software, such that each

industrial firm has to pay its marginal value for acquiring AI algorithms. All

active firms buy the entire non-rival and excludable AI stock if they decide to

produce using AI.29 It is a stark assumption that firms pay different prices for

acquiring AI software. Yet, it can also be interpreted such that all industrial

firms pay the same base price for the acquisition of AI software, but industrial

firms with a higher AI productivity also pay for additional features, functions

or services and thus face different variable AI costs. Another interpretation

is that the rise in AI enables software-developing companies to better know

customers’ and firms’ preferences and behavior such that the estimation of

their price and income elasticities can be optimized allowing software produc-

ers to improve their pricing strategy and enabling them to charge personalized

prices. The profit of the AI company is given by30

ΠAI
t,m =

m∑
j=1

pj,t,mAt − Λ(At)

We note that the profit of the AI company depends on the number of mt

active firms in industrial production that acquire AI algorithms for a firm-

specific price. Moreover, the costs for the development of AI are defined as

Λ(At), but will not be discussed in more detail. We disregard the behavior and

decisions of the AI-developing company, as we focus on the industrial firms

that use AI for production. For further insights on how to model the behavior

of AI-developing companies, we refer to Gersbach et al. (2022).

29Entrepreneurs collectively decide on establishing this pricing mechanism. Otherwise,
each entrepreneur would set a zero price for AI for the industrial firm s/he owns.

30It needs to hold that the AI company does not pay any costs for AI development and
gets endowed with an AI stock A0 at t = 0 free of charge.
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3.4 AI Incorporation and its Effect on Com-

petition

In addition to being a non-rival input factor for production, we suppose that

there are channels through which AI additionally affects firm competition in

industrial production. Investments in AI infrastructure increase AI produc-

tivity but might serve as market barriers which affect firms’ market entry and

thus affect the number of active firms mt.
31 Furthermore, due to the self-

learning feature of AI, its development is supported by a broad application

area—which is defined as total industrial production, as given in Eq. 3.2.

3.4.1 AI Infrastructure Investments

Whether AI gets acquired by an industrial firm depends on the expected profit

of producing with AI versus the profit without using AI. Referring to the cor-

porate integration of AI, the European Commission (2021a) points at the

importance of (computational) infrastructure, in addition to software and an

appropriate governance and coordination framework. Recall that if industrial

firms decide to employ AI in production, they have to buy AI software for the

firm-specific price pj,t,m for each algorithm At. Moreover, we assume that in-

dustrial firms in our model need to invest in infrastructure for AI (fixed costs)

in addition to the acquisition of AI software (variable costs). Infrastructure

investments in AI can be e.g., the training of workers how to deal with AI,

the installation of computational infrastructure such as computers or servers

or the acquisition of data. Motivated by Noy and Zhang (2023) who experi-

mentally show that output quality rises by 18% if workers have the possibility

to use Chat-GPT—a new AI technology—we assume that AI increases firm

productivity. We assume that investments in AI infrastructure increase the

productivity of a firm, but they may serve as a market barrier for competing

firms. Motivated by Markiewicz and Silvestrini (2021), we interpret invest-

ments in AI infrastructure as fixed costs that serve as barriers-to-entry for

competing firms. In particular, exclusive ownership of big data (Rubinfeld

and Gal, 2017) and data control (Stigler Committee, 2019) in digital ecosys-

tems with AI-based services may constitute a barrier to entry. We claim that

31Yet, in contrast to Hopenhayn (1992), we do not derive a stationary equilibrium of
entry and exit rates of firms that are affected by productivity shocks.
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if a firm invests in AI infrastructure, all firms have to invest the same amount

to be competitive, which will later be explained in more detail. In this way,

investments in AI infrastructure can hinder market competitors from entering

the market and we focus on modelling the optimally-chosen fixed costs inhibit-

ing the market entry of competing firms that maximize the utility of different

groups of agents.32

In each period t, we assume that every firm j has to undertake a minimum

infrastructure investment denoted as Dl to be able to incorporate AI in in-

dustrial production and to produce with Eq. (3.1).33 Nonetheless, firms can

make the decision to invest more than the minimum required level, denoted

as Fj,t = Fj,t +Dl, where Fj,t represents the amount of investment that goes

beyond the minimum AI investment Dl. Each firms’ productivity depends on

its productivity in the preceding period. If a firm invests Fj,t−1 in AI infras-

tructure, this increases its AI productivity in the following period t. Moreover,

we assume that the firm-specific learning of AI depends on the market share of

a specific firm j, given by ϕj,t−1. The larger the market share of a specific firm,

the better tailored the AI algorithms for firm-specific production. In this way,

the AI productivity of a firm depends both on the firm-specific investments

in AI infrastructure, and on the firm-specific market share, which defines how

well-tailored the AI algorithms are to a specific firm.34 Due to the abovemen-

tioned reasons, we define the following function to describe the development

of firm-specific AI productivity

θj,t = θj,t−1 (Fj,t−1)
ι (1 + ϕj,t−1)

η with η < 1, ι < 1. (3.3)

Both a higher market share and private investments have decreasing returns

to scale, due to ι < 1 and η < 1. Yet, we assume that ι > η such that the effect

of investments in AI have a larger effect on firm-specific productivity than the

32Whereas e.g., Hopenhayn (1992) assumes a competitive market structure, Aghion et al.
(2019) assume Bertrand competition and Markiewicz and Silvestrini (2021) assume Cournot
competition for analyzing firm dynamics, we suppose that firms have market power and com-
pete in quantities, but that the number of firms is variable and we endogenously determine
the number of active firms.

33For the sake of simplicity, we set Dl = 0.
34There is no purposefully-directed innovation in our model, but productivity increases

due to investments in AI infrastructure and due to the learning capabilities of AI soft-
ware. The reason is that firms are myopic and do not anticipate the effect of infrastructure
investments on the productivity in the following period.
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market share. To sum up, the special feature of AI that we aim at conceptu-

alizing in our model is that its productivity can be promoted by private in-

vestments, given by Fj,t−1, but also benefits from a higher market share, given

by ϕj,t−1, as algorithms are thus better personalized to firm-specific needs.

Therefore, in addition to the self-learning of AI that is described in Eq. (3.2),

we have a notion of firm-specific learning, described in Eq. (3.3).

3.4.2 Price Markups

If firms operate on a competitive factor and product market, this does not en-

able them to charge a markup on the price for the goods sold. Yet, as presented

by Raurich et al. (2012) and Autor et al. (2020a), a firm operating on an imper-

fectly competitive product market can sell products at a higher effective price

and charge a price markup. The literature claims that the markup trajectories

have changed due to the rise of ICT and we aim at assessing the potential effect

of AI on markups. Diez et al. (2019) state that the rise in market concentra-

tion after the turn of the millennium can be assigned to (especially digital)

technology-driven changes in product markets and underpin the hypothesis of

an increase in average markups in their empirical analysis. Markiewicz and

Silvestrini (2021) show that markups are higher in high-ICT industries than

in low-ICT industries using U.S. CompStat and European CompNet data.

Calligaris et al. (2018) additionally state that markup differentials have risen

between digitally high-intensive and low-intensive industries. Inspired by the

abovementioned literature assessing the link between markups and intangible

intensity, and based on the markup definition of De Loecker et al. (2020), we

set up a function µt,m for price markups depending on the elasticity of demand

and the number of active firms that determines total output. If less firms are

active, firms can charge markups due to reduced competition, allowing them

to finance their infrastructure investments. We define the consumers’ demand

function in the following way, where qt [Yt(ν)] is total consumers’ demand at

time t depending on price ν for the industrial good Yt.

qt [Yt(ν)] =
m∑
j=1

qt,j =
N∑
j=1

Yj,tν
−τ
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The elasticity of demand is given by τ ∈ (0,∞), such that the lower the

value of τ , the more elastic consumers demand to changes in prices of the

consumption good. If firms have the possibility to charge a price markup µt,j,

the consumers’ demand looks the following, where ν̂ is the price if firms operate

under perfect competition such that ν = ν̂ + µt,j is the effective price for the

consumption good. We can thus rewrite total consumers’ demand depending

on the effective price as

m∑
j=1

qt,j =
m∑
j=1

Yj,t(ν̂ + µt,j)
−τ . (3.4)

In this fashion, we additionally observe that firms’ possibility to invest in

AI infrastructure is hampered if the elasticity of demand is too high, as this

enables firms to charge lower markups. Note that by construction, a situation

in which mt < N firms are active implies imperfect competition.35 For this

reason, firms have strategic incentives in choosing their AI infrastructure in-

vestments (fixed costs), defined as Fj,t, as it prohibits competing firms from

market entry. Especially profitable firms with high AI productivity can invest

in AI infrastructure to oust firms with low productivity from the market. In

spite of the productivity differences between firms, we suppose that all firms

charge the same markup—for the sake of simplicity. Therefore, we cannot

distinguish between firms with high and low markups and neglect the possibil-

ity that changes in markups can arise due to reallocation effects (De Loecker

et al., 2021), namely more output of higher markup firms. We only consider

the case of homogeneous, symmetric and identical markups for all firms.36 The

following condition needs to hold such that firms are able to finance their AI

infrastructure investments and is thus a feasibility constraint for each firm

µj,t ≥
Fj,t
Yj,t

. (3.5)

As a result, we observe a phenomenon where firms engage in cost-refinancing

through markups to accommodate the expenses associated with AI infrastruc-

ture. The maximum fixed costs that a firm can impose are determined by

35A more detailed derivation of markups is provided in the Appendix in Section 7.2.
36Our model could be extended by allowing the markups to depend on the output elastic-

ity (Diez et al., 2021; Jaimovich, 2007), for modelling that only low markups can be charged
on goods that are easily substitutable.
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the markups it can apply, which are influenced by factors such as demand,

total output, and the production output of each individual firm.37 Building

on the work of Jaimovich (2007), it is evident that markups tend to increase

as firms invest more in AI infrastructure (fixed costs). Firms that have a high

AI productivity and low marginal costs for AI are capable of offering the most

competitive AI prices relative to their competitors. These firms, thanks to

their cost leadership, are able to capture larger market shares and generate

higher profits, as emphasized by Markiewicz and Silvestrini (2021).

3.4.3 Productivity Effects and Market Barriers

AI addition to affecting firms’ AI productivity, AI infrastructure investments

can be interpreted as market barriers affecting the number of firms that can

enter the market. Moreover, if a firm decides to invest in AI infrastructure,

the emerging costs for the investments need to be financed. Firms anticipate

that with higher Fj,t, less productive firms will not be able to afford the mar-

ket entry, such that there will be less active firms. This allows active firms

to apply stronger pricing power due to reduced firm competition. For the

sake of simplicity, we assume that if one firm j invests Fj,t in AI infrastruc-

ture, all other firms j̃, where j̃ ̸= j, have to invest the same amount in AI

infrastructure Fj,t = Fj̃,t to be able to compete against firm j in equilibrium

which will be explained in more detail in Section 3.5. We suppose that firms

enter the market—implying that they have a strictly positive demand for la-

bor, capital and AI—as long as their profit is expected to be larger than zero.

Entrepreneurs are myopic as they only have static and intra-period consid-

erations and are unable to anticipate the long-term effects of their present

decisions.38 Therefore, if firm-owning agents make decisions at period t, they

do not consider potential effects of their actions on outcomes in subsequent

periods. Moreover, we assume that each firm j has to pay the fixed costs Fj,t
in each period t in which it produces, implying that infrastructure investments

have to be renewed in each period.

Moreover, recall from Assumption 3.1 that the production of a firm j de-

37Nonetheless, we disregard that markups could be set at a level such that they over-
compensate the investments in AI infrastructure.

38This can also be interpreted such that firms can only operate for a single period t and
thus only perform intra-period profit maximization and do not face a recursive multi-period
problem.

81



AI and Competition AI Incorporation and its Effect on Competition

pends on its productivity, defined by its rank j and the productivity distri-

bution Φ(θj,t). The profits of a firm j at time t depending on the number of

active firms mt are defined as

Πj,t,m =(1 + µt,m)Yj,t,m − rt,mKj,t,m − wt,mLj,t,m − pj,t,mAt − Fj,t.

Firms pay competitive wages wt,m, interest rates rt,m and AI prices pj,t,m,

which are equal to the marginal value of labor, capital and AI, respectively.

The determination of the equilibrium factor prices is described in more detail

in Section 3.5. The Euler theorem, which is explained in the Appendix in

Section 7.2 encloses that the profits can be rewritten as

Πj,t,m = µt,mYj,t,m − Fj,t.

We now show how much any firm has to invest in AI infrastructure, such that

firms with a lower AI productivity cannot afford to enter the market. Recall

that firms are ordered by their AI productivity, where firm j = 1 has the

greatest AI productivity and firm j = N has the lowest AI productivity. The

following equation defines the number of active firms mt depending on the

fixed costs Fj,t chosen by any firm j at time t:

mt(Fj,t) =


N if Fj,t ≤ µt,NYN,t,N ,

N − j if Fj,t ≤ µt,N−jYN−j,t,N−j and

Fj,t > µt,N−j+1YN−j+1,t,N−j+1 ∀ j ∈ {1, ..., N − 1},
0 if Fj,t > µt,1Y1,t,1.

(3.6)

The explanation of Eq. (3.6) is the following. If the fixed costs chosen by

any firm j are lower than the net profit of the least productive firm j = N

operating under perfect competition, given by ΠN,t,N = µt,NYN,t,N = 0, all

firms are active on the market enclosing thatmt = N as all firms can afford the

fixed costs and still make positive profits. If the fixed costs are higher than the

profit of the (N−j)-th productive firm operating under imperfect competition,

given by ΠN−j,t,N−j = µt,N−jYN−j,t,N−j, there are (N − j) active firms. If the

fixed costs Fj,t are larger than the profit of the second most productive firm,

given by µt,2Y2,t,2, only one firm can afford to pay the fixed costs and will be
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the monopolist.39 In this fashion, we model an economy where investments

in AI infrastructure (e.g., the acquisition of data) raise the barriers to market

entry for competitors, pose a potential threat to competition and facilitate a

rise of natural monopolies. By taking into account Eq. (3.6), we note that

with infrastructure investments Fj,t converging to 0, the number of active firms

converges to the maximum number of active firmsN , as limFj,t→0mt(Fj,t) = N ,

and we therefore note that

mt(Fj,t)

∂Fj,t
≤ 0, (3.7)

enclosing that the lower the fixed costs paid by any firm, the more firms can

afford to enter the market. Furthermore, we note that the possibility to invest

in AI infrastructure to oust firms from the market depends on the produc-

tivity distribution of firms in industrial production and therefore propose the

following

Proposition 3.1. The factor allocation in equilibrium between mt active firms

in industrial production depends on the productivity distribution Φ(θj,t).
40

For instance, if all firms have the same AI productivity, all firms operate

under perfect competition and all firms make zero profits. Therefore no firm

invests in AI infrastructure and no firm is ousted from the market. On the

opposite, if there is an unequal AI productivity distribution, high-productivity

firms that can afford to pay higher fixed costs have an incentive to oust low-

productivity firms from the market to be able to charge price markups on a

market with imperfect competition. Note that by construction of our model,

the average productivity of active firms in industrial production is higher the

fewer firms are active. This conceptualizes the descriptive results of Effen-

berger et al. (2020) that indicate that firms in industries with higher market

concentration tend to have a higher AI productivity. To sum up, we propose

the following which is proved in the Appendix in Section 7.2:

Proposition 3.2. By investing in AI infrastructure that serve as market-

barriers, low-productivity firms are ousted from the market. The higher the

39We assume that if a firm leaves the market, it can always re-enter the market by
investing the necessary AI infrastructure costs in a future period.

40We show how the productivity distribution affects the number of firms and factor
allocation in equilibrium to prove the Proposition in the Appendix in Section 7.2.
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infrastructure investments Fj,t ≥ 0 of any firm j, the lower the number of

firms that are active on the market and thus affects firm competition.

We conclude that depending on the fixed costs chosen by any firm, in

particular low-productive firms can be hindered to enter the market. With

less firms being active enclosing less competition, higher price markups can be

charged, affecting each active firm’s profit, leading to a strategic behavior in

deciding on AI infrastructure investments.

3.5 Equilibrium Definition

In Section 3.3, we showed our model setup using a simple neoclassical method

with industrial production, self-learning AI algorithms and heterogeneous agents.

Then, we highlighted the effects of incorporating AI on competition in Sec-

tion 3.4 and underlined how AI affects market barriers, firm exit, productivity

effects and price markups in the economy.

Now, we define equilibrium conditions such that firms select the optimal

input factor allocation depending on Kt, At, Lt and Φt. We derive the equi-

librium factor allocation of firms for and wt, rt, pt and Yt. We know that

consumers demand q [Yt] is determined depending on total production and we

derive the number of active firms, fixed costs and markups in equilibrium.

Firms’ and agents’ optimization is jointly performed in a numerical example

in Section 3.6.

3.5.1 Factor Market Equilibrium

Now, we examine the factor market equilibrium. In an initial step, we derive

the optimal allocation of the rival and excludable input factors labor and

capital—which are traded on a perfectly competitive input factor market—

between firms with heterogeneous AI productivities. Each firm j produces an

industrial good Yj,t using a vector of primary inputs (At, Lj,t,m, Kj,t,m) and all

firms produce using the production function, given by Eq. (3.1), maximize

their expected profit and take the level of aggregate input factor demand and

the level of marginal costs of all active firms as given. We define an input price

vector, such that the prices clear the input factor markets to determine the

factor market equilibrium. In this way, we derive wages, interest rates, firm-

specific AI prices and the distribution of capital and labor amongst all firms
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depending on the number of mt active firms. Recall that in contrast to AI,

which is a non-rival good that can be simultaneously used by multiple firms,

each unit of the labor and capital supply can only be used by a single firm. If

a firm uses AI software for production, the same software can also be used by

another firm. If a firm hires a worker, this worker cannot be employed by a

different firm—the same holds for capital. Recall that total capital endowment

at t = 0 is uniformly distributed amongst all agents in the economy, total labor

supply is given by L and the initial level of AI in the economy is given by A0.

Due to firms’ concave production functions, first-order conditions are necessary

and sufficient for the determination of optimal input factor demands of each

firm. The optimal demand for each input factor Kj,t,m, Lj,t,m and At of each

firm j in period t, with mt active firms, is given by:41

rj,t,m =
∂Yj,t,m
∂Kj,t,m

, wj,t,m =
∂Yj,t,m
∂Lj,t,m

, pj,t,m =
∂Yj,t,m
∂At

. (3.8)

Thus, the marginal costs of the input factors, given by rj,t,m, wj,t,m and pj,t,m,

respectively, are equal to their marginal product.42 Due to the concavity of the

production function, an increasing use of a single input factor in production

leads to an opposite effect on the factor price. The input factor equilibrium

at time t with mt active firms is defined as

(A∗
t , L

∗
j,t,m, K

∗
j,t,m) =

(
(A∗

t , L
∗
1,m, K

∗
1,t,m), ..., (A

∗
t , L

∗
N,m, K

∗
N,t,m)

)
∈ R+,

where market clearing conditions for all j firms are given by

A∗
t ∈ At(wj,t,m, rj,t,m, pj,t,m), L∗

j,t,m ∈ Lj,t,m(wj,t,m, rj,t,m, pj,t,m)
K∗
j,t,m ∈ Kj,t,m(wj,t,m, rj,t,m, pj,t,m),∀j ∈ {1, ..., N}, ∀t.

41For the sake of simplicity, we fix the price of the industrial output to the numeraire.
42If the marginal benefit of a firm j with regard to capital is higher than for another

firm j̃ for all levels of capital, firm j will use the entire capital stock, whereas no capital
is allocated to firm j̃ in equilibrium. This implies a corner solution where firm j̃ is not
active and all capital is allocated to firm j. The same reasoning applies to the marginal
benefit of labor and possible corner solutions. This implies that if firms productivity are
very heterogeneous, it is not necessarily optimal that all firms are active.

85



AI and Competition Equilibrium Definition

The equilibrium production of each firm, depending on the number ofmt active

firms, is defined as

Y ∗
j,t,m = G(A∗

j,t,m, L
∗
j,t,m, K

∗
j,t,m) ∀j ∈ {1, ..., N},∀t.

The equilibrium wage and interest rate which are the same for all firms, are

given by:

r∗t,m = α
K∗
j,t,m

Y ∗
j,t,m

−1
ϵ

w∗
t,m = (1− α)γL∗

j,t,m

−1
ω Y ∗

j,t,m

1
ϵ

[(
γL∗

j,t,m

ω−1
ω + (1− γ)(θj,tA∗

t )
ω−1
ω

) ω
ω−1

]−1
ϵ

(
γL∗

j,t,m

ω−1
ω + (1− γ)(θj,tA∗

t )
ω−1
ω

) 1
ω−1

.

We note that the marginal values of labor and capital depend on the number

of active firms mt among which the input factors have to be distributed. As

described in Section 3.3, all firms are charged their marginal value for AI for

the acquisition of AI software such that the price for AI may differ between

firms. Firms pay a firm-specific price pj,t,m for using the period-specific level

of AI, At. As AI is a non-rival good, all firms can use the entire AI stock

simultaneously. The price for AI in equilibrium is given by:

p∗j,t,m =(1− α)θj,t(1− γ)A
−1
ω
t Y ∗

j,t,m

1
ϵ

[(
γL∗

j,m

ω−1
ω + (1− γ)(θj,tAt)

ω−1
ω

) ω
ω−1

]−1
ϵ

(
γL∗

j,m

ω−1
ω + (1− γ)(θj,tAt)

ω−1
ω

) 1
ω−1

.

The higher the AI productivity θj,t, the higher the marginal product of AI of

a firm j and thus the higher the firm-specific price that is charged for acquir-

ing AI algorithms. The input factor equilibrium determines K∗
j,t,m, L

∗
j,t,m and

A∗
t for each firm, depending on its productivity and the number of compet-

ing firms. These equilibrium values can also be obtained by considering the

approach of a revenue-maximizing social planner who maximizes the economy-

wide revenue from production, which we describe in the Appendix in Section
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7.2.43 Therefore, we propose the following which we prove in the Appendix in

Section 7.2:

Proposition 3.3. With an increasing level of AI and a higher number of

active firms, the effect on the allocation of the rival input factors—capital and

labor—depends on the elasticities of substitution ω and ε between capital, labor

and AI.

With regard to the effect of an increasing level of At on optimal factor

allocation, recall from Eq. (3.1) that the marginal returns to labor, capital

and AI depend on the level of the respective input factors and the elasticity

parameters ω and ϵ, due to the functional form of the production function.

For example, if labor and AI are substitutable, given by ω ≥ 1, firms demand

less labor with an increasing level of AI (ceteris paribus). In the Appendix in

Section 7.2, we discuss conditions for e.g., the elasticity parameters ϵ and ω

and how they affect capital, labor and AI income depending on the level of AI

in more detail. Yet, recall that since AI is non-rival and can be simultaneously

used by all active firms, and as each firm pays its marginal value for the

acquisition of AI, the greatest AI income is obtained if all firms are active on a

competitive market and all firms buy AI algorithms. Moreover, we know due to

the properties of the production function, given by Eq. (3.1), that
∂Yj,t,m
∂At

≥ 0

so that each individual firm produces more as the level of AI increases.

Yet, the effect of the number of active firms on the firm-specific factor

allocation remains unclear. The following example can illustrate this. On the

one hand, more active firms lead to higher total production. On the other

hand, with more active firms mt, each firm can only obtain a lower share of

the input factors labor and capital due to more competition for the rival input

factors. Therefore, the effect of mt on the input factor allocation and, thus

firm-specific production Yj,t,m remains unclear. We discuss this in more detail

in the Appendix in Section 7.2.

3.5.2 Equilibrium for Consumers’ Demand andMarkups

The investments in AI infrastructure are financed by the charge of markups.

This implies that firms need to charge markups such that they can (at least)

43For more insights into the micro-foundation for the demand for industrial goods, see
e.g., Atkeson and Burstein (2008); Jaimovich (2007).
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refinance their expenditures on AI infrastructure in equilibrium where they

make non-negative profits. Moreover, it holds that consumers’ demand is

satisfied such that

N∑
j=1

qt,j =
N∑
j=1

Yj,t(ν̂ + µt,j)
−τ ≥

N∑
j=1

Yj,t(ν̂ +
Fj,t
Yj,t

)−τ . (3.9)

As a result, we can derive a lower bound for the markups charged by every

firm, given by

µj,t ≥

(∑N
j=1 qt,j∑N
j=1 Yj,t

)− 1
τ

− ν̂. (3.10)

This implies that

Fj,t ≤ Yt,j

(∑N
j=1 qt,j∑N
j=1 Yj,t

)− 1
τ

− ν̂

 . (3.11)

In our analysis, we focus on an equilibrium scenario where all firms within

the market opt for the same fixed costs and apply identical markups. It is

important to note that in such a scenario, the greatest equilibrium output level

is achieved when no markups are charged. This is the case in a market scenario

with perfect competition, where firms operate in a manner that maximizes

total output.

3.5.3 Individual Utility

Recall that the economy is populated by infinitely many agents with mass

L. Entrepreneurs and ordinary workers do not only work, but also save and

consume, maximizing the following life-time utility:

Uη =
∞∑
t=0

βtu(cηt , N
η
t ). (3.12)

The individual utility is given by an instantaneous concave utility function

u(cηt ), which depends on the consumption cηt of an agent η in period t. More-

over, it depends on agents’ leisure, given by Nη
t = Lη − Lηt . Each individual
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discounts future consumption with the parameter β. Agents’ utility is given

by

u(cηt , L
η
t ) = log(cηt ) + κ log(Nη

t ),

where parameter κ > 0 gives the weight that each agent attributes to leisure

with regard to overall utility. All agents rent out their labor and capital supply

to firms in all periods. Furthermore, we assume that capital depreciates at

some exogenously given rate δ ∈ (0, 1) such that total capital of all agents has

the following law of motion

Kη
t+1 = (1− δ)Kη

t + sηt , (3.13)

where st are the total savings. We consolidate our demand function, contingent

on consumers’ price elasticity, with the neoclassical framework, acknowledging

that production can be either consumed or accumulated as capital for future

production. This consolidation necessitates that the following condition re-

mains valid at the aggregate level:

Yt = ct +Kt+1 − (1− δ)Kt (3.14)

In contrast to ordinary workers, entrepreneurs receive profits from the sale of

AI algorithms such that they face different budget constraints.44 Therefore,

an agent’s budget constraint in period t depends on the individuals’ skill level

η and the number of active firms in industrial production. Thus, consumption

of agents with skills η and mt active firms at period t is written as follows:

cηt + sηt =
m∑
j=1

[
wt,mL

η
j,t,m + rt,mK

η
j,t,m

]
for η ∈ {W},

cηt + sηt =
m∑
j=1

([
wt,mL

η
j,t,m + rt,mK

η
j,t,m

]
+ pj,t,mAt + µt,mYj,t,m − Fj,t

)
,

for η ∈ {E} ; with K0, L0, A0 given.

44Since individuals will optimally rent out all capital Kt,η = KS
t,η, where Kt,η is the

capital an individual with skill level η has rented out to firms, we will only use Kt,η.
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Whereas ordinary workers with η ∈ {W} only obtain labor and capital income,

entrepreneurs with η ∈ {W} additionally receive all profits from industrial

production and from selling AI algorithms, but pay all fixed costs. We define

st,η,m as the savings made by agents with skills η at time t and mt active

firms. From now on, we assume that the equilibrium conditions are satisfied

in the economy and assess firms’ and consumers’ utility maximization in the

following Section.45

3.6 Optimization Problem

Our analysis involves an two-step optimization problem within a neoclassi-

cal model, where agents in the economy cannot anticipate firm decisions with

regard to their infrastructure investments in AI, and take wages, prices and

interest rates as given. Firms seek to maximize profits by selecting their AI

infrastructure investments (fixed costs). First, firms make their decision with

regard to their AI infrastructure investments. Afterwards, agents must recur-

sively determine their capital, consumption, and labor supply such that we

face a two-stage optimization problem.

Various stakeholding groups in the economy consider different factors when

deciding on firms’ optimal AI infrastructure investments, as these investments

can act as market barriers, affecting the number of active firms, markups, prof-

its, wages, and interest rates. We define the stakeholding group as the set of

agents responsible for determining firms’ optimal AI infrastructure investment

strategy, which additionally affects firms’ AI productivity and AI growth (see

Eq. (3.2)). Three potential stakeholding groups are considered:

1. Entrepreneurs 2. Workers 3. Social Planner

Whereas entrepreneurs and workers select the AI infrastructure investments

that maximize their group-specific total income, the social planner aims at

maximizing total income of all agents. We address the optimization prob-

lem in two steps. First, we solve the static profit maximization problem of

firms, determining the optimal values of AI infrastructure investment of each

45For the sake of simplicity, we drop the notation using q and v for the demand that
depends on the effective price that is affected by the markups and the price elasticity of
demand but only use Yt,j for the realized equilibrium production from now on.
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firm (Fj,t) depending on the stakeholding group. Investments in AI infras-

tructure have productivity effects (see Eq. 3.3), but can also serve as market

barriers (see Eq. 3.6) affecting the number of active firms, markups, profits,

total output and input factor demand. Furthermore, depending on the the AI

infrastructure investments, the growth rate of AI and firm-specific AI produc-

tivity is affected. After determining the optimal AI infrastructure investments

of different stakeholders and deriving firms’ demand for labor, capital and AI,

we subsequently model agents’ decision-making with regard to ct, Kt, and Lt.

In our analysis, we consider an economy where stakeholders do not have

inter-temporal considerations when deciding on firms’ AI infrastructure invest-

ments. Instead, stakeholders solely focus on maximizing their income within

the current period, leading to a myopic optimization. Consequently, stake-

holders do not take into account the indirect impact of AI infrastructure in-

vestments on e.g. the growth rate of AI.46 To find potential equilibria and

determine the preferred market equilibrium for each stakeholding group based

on the level of AI, we employ constrained nonlinear optimization algorithms

(Lagomarsino, 2020). Nonetheless, agents’ decision-making with regard to

capital, consumption and labor is optimized using a recursive inter-temporal

utility maximization where agents take the period-specific prices, wages and

interest rates as given. To sum up, whereas in the first-step, stakeholders

only consider the intra-period effect of AI infrastructure investments on their

income, agents perform a recursive utility maximization (in the usual neoclas-

sical fashion) in the second step.

3.6.1 Initial State

In an initial state at t = 0, all N firms produce with AI productivity θj,t =

0 ∀j ∈ N . Therefore, AI has no effect on production and all firms produce

with the same production function

Yj,0 =
(
αK

ϵ−1
ϵ

j,0 + (1− α) (γLj,t)
ϵ−1
ϵ

) ϵ
ϵ−1

. (3.15)

It is straightforward to see that if the level of AI is zero, At = 0, or if AI has

no positive effect on production, entailing that θj,t = 0, all N firms have the

46We assume that firms cannot predict future prices of input factors or the future level
of AI.
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same productivity and are all active, such that mt = N . Every firm makes the

optimal decision regarding its input factor demand in a competitive setting and

obtains zero profits Πt(θj,t) = 0, such that no firm invest any amount on AI

infrastructure. Therefore, all (symmetric) firms produce with the production

function Yj,0 = G(
∑N
j=1Kj,0

N
,
∑N
j=1 Lj,t

N
) and make zero profits.

3.6.2 Drawing of Firm-specific AI Productivity

At t = 1, each firm draws a firm-specific AI productivity from an AI produc-

tivity distribution θj,t ∼ Φ(θj,t) as explained in Section 3.3. Thus, all firms

have a new AI productivity compared to t = 0. We suppose that each firm

knows both, its own AI productivity and the AI productivity of all other firms.

Recall that if a firm decides to incorporate AI in production, it has to build up

minimum initial infrastructure capacities Dl ≥ 0. Nonetheless, each firm can

decide to invest more in AI infrastructure, namely Fj,t = Fj,t +Dl to increase

its own AI productivity, but to also challenge the market entry of competing

firms with a lower AI productivity, as described in Section 3.4.47

3.6.3 First Step: Firm Optimization

Assume that a firm j invests an amount Fj,t ≥ 0 in AI infrastructure. All other

firms j̃, with j̃ ̸= j can fully observe the AI infrastructure investments of firm

j. After observing Fj,t, a competing firm j̃ can decide how much to invest in

AI infrastructure. We have to distinguish between the following cases:

1: Fj̃,t = 0. A firm j̃ does not invest in AI infrastructure and thus

cannot compete against firm j which is active and thus does not enter

the market.

2: Fj̃,t ∈ (0, Fj,t). A firm j̃ invests to some degree into AI infrastructure,

but no sufficient amount to be able to compete with firm j that invests

Fj,t > Fj̃,t. Although firm j̃ invests in AI infrastructure, it cannot enter

the market.

47In contrast to the approach of Hopenhayn (1992), firms in our model first know their
productivity and can then decide on how much they are willing to invest in fixed costs (in our
case AI infrastructure). In line with the assumption of Antras and Helpman (2004), firms
first observe their productivity level and then decide whether they want to start producing.
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3: Fj̃,t = Fj,t. A firm j̃ invests the same amount into AI infrastructure as

firm j. They compete for input factors and both have a strictly positive

total industrial output.

4: Fj̃,t ∈ (Fj,t,∞). A firm j̃ invests more into AI infrastructure than firm

j. Therefore, firm j cannot compete against firm j̃ and is ousted from

the market due to preceding considerations.

Consider the following example: If the technological frontier—the most pro-

ductive firm with j = 1, where θj,t > θj̃,t spends a sufficient amount Fj,t on AI

infrastructure to be the monopolist, it will be the only producer. Competing

firms j̃ ̸= j (technological laggards) are always less productive than the tech-

nological frontier and can thus only afford to invest Fj̃,t < Fj,t. As investing

Fj̃,t ∈ (0, Fj,t) only leads to negative profits for competing firms, they decide

between not entering the market (Case 1) or competing against the techno-

logical frontier by investing the same amount in AI infrastructure (Case 3).48

Consequently, the investments in AI of firms j̃ are given by Fj̃,t ∈ {0, Fj,t}.
Yet, as technological laggards would make negative profits if they invested

Fj,t, they do not enter the market and the technological frontier is the unique

active firm on the market. We note that with a decreasing amount paid for

infrastructure investments by the technological frontier, more firms can afford

to enter the market.49

Stakeholder: Entrepreneurs

Recall that entrepreneurs obtain a share lE of the total labor and capital

income. Moreover, they receive the entire profits generated by selling AI al-

gorithms as they collectively own the AI company. Furthermore, they benefit

from the entire profits made by firms in industrial production, but have to

bear all fixed costs for installing AI infrastructure. If entrepreneurs are the

stakeholding group, they maximize their income in each period by collectively

deciding on the profit-maximizing AI infrastructure investments of each firm.

48Technological laggards can never afford to invest more than the technological frontier
(Case 4).

49As no other firm is able to pay more on AI infrastructure than the technological frontier,
it suffices to only consider its decision. The decisions of all other firms follow analogously.
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Entrepreneurs’ income is given by

Et,m :=
m∑
j=1

wt,mLEj,t,m + rt,mK
E
j,t,m︸ ︷︷ ︸

(I)

+ pj,t,mAj,t,m︸ ︷︷ ︸
(II)

+µt,mYj,t,m − Fj,t︸ ︷︷ ︸
(III)

 (3.16)

Thus, if entrepreneurs are the stakeholding group, they chose the AI infras-

tructure investments that maximize their income in each period in line with

max
{Fj,t}

Et,m s.t. Fj,t ≤ Yt,j

(∑m
j=1 qt,j∑m
j=1 Yj,t

)− 1
τ

− ν̂

 ,
Aj,t,m = Ât,

m∑
j=1

LEj,t,m ≤ LEt ,
m∑
j=1

KE
j,t,m ≤ KE

t , ∀t.

There are different channels via which the number of active firms and the

level of AI affect the income of entrepreneurs. Referring to (I), the highest

labor and capital income can be obtained if firms operate on a competitive

market where no markups are charged.50 Yet, the effect of a higher level of

AI on the capital and labor income depends on the elasticity of substitution,

given by ϵ and ω and thus remains unclear, but is further discussed in the

Appendix in Section 7.2.51 Moreover, entrepreneurs benefit from the profit

by selling AI algorithms, given by (II), which depends on the level of AI,

the number of firms to which the algorithms are sold and their respective AI

productivity and total production. Recall that total production depends on

the number of active firms, markups and the AI productivity of firms such

that general statements on the dependence of (II) on the level of AI and the

number of active firms are not possible. In addition, the effect of more active

firms (a higher level of AI) on entrepreneurs’ profits (III) remains unclear as

less (more) fixed costs have to be paid, but also lower (higher) markups can

be charged.

For example, in a market with zero markups, entrepreneurs do not earn any

50Linked to Proposition 3.3, we discuss how the number of firms affects total production
and thus the capital and labor income due to the heterogeneous AI productivity across firms
in the Appendix in Section 7.2

51Nonetheless, we see that the higher the share of entrepreneurs in the economy—the
greater lE—the more they benefit from wage and interest payments relative to net profits.
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profits (III), but receive the greatest total wage and capital income (I), and

can sell their algorithms to many firms as total production is high. Conversely,

in a monopoly situation with only one active firm mt = 1, entrepreneurs gain

monopoly revenue but incur high fixed costs to drive all competing firms from

the market and a lower labor and capital income due to a reduced output.

Furthermore, they are restricted to selling the AI algorithms exclusively to

a sole industrial firm (II) with a lower output that has a lower output than

it would have in a competitive setting. Thus, we cannot derive general con-

clusions with regard to the optimal AI infrastructure investments from the

perspective of the entrepreneurs. The reason is that depending on the level of

AI, the different channels (I) − (III) have changing relative importance for

the income stream of the entrepreneurs.

Stakeholder: Workers

A share of lW agents in the economy are ordinary workers who only receive

capital and labor income. Workers’ income is given by

Wt,m :=
m∑
j=1

wt,mLEj,t,m + rt,mK
E
j,t,m︸ ︷︷ ︸

(I)

 . (3.17)

Their income maximization problem when they are the stakeholding group is

analogous to the one of entrepreneurs, as previously explained. As workers only

benefit from labor and capital income (see (I)), they obtain the highest income

if firms operate on a competitive market where no markups are charged. This

is economically intuitive as wage and interest payments are the greatest on a

perfectly competitive market in our model. Thus, workers and entrepreneurs

have different considerations when deciding on the optimal AI infrastructure

investments.

Stakeholder: Social Planner

A benevolent social planner aims at maximizing total income of all agents in

the economy. The social planner chooses the AI infrastructure investments

Fj,t that maximize the total income of all agents, given by It,m, jointly maxi-
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mizing the income of workers and entrepreneurs. Therefore, the social planner

maximizes the following income stream:

It,m :=
m∑
j=1

[(1 + µt,m)Yj,t,m − Fj,t] (3.18)

Again, the income maximization is analogous to the one of workers and en-

trepreneurs. Note that it can be socially optimal for the total income of all

agents that active firms operate on an imperfectly competitive market and

charge markups. In such a case, fewer firms would be active, leading to lower

capital and labor income, but higher profits would be distributed, with the

latter outweighing the former effect. Then, although total income would be

the greatest, there would be inequality between the incomes of workers and

entrepreneurs if no redistribution mechanisms were embraced. Therefore, we

will later show the income inequality depending on the stakeholding group.

3.6.4 Second Step: Individual Optimization

After the determination of the optimal AI infrastructure investments depend-

ing on the stakeholding group and obtaining the input factor allocation, the

wages, interest rates, AI prices, markups, and profits are derived. Agents in

the economy subsequently optimize with regard to their consumption, savings

and endogenous labor supply which then determines the input factor avail-

ability in the next period. Due to income accounting in our economy, income

either has to be consumed or saved, such that on aggregate, it holds that

∑
η

cηt +
∑
η

sηt =
m∑
j=1

[(1 + µj,t,m)Yj,t,m − Fj,t] . (3.19)

Total consumption and saving need to be equal to the total demanded aggre-

gate output in equilibrium, given by
∑m

j=1 Yj,t,m times one plus the possible

markup, given by (1 + µj,t,m) minus the total fixed costs spent on AI infras-

tructure, given by
∑m

j=1 Fj,t.

Agents assume the level of AI to be fixed and given exogenously. Thus,

they do not anticipate its growth dynamics, but assume the value of AI to

be fixed, which we call Ât. The utility maximization problem of agents—if
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we regard a simplified framework with a single group of agents indexed by

parameter η—reads as follows

max
{Kη

t+1,N
η
t }

∞∑
t=0

βtu
(
cηt + (1− δ)Kη

t −K
η
t+1, N

η
t .
)

cηt ≥ 0 Kη
t+1 ≥ 0 Llη ≥ Nη

t ≥ 0 Ât ≥ 0 Kη
0 given .

In the Appendix in Section 7.2, we show the utility optimization framework

in a simplified framework with a single group of agents, including the first-order

condition and the recursive formulation of the problem.52 Based on agents’

decision on their capital, consumption and labor supply in the second step,

the available input factors in the next period for the determination of the

optimal AI infrastructure in the first step of the next period are specified.

Thus, the two steps of our optimization problem are interlaced, where firms’

decisions in the first step affect the equilibrium prices and agents’ decisions in

the second step, which again affect the available inputs for firms’ optimization

in the subsequent period.

To sum up, we note that different stakeholding have different preferences

with regard to the optimal AI infrastructure investments due to different in-

come streams. On the one hand, the profit interest of entrepreneurs can lead to

high AI infrastructure investments enclosing imperfect competition, markups

and reduced output. On the other hand, workers prefer a competitive environ-

ment without markups charged. Given the interlaced optimization problem

and the intricate growth pattern of AI within the economy, it proves diffi-

cult to derive universally applicable insights through algebraic solutions in our

model. As a viable alternative, we use a numerical model quantification to

highlight the primary conclusions drawn from our framework. We addition-

ally show the effect of different stakeholders’ decision on the development of

income inequality and factor income shares.

52We set up the utility maximization problem for a framework with perfect competition
and in a framework with imperfect competition.
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3.7 Numerical Exercise

As described in Section 3.6, we execute a two-step optimization procedure.

First, we conduct firms’ intra-period profit maximization and, subsequently,

agents’ recursive optimization problem of capital, labor and consumption.

We illustrate the optimal AI infrastructure investments depending on three

stakeholding groups: i) Workers, ii) Entrepreneurs and iii) the Social Planner.

Depending on the stakeholding group, we compare the resulting market out-

comes, namely the number of active firms, markups, labor supply and capital

and consumption development. Moreover, we assess the growth rate of AI

and the development of the factor income shares. We can partly motivate our

parameter choice using findings of the literature. In our numerical exercise,

we choose the following parameters, given in Table 3.1. For modelling each

firms’ AI productivity, we are motivated by trade literature (e.g., Helpman

et al. (2004); Perla and Tonetti (2014)) and use a Pareto distribution.53

Class Parameter Choice Literature Literature Calibration

Production α = 0.33 Mankiw et al. (1992); Kydland and Prescott (1982); α = 0.33; 0.36; 0.33

King and Rebelo (1989)

ω = 1.25 Lu (2020); Aghion et al. (2020) ω = 1.2222; 1.011

ϵ ∈ {0.8, 1.25} Klump and Saam (2008); Raurich et al. (2012) ϵ ∈ [0.8, 1.2]; [0.63, 1.58]

γ = 0.9 Lu (2020) 0.76; 0.5

Individuals lEt = 0.15 Lu (2020) lWt = (0.0965, 0.3)

δ = 0.1 King and Rebelo (1989) δ = 0.1

τ = 2.5 Cette and Lopez (2012) τ = 2.42

Pareto Dist. ζ = 1 Melitz and Redding (2013) ζ = 4.25

λ = 1 Melitz and Redding (2013) λ = 1

AI x = 0.9 N.A.

w = 4 N.A.

B = 300 N.A.

ι = 0.1 N.A.

ν = 0.1 N.A.

Table 3.1: Parameters for the Numerical Exercise.

Parameters determining the growth dynamics of AI and the effect of AI

infrastructure investments and better tailored algorithms due to a higher mar-

ket shares cannot be motivated by economic literature. However, inspired

by the analysis of Epoch, a team of researchers investigating and forecast-

ing the development of AI, we refer to the predicted AI growth rate as given

by https://takeoffspeeds.com/ that we aim at rebuilding using an incomplete

53The Pareto distribution is given by ϕ(j) = ζλζ

(N−j+1)ζ+1 , where we set the shape param-

eter ζ and the scale parameter λ. Yet, motivated by Nigai (2017), we use a lower value for
ζ than in Melitz and Redding (2013).
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beta distribution for modelling the growth function of AI. Yet, we choose pa-

rameters determining the growth pattern of AI in line with the forecast of

Epoch. Moreover, the concept of price elasticity has not yet been applied to

(AI) software. Thus, we cannot motivate our chosen price elasticity of AI de-

mand using related literature, but set it to τ = 2.5. We base this value on

findings on the price elasticity of ICT at its gradual introduction in the 1980s

(Cette and Lopez, 2012).54

Moreover, there is no estimate for κ in an AI-based economy which we

set to 0.78.55 Based on our knowledge and the statement of Lu (2020), there

is no empirical data on the elasticity of substitution between human labor

and AI and the factor share of AI, yet. Therefore, we infer the values for our

numerical exercise based on the literature on automation, machines, robots and

labor. For our default analysis, we set ϵ = 1.18 and ω = 1.25 as we assume

substitutability between labor and AI, and capital and labor. In the Appendix

in Section 7.2, we consider complementarity between labor and capital and the

effect on the factor income shares. We select the following starting values for

capital, labor and AI in the economy: K0 = 50, L0 = 50 and A0 = 2. Moreover,

we observe the economy for T = 35 periods where AI grows endogenously via

its self-learning features as described in Eq. (3.2) and assume that a maximum

of N = 50 firms can operate in industrial production.

In Figure 3.2, we depict the optimal AI infrastructure investments depend-

ing on the stakeholder and the development of the AI productivity over time.

We note that in particular if entrepreneurs are the stakeholding group, there

are high investments in AI infrastructure to foster AI productivity growth and

to maximize firms’ profits.56 The reason is that entrepreneurs aim at investing

54Although we expect some gradual integration of AI into economic processes, we do not
assume a time-variant price elasticity τ .

55We use an incomplete beta distribution for modelling the growth function of AI, given
by b(·), using x = 0.5 and w = 4. The incomplete beta function is defined as :

Ix(Yt, w) =
1

B(Yt, w)

∫ x

0

hYt−1(1− h)w−1dh

where we use the beta function B(Yt, w)

B(Yt, w) =

∫ 1

0

hYt−1(1− h)w−1dh =
Γ(Yt)Γ(w)

Γ(Yt + w)

which is based on the gamma function Γ(Yt) =
∫∞
0
hYt−1e−hdh.

56This trend persists even though agents in the economy do not consider the potential
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(a) Infra. Investments. (b) AI Productivity.

Figure 3.2: Development of AI Infrastructure Investments and AI Productivity
Depending on the Stakeholder.

in AI infrastructure, not only to increase firms’ productivity via Eq. (3.3),

but to hamper competitors’ market entry via Eq. (3.6) for obtaining larger

profits. In contrast, workers solely aim at maximizing their capital and labor

income, which is the greatest in a perfectly competitive environment without

markups, such that there are no AI infrastructure investments going beyond

the necessary investments Dl for the installation of AI in production.

Moreover, we note that there is a persistent increase in the average AI

productivity—irrespective of the stakeholding group. This phenomenon stems

from the advantageous position held by large firms, as AI algorithms are better

tailored to their production, leading to significant increases in their AI produc-

tivity.57 Increased market shares, in a reciprocal fashion, enable the continual

fine-tuning of AI algorithms to better suit the unique needs of larger firms,

thereby facilitating ongoing enhancements of their AI productivity. The social

planner, taking into account the income of entrepreneurs and workers, chooses

AI infrastructure investments that encompass a growth rate of AI productivity

positioned between that of entrepreneurs and workers.

We note that the necessary AI infrastructure investments (fixed costs) that

influence of increased infrastructure investments on firms’ productivity due to their static
and myopic profit considerations.

57Two opposing effects influence the growth of AI: AI can be improved by being applied
to more productive firms or by being applied to more firms. Determining which effect
dominates is challenging and cannot be generalized.
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firms need to incur to oust competing firms from the market decrease over time.

The reason is that large firms have a persistently-growing AI productivity

making market entry of less productive firms increasingly difficult anyway.

Firms with a low productivity cannot catch up to the productive firms as they

invest less in AI infrastructure and algorithms are decreasingly tailored to their

production, enhancing the increase in market concentration. We interpret

this as an indicator that the self-learning feature of AI and the tailoring of

algorithms to firm-specific needs can lead to monopolisation.

(a) Total Production. (b) AI Growth Rate.

Figure 3.3: Development of Total Production and AI Growth Depending on
the Stakeholder.

In Figure 3.3, we depict the development of the growth rate of AI and total

production in our economy. Regardless of the decisive stakeholding group, we

observe a persistent increase in total production due to the increasing level of

AI and the higher AI productivity of firms. This finding highlights the im-

portance of AI as a driver for growth. Yet, we observe that total production

is initially higher if the social planner or workers decide on the optimal AI

infrastructure investments. The reason is that entrepreneurs aim at charging

markups to refinance their investments in AI infrastructure leading to reduced

total production and an output gap. Yet, as entrepreneurs invest in AI in-

frastructure which enhances firms’ productivity, we note that total production

starts being the largest in case entrepreneurs are the stakeholding group after

around 10 periods. Moreover, we note that the AI growth rate is especially

high in the first periods due to entrepreneurs’ high investments in AI infras-

tructure, as depicted in Figure 3.3b). In the long run, the growth rate declines
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over time for all stakeholding groups. After reaching its upper bound in the

long run, the AI growth rate becomes zero due to the assumption of an upper

bound for AI due to hardware restrictions, as explained in Eq. (3.2).

In addition, we illustrate the development of the market concentration with

a rising level of AI and depending on the stakeholding group in Figure 3.4 using

the Herfindahl-Hirschman Index (HHI).58

(a) HHI. (b) Number of Active Firms.

Figure 3.4: Development of Market Concentration Depending on the Stake-
holder.

For the sake of simplicity, we set the parameters to assess a scenario, where

entrepreneurs favor an imperfectly competitive market with a single operating

firms such that they benefit from monopoly profits. However, in scenarios

where workers or the social planner act as the stakeholding group, we still

observe an increase in market concentration, driven by the rising productiv-

ity disparity between active firms.59 The reason is that especially large and

productive firms have an increased market share due to investments in AI

infrastructure and the tailoring of AI algorithms that especially benefit large

firms such that there is a decline in the number of active firms. We observe

that if the social planner selects the optimal AI infrastructure investments,

58We determine the HHI using the following equation, where xi represents the output of

a single firm i, and H =
∑N

i=1

(
xi∑N

j=1 xj

)2

. The value of HHI thus obtained is multiplied

by 10000 and thus takes values between 10000
N ≤ H ≤ 10000.

59In the numerical example at hand, as the share of entrepreneurs in the economy is
relatively small, the social planner solution mainly corresponds with the market outcome
that maximizes workers’ income.
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there is a decline in the number of active firms coming in hand with a rising

market concentration. However, this increase in concentration is even more

pronounced if workers are the stakeholding group such that a scenario even-

tuates where the HHI reaches a level of around 4000, with only 4 firms being

active in the long-run.60

3.7.1 Markups and Output

In Figure 3.5b), we depict how the share of total output demanded is negatively

correlated with the markups charged by active firms, as defined in Eq. 3.4.61

Recall that markups can only be charged when there is a reduction in output,

as defined by the demand equation (Eq. 3.4). This implies that higher markups

lead to an increase in the output gap.

(a) Markup Development.
(b) Share of Demanded Output
with τ = 2.5.

Figure 3.5: Markup Development and Share of Demanded Output.

Consequently, firms that charge markups on their products reduce their

overall output, resulting in a decreased use of capital and labor in industrial

production. We note that if workers are the stakeholding group, no markups

60We set the parameters in our numerical exercise such that the HHI at the first period
is around 1500, which approximates the value for the HHI in the ICT sector in Germany in
2020 (von Maydell and Menzel, 2023).

61We additionally emphasize that the magnitude of markups imposed by firms is inversely
related with consumer price elasticity. When consumers are highly responsive to price
changes and have a greater price sensitivity, given by τ , firms find themselves with limited
pricing power.
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are charged, such that the highest possible capital and labor income is paid

out. Whereas the markups in the social planner’s solution remain at a low,

but nonzero value, we observe decreasing markups if entrepreneurs decide on

investing in AI infrastructure, as they charge markups for refinancing their

costs. We note that if entrepreneurs are the stakeholding group, markups are

charged especially in the first periods as firms with high AI productivity in-

vest in infrastructure to oust competing firms from the market and to increase

their profits and market shares. Subsequently, due to the self- and firm-specific

learning of AI, investments in AI infrastructure increasingly decline coming in

hand with lower markups. The reason is that the possibility to obtain larger AI

profits by having a high total output and the possibility to sell many AI algo-

rithms to industrial firms (Channel (II) in Eq. (3.17)) increasingly outweighs

the profit surplus by reducing output and charging markups (Channel (III) in

Eq. (3.17)) with a rising level of AI. In the long-run, even if entrepreneurs are

the stakeholders, only low markups are charged as a single firm has reached

such a high productivity that a scenario with low markups and a low output

gap leads to the highest income for entrepreneurs. Therefore, we note that the

markups converge to a positive but non-zero value in the social planner’s and

entrepreneur’s solution in the long-run.

In summary, our findings reveal that when entrepreneurs are the stakehold-

ing group, they invest in AI infrastructure—in particular in the first periods

after the introduction of AI—leading to larger productivity increases, in par-

ticular of firms with high AI productivity. This is accompanied by higher

markups for the refinancing of the investments, albeit at the expense of lower

total production. Increased AI infrastructure investments lead to enhanced AI

productivity while additionally acting as market barriers for firms with a low

AI productivity such that we observe high markups and high investments in AI

infrastructure, particular at the beginning of the period under investigation if

entrepreneurs are the stakeholders. We emphasize that due to the learning of

AI algorithms that are increasingly tailored to the needs of large and produc-

tive firms that can afford to invest in AI infrastructure, it becomes increasingly

difficult for small firms to compete against these large firms. Therefore, we

note a growing market concentration due to the self-learning and firm-specific

tailoring of AI algorithms that is especially pronounced if entrepreneurs are

the stakeholding group, but can still be observed to a reduced extent if workers

or the social planner are the stakeholder. Yet, we emphasize that AI is a driver
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for economic growth, productivity increases and total production, irrespective

of the stakeholding group.

3.7.2 Income Divergence

Now, we aim at illustrating how the income of workers and entrepreneurs and

in particular the divergence between the income of the two different groups is

affected by the stakeholder deciding on the AI infrastructure investments. The

income of workers—who solely benefit from renting out their labor and capi-

tal to firms—is directly linked to total production, which, in turn, is affected

by the number of active firms and the markups charged. Following our the-

oretical considerations, it is optimal for workers to receive competitive wages

and interest rates in a scenario where no markups are charged, irrespective

of the level of AI. Recall, from Eq. (3.17), that entrepreneurs also generate

income by renting out their capital and labor. Additionally, they obtain the

entire profits from the AI-developing company and from industrial production.

However, they are also responsible for covering the entire fixed costs associated

with AI infrastructure investments.

A benevolent social planner aims at choosing the AI infrastructure invest-

ments that maximize the total income of all agents in the economy which is a

linear combination of the income of entrepreneurs and the income of workers.62

(a) Stakeholder:
Workers.

(b) Stakeholder:
Entrepreneurs.

(c) Stakeholder:
Social Planner.

Figure 3.6: Income Inequality Depending on the Stakeholding Group.

62Nonetheless, the social planner does not take into account potential income divergence
between workers and entrepreneurs as only total income when determining the optimal
infrastructure investments. The reason is that the social planner only regards the effect of
income on the utility of agents when selecting firms’ optimal AI infrastructure investments
in their intra-temporal profit maximization and cannot infer agents’ resulting utility from
their inter-temporal utility maximization.
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We depict how the capital and consumption of entrepreneurs relative to

that of workers develops in the economy over time in Figure 3.6. We differ-

entiate between the scenarios if i) Workers, ii) Entrepreneurs or the iii) Social

Planner are the stakeholding group deciding on the optimal AI infrastructure

investments. In particular in the first 20 periods when there are high markups

charged, we observe large differences between the capital and consumption be-

tween entrepreneurs and workers. Yet, also in the long run, income inequality

is more pronounced in scenario ii) than in scenario i) or iii). Therefore, we

contend that the rise of AI contributes to growing income inequality between

workers and entrepreneurs, in particular in a scenario when entrepreneurs fa-

vor an imperfectly competitive market with high markups and reduced com-

petition. Our findings suggest that the primary driver of this income gap is

not solely the fact that only entrepreneurs benefit from selling AI algorithms.

Rather, it is the preference of entrepreneurs for firms to operate on imperfectly

competitive markets for charging markups and obtaining high profits, which

amplifies income disparity.

3.7.3 Factor Income Shares

Now, we compare the evolution of the factor income shares depending on the

stakeholding group. We examine the development of the factor income shares

in Figure 3.7 for specific elasticity parameters, namely ε = 1.18, ω = 1.25

and the additional parameters defined in Table 3.1. Note that the elasticities

between labor and AI, given by ω, and between capital and labor and AI,

given by ε are decisive for the development of the factor income shares. We

argue that it is most reasonable that ε > 1 and ω > 1 due to our expectation

that AI will be able to substitute for labor.63

As we suppose that ω > 1, which implies that AI is a substitute for labor,

we observe a decreasing labor share and an increasing AI share in both scenar-

ios, irrespective whether workers or entrepreneurs are the stakeholding group.64

63Motivated by Aghion et al. (2020), stating that the elasticity of industry-level employ-
ment to industry-level automation is 1.011, we assume that the elasticity of substitution
between labor and AI is given by ω > 1. Furthermore, Karabarbounis and Neiman (2014)
argue that the elasticity of substitution between labor and capital is ε = 1.25.

64If we assumed e.g. a larger substitutability between labor and AI, the decline of the
labor share would be attenuated. The same reasoning holds for changes in the elasticity
between labor and capital.

106



Numerical Exercise AI and Competition

(a) Stakeholder:
Entrepreneurs

(b) Stakeholder:
Workers.

Figure 3.7: Development of the Factor Income Shares with ϵ = 1.18 and
ω = 1.25.

However, we note that the development of the factor income shares strongly

depends on the stakeholding group. Whereas the labor share decreases from

63% to 51% in an environment under perfect competition if workers are the

stakeholder, the labor share would reach a level of only 55% 35 periods af-

ter the introduction of AI if entrepreneurs are the stakeholders, but reaches a

temporary minimum of around 40%. After the introduction of AI on a market

with imperfect competition, we note that the declining labor share is accom-

panied with an increasing profit share that only benefits entrepreneurs. The

reason is that an increasing share of total income would be attributed to the

profit payments due to markups on the output price. Yet, after 11 periods the

profit share declines again as the markups decrease, leading to lower profits.

However, there is a higher capital share on the market with imperfect compe-

tition than on the market with perfect competition after 35 periods. For the

sake of completeness, we additionally illustrate the development of the factor

income shares if we assumed complementarity between capital and labor, given

by ϵ = 0.85 in the Appendix in Section 7.2.

In our model, the number of active firms and the total supplied output

affect the demand for the input factors labor, capital and AI. Moreover, in

our framework with a labor-leisure trade-off, we observe that the labor supply

depends on the level of AI, i.e., with a rising level of AI, all agents adapt

their labor supply depending on the elasticity of substitution between the
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input factors and their income stream. Therefore, we illustrate the share of

working agents depending on the stakeholding group in Figure 3.8, based on

our baseline parameter values provided in Table 3.1.

(a) Stakeholder:
Workers.

(b) Stakeholder:
Entrepreneurs.

(c) Stakeholder:
Social Planner.

Figure 3.8: Share of Employed Agents Depending on Stakeholder.

We note that entrepreneurs reduce their labor supply over time irrespective

of the stakeholding group. If workers are the stakeholding group, we note that

workers increase their labor supply over time, whereas entrepreneurs decrease

their labor supply as they increasingly benefit from AI and profit income that

they obtain without labor effort. Irrespective of the stakeholder, it holds that

entrepreneurs reduce their labor supply more than workers as they additionally

benefit from firms’ profits which makes them less dependant on the labor

income. If entrepreneurs are the stakeholding group, we observe a lower level

of employed workers in the long run. The observed phenomenon is not only

caused by agents reducing their labor supply, as we might see if workers or

the social planner are the stakeholder, but mainly due to a decreased labor

demand. This is especially the case in the first 15 periods, where a lower total

output is produced and markups are charged. Therefore, as these firms that

charge markups and aim at achieving greater profits, active firms demand

fewer input factors and reduce their labor demand such that not the labor

supply but the labor demand determines the lower bound for the labor market

equilibrium. However, we again observe that entrepreneurs reduce their labor

supply to a larger extent than workers, also in the long-run. If the social

planner is the stakeholding group, we still notice that entrepreneurs reduce

their labor supply over time, but workers first increase and then decrease their

labor supply.

As empirical research on the elasticities of substitution between labor, cap-
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ital, and AI is limited, we are unable to reach a definitive conclusion regarding

the impact of AI on factor income shares. However, regardless of the elastic-

ities, we note that if entrepreneurs are the stakeholding group, there is a rise

in imperfect competition coming in hand with the rise of AI and an increasing

profit share particularly benefiting entrepreneurs. Moreover, entrepreneurs in-

creasingly reduce their labor supply as they can benefit from non-human work

and are the only group that benefits from AI profits. As a result, we observe

a widening income gap between entrepreneurs and workers in particular on

markets with AI-induced imperfect competition.

3.8 Policy Interventions

Comparing the equilibrium allocation in an economy where entrepreneurs are

the stakeholders with the allocation preferred by a social planner, we observe

that fewer firms are active, charge higher markups, (initially) produce less than

the social optimum, and demand a smaller amount of labor than in the social

optimum. Moreover, in particular on an imperfectly competitive market, due

to the profit distribution solely to entrepreneurs, there is an increasing diver-

gence between workers’ and entrepreneurs’ capital and consumption, enclosing

increasing inequality. The group of entrepreneurs has a shared interest in col-

luding to intentionally set the investments in AI infrastructure at a higher

level than desired by the social planner. This collaborative effort aims to cre-

ate an environment of imperfect competition in industrial production, with

the ultimate goal of maximizing entrepreneurs’ income.

We aim at exploring potential mechanisms that help promoting the de-

velopment of AI as a driver of growth but prevent the rise of an increasingly

unequal society in an AI-based economy. Thus, we discuss the effect of a

profit tax, new data sharing standards and a modernization of competition

and merger legislation. The main political difficulty is to not stifle the invest-

ments of entrepreneurs in AI infrastructure that lead to high growth in AI

productivity and total output accompanied by rises in market concentration

and markups, but to also mitigate growing income inequality.
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3.8.1 Profit Tax

Our model highlights that a social planner focuses solely on maximizing the

total income of all individuals in the economy fails to consider the growing

disparity in income distribution. By exclusively prioritizing total income, this

approach overlooks the widening gap between the income of entrepreneurs and

regular workers. Consequently, we underscore the importance of implementing

re-distributive taxes to curb the exacerbation of income inequality resulting

from the rise of AI. For instance, to counterbalance this trend, wage income

could receive preferential treatment compared to income from capital and AI.

This encloses that profits which are solely distributed to entrepreneurs, should

be subject to higher tax rates than human-earned wage income. Similarly,

Faulhaber (2019) highlights the necessity to modernize digital taxation to tar-

get multinational Tech companies and to establish an effective international

tax system, e.g., using a minimum tax to guarantee international competition.

Maintaining a competitive environment for broadly sharing technological rents

(Ernst et al., 2019) could prevent firms from reaching market dominance, which

may render a fair and socially-beneficial economic integration of AI difficult.

One viable strategy for reducing income inequality involves the introduction

of a profit tax for entrepreneurs. Through the imposition of a tax on en-

trepreneurs’ profits, workers can also participate in the benefits arising from

the integration of AI. By introducing a profit tax ν ∈ (0, 1) that is deducted

by the entrepreneurs and re-distributed to the workers, the budget constraints

of the agents would be rewritten in the following way:

cWt + sWt =
m∑
j=1

[
wt,mL

W
j,t,m + rt,mK

W
j,t,m

]
+ νµt,mYj,t,m,

cEt + sEt =
m∑
j=1

([
wt,mL

E
j,t,m + rt,mK

E
j,t,m

]
+ pj,t,mAt + (1− ν)µt,mYj,t,m − Fj,t

)
.

In this way, the interest of entrepreneurs to invest in AI infrastructure such

that firms operate under imperfect competition would decrease. The reason

is that they would benefit less from profits as a share ν would be deducted.

We note in our numerical exercise that a profit tax of ν = 0.498 would be

necessary to encourage entrepreneurs to invest in AI infrastructure in a way
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such that the economy coincides with the social planner’s optimum.

3.8.2 Data Sharing and Intellectual Property Rights

Haskel and Westlake (2017) state that due to the transition to an intangible

economy, new institutional foundations have to be defined to undermine the

lobbying in intangible-intensive industries and to foster market competition.

The first steps in this direction have been taken with the Digital Markets

Act or AI Act in the European Union and comparable proposals in the United

States, such as the American Choice and Innovation Online Act. Governments

should establish policies that require data-rich companies to share certain types

of data with competitors or third parties under specific conditions. These

policies should strike a balance between promoting innovation and protecting

privacy.

Governments should evaluate existing patent laws and consider reforms

that explicitly address AI-generated inventions. This might involve revisiting

the criteria for patentability and redefining concepts like inventorship, own-

ership, and disclosure requirements to better accommodate non-human labor.

Collective ownership or public trusts for the generation of AI could ensure

broader access and promote data sharing while still incentivizing innovation.

Therefore, an avenue for future research that goes beyond this project might

be to not only analyze market barriers due to investments in AI infrastructure,

but to discuss the effect of the duration of patents, data sharing and knowledge

spillovers on AI development and on income inequality.

3.8.3 Competition and Merger Law

Income inequality occurs primarily when firms are able to collude such that

the AI infrastructure expenditures are chosen that maximise entrepreneurs’ in-

come. Brynjolfsson (2022) denotes the development that technological change

through AI can disproportionately benefit or harm some groups, even if it is

beneficial on average, as “Turing Trap” and speaks in favor of reaping the

unprecedented benefits of AI by widely redistributing its economic profits.

Thus, we emphasize that workers need to be restored as “stakeholders in col-

lective bargaining and corporate decision-making” (Autor et al., 2020b) so

that firms increasingly strive for the interests of the entire workforce instead

of solely maximising the profits of the firm-owning entrepreneurs. There is
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a vicious circle that firms with large market shares can increasingly invest in

lobbying to create legislation that enables them to even augment their market

power (Eeckhout, 2021). With a rising level of AI, we expect that techno-

logical frontiers have increasing technological and political power. Yet, the

extreme outcome in our numerical exercise that the technological frontier is

powerful enough to oust all firms from the market has to be interpreted with

caution. Nonetheless, potential collusion or cartel agreements for building up

large market barriers of the most productive firms can be thwarted by a benev-

olent and neutral market-observing institution. In particular, there is a need

for modernization of competition and anti-trust policies to ensure that compa-

nies entering digital markets are not impeded by high market barriers, in order

to maintain competitiveness and firms’ innovative potential. Gersbach (2017)

proposes a tightening of competition law with regard to the tech-industry,

ranging from ex-ante regulation of platforms facilitating contestability and

data sharing requirements up to the break-up of Tech Giants. Authorities

such as the Monopolkommission (2022) already emphasize the importance of

limiting the market power that arises in the course of digitalization. We thus

point towards governmental interventions for the promotion of competition in

industries most susceptible to AI, a redistribution of profits to impede a rise

in income inequality in digital economies and a modernization of competition

and anti-trust policies.

3.9 Discussion

In our model, we only regard the effects that AI may substitute for labor

leading to reduced employment. Yet, we disregard that with a rising level

of AI, firms may have better possibilities to employ more input factors for

production, as AI enables better coordination, combination and more efficient

use of labor and capital. For example, Black and van Esch (2020) state that

AI has affected and will further improve recruiting efficiency, which will give

firms the possibility to “more effectively identify, attract, screen, assess, in-

terview, and coordinate with job candidates”, whereas Ernst et al. (2019)

hint at the improved matching process of workers with a rising level of AI.

More general, Dogan and Birant (2021) provide a literature review on how

machine learning applications could improve processes at the production line,

human resource organisation or machine and material monitoring due to the
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increasing availability of manufacturing data. Li et al. (2017) argue that an

integrated application of AI in the area of intelligent manufacturing may affect

firms’ production capacity.

In general, firm-specific investments in AI infrastructure can be interpreted

as Research and Development (R&D) expenditures that may improve firms’

AI productivity θj,t or may allow firms to produce goods with higher qualities

(Aghion et al., 2019). On the one hand, if the technological frontier invested in

R&D to expand its productivity advantages, it could easier oust competitors

with inferior productivity from the market. In particular, this could be the

case if competition policy is weakened (Haskel and Westlake, 2017), such that

productive and advantaged firms can remain in powerful market positions.

This is the channel that we particularly highlight in our model. Haskel and

Westlake (2017) state that productivity differences between firms have risen,

in particular in industries where firms employ intangible assets in production.

On the other hand, if technological laggards can improve their AI productivity

relative to the technological frontier, they may catch up to the technological

frontier, leading to increased competition. For example, the European Fund

for Strategic Investment aims at supporting start-ups and SMEs to strengthen

their competitiveness via the AI/Blockchain Investment Support Programme

(European Commission, 2021a). In our model, especially large firms persis-

tently increase their AI productivity. We do not allow for leap-frogging in

the model and market entry of firms that can catch up to the technological

frontier. Therefore, it might be worth investigating how the catching up of

technological laggards in digital economies might be affected by the rise of AI.

Another shortcoming of our model is that imperfect competition due to less

active firms encloses a higher average productivity of active firms. Nonetheless,

Brynjolfsson et al. (2017) state that the average productivity has not improved

noticeably in the last decades and our conceptual model has to be interpreted

with caution. It is left aside by our model that reduced competitive pressure

can also lead to negative incentives in terms of innovation activities, leading

to lower productivity.

Furthermore, we assume homogeneous markups and do not consider po-

tential composition or reallocation channels (Markiewicz and Silvestrini, 2021)

that may enclose heterogeneous markups. Yet, it can be argued that less pro-

ductive firms would need to set higher markups than highly productive firms

to cover their expenditure for financing AI infrastructure. We disregard that
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larger firms might be able to choose higher markups, which is the case e.g.,

using a Klenow-Willis specification as in Edmond et al. (2018). For instance,

heterogeneous markups can be obtained if we assumed a framework with price

competition, where firms’ markup is a decreasing function of the firm’s market

share Atkeson and Burstein (2008).

A stable relationship between the labor and capital share in production

is a main characteristic of CES models, which is one of Kaldor’s facts about

economic growth (Kaldor, 1961). Nonetheless, there is empirical evidence

that the assumption of a constant elasticity ϵ between capital K and labor L

cannot be taken for granted, especially in advanced economies. For example,

Piketty and Zucman (2015) provide historical evidence that the elasticity of

substitution ϵ has been increasing over the last centuries. The validity of

studies such as Karabarbounis and Neiman (2014) or Acemoglu and Restrepo

(2020) analyzing LIS dynamics heavily depends on the elasticity of substitution

between capital and labor. In our model, the elasticity of substitution between

AI, capital and labor is pivotal for the long-term development of the factor

income shares. An appropriate way to generalize our framework might be

by incorporating a variable elasticity of substitution (VES) model with time-

variant factor income shares to be able to address the question of how a time-

variant elasticity of substitution between capital, labor and AI affects the

factor income shares in an economy with a rising level of AI. Furthermore, more

empirical research should be conducted to determine the elasticity between AI

and labor.

In our model, the number of firms is endogenously defined by the invest-

ments in AI infrastructure in the first step of our optimization procedure.

Moreover, the number of active firms affects the growth rate of AI. Thus, it

might be necessary to model the number of firms as a state variable in an

inter-temporal analysis when modelling the decisions of the different stake-

holding groups. For the sake of computational tractability, we only solve an

intra-temporal optimization problem in the first step as we assume that stake-

holders in the economy are myopic. Yet, if entrepreneurs had inter-temporal

considerations, they would anticipate the effect of a lower number of active

firms and a lower total industrial output on the growth rate of AI. Indeed, an

inter-temporal analysis with idiosyncratic exit, entry and productivity shocks

could yield new insights on firm dynamics in AI-intensive economies but would

make the analysis of endogenously determined optimal AI infrastructure in-
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vestments more challenging. Moreover, it still remains hard to forecast how

the future growth trajectory of AI will look like. Thus, further models and

experimentation are needed to optimally model the growth pattern of AI in a

straightforward and tractable fashion.

3.10 Conclusion

We model the effects of the incorporation of AI in industrial production on

firm competition. The new feature of AI is that it learns by application—in

contrast to existing automation and robotization technologies. Therefore, we

define AI as a type of self-learning technology that accumulates over time and

can develop autonomously due to its self-learning characteristics. Industrial

firms pay variable costs for the acquisition of AI algorithms and invest in AI

infrastructure to be able to integrate AI into production.

While investments in AI infrastructure foster the continuous improvement

of self-learning AI algorithms, especially trained and tailored for the produc-

tion of firms with a large market share, they are also the foundation for in-

creasing AI productivity, amplified market concentration, high markups and

high profit shares. Depending on whether entrepreneurs, ordinary workers,

or a benevolent social planner constitute the stakeholding group determin-

ing optimal AI infrastructure investments for industrial firms, we examine the

evolving economic growth trajectory with a rising level of AI.

We emphasize the findings of Autor et al. (2020b) that rising market dom-

inance accelerates the decline in the labor share that is especially pronounced

on imperfectly competitive markets if AI serves as a substitute for labor. More-

over, we show how the rise of AI leads to increasing income inequality between

workers and entrepreneurs. Hence, we discuss potential instruments like profit

taxes, modernized competition and merger laws, or new data sharing stan-

dards for preventing the rise of an increasingly unequal society in an AI-based

economy.
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Chapter 4

AI and Education: Tilting the

Race Between Humans and

AI—The Role of Education and

Unemployment Policy∗

Abstract

We assess the role of education in shaping economic growth, income inequal-

ity, and unemployment, particularly in the context of the evolving impact of

Artificial Intelligence (AI). We set up a multi-sector and task-based growth

model with overlapping generations in which AI has self-learning characteris-

tics such that it learns by being applied, tested, and trained in production.

We model how AI integration starts slowly, gradually improves, and eventually

brings about significant changes in production. As AI adoption in industrial

production intensifies, we highlight the importance of education for mitigating

AI-induced automation risk and income inequality. Moreover, we assess the ef-

fectiveness of re-distributive measures targeting education and unemployment.

Our results reveal how human specialization in certain occupation can reduce

the risk of AI-induced automation and income inequality.

∗This project is joint work with John Firth. We thank Hans Gersbach, David Hémous,
Maya Eden and Eric Donald for valuable comments. We also thank seminar participants at
ETH Zürich and GPI Oxford for their comments. Research support was in parts provided
by the Oxford Global Priorities Fellowship.
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4.1 Introduction

There is ongoing discussion about the vulnerability of individuals with nar-

row skill sets or narrow technical training to being completely replaced by

AI-induced automation. The debate continues to grow concerning whether AI

will render human labor increasingly obsolete (Acemoglu, 2021) or pose an ex-

istential risk to civilization (Bostrom, 2019). While many new tasks and entire

occupations have emerged since 1940 (Autor et al., 2022), recent advancements

in AI technology, such as ChatGPT, have reignited the debate on the extent

to which AI can replace human tasks in the future (Felten et al., 2018). We

aim to examine how AI, often interpreted as a ’general-purpose technology’

(Eeckhout, 2021; Cockburn et al., 2019), has the potential to replace human

beings and which mechanisms can be introduced to preserve income equality

and employment despite the increasing economic importance of AI.

We particularly examine how education and human task specialization af-

fect AI-induced automation risk. Unlike previous automation technologies, AI

possesses the ability to autonomously improve itself (Gersbach et al., 2022)

through application, leading to new challenges for the labor market. Jones

(2023) emphasizes the potential of AI to foster innovation but also highlights

the existential risks it poses, such as human extinction. Despite the potential

for AI to surpass human capabilities in various tasks, we do not address the

deployment of misaligned AIs undermining human control over the world (Ngo

et al., 2023), but mainly highlight how investment in education can contribute

to economic growth and mitigate inequality and automation risk in an econ-

omy with AI. We suppose that AI will grow rapidly at first and then slow

down as it develops. To parameterize this, we use the incomplete beta func-

tion, which shows increasing positive curvature (convexity) initially, followed

by decreasing curvature (concavity) to model its growth trajectories which we

motivate due to the findings of Epoch—a research group forecasting the de-

velopment of AI. The primary questions we aim to answer with this project

are: When do agents face increased unemployment risk due to the rise in AI?

How can task-specific education enable agents to remain employed? Is there

a trade-off between inequality, education, and AI development and how can

unemployment and education policies affect the economy? Is there a notion of

increased AI-induced automation if humans do not invest in education? Which

mechanisms can reduce AI-induced automation risk and income inequality?
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We set up a model where tasks are ranked by their risk of replaceability

by AI. Nonetheless, we do not put any restrictions on the type of tasks which

might have a higher AI-induced automation risk, e.g. manual, creative, (non)-

routine, cognitive or abstract tasks. Education enables individuals to engage

in higher-ranked tasks that require a broader range of skills and are associ-

ated with a reduced risk of AI replacement. Drawing inspiration from Autor

et al. (2022), who focus on endogenous task augmentation and automation, we

explore how AI may alter the structure of employment and production. Differ-

ing from the perspectives presented in Aghion et al. (2017), Zeira (1998), and

Acemoglu and Restrepo (2018b), we do not presuppose the existence of “es-

sential” tasks such that labor does not function as the limiting factor. Instead,

we model AI as a novel and exponentially advancing form of automation, ca-

pable of surpassing human labor across all tasks. Firms can choose between a

labor-intensive, an AI-intensive, or a labor and AI complementary production

regime. We analyse the production regime that maximizes output depending

on the level of AI, as the AI-intensive regime gains a relative productivity

advantage over labor-intensive and complementary regimes over time. We as-

sume overlapping generations to model the decision of agents with regard to

consumption, savings and education investments. We examine how the costs

of education affect the risk of AI-induced unemployment. Our model defines

the long-run steady-state dynamics of the economy reaching AI-induced full

automation. Yet, the primary goal of this project is to illustrate potential

trajectories of the interplay between AI, education, and inequality through

comparative statics analysis and numerical quantifications in the preceding

transitory periods. We aim at illustrating how education can play a pivotal

role in prolonging a scenario without AI-induced full automation and fostering

income equality.

We find that investments in education and resulting human specializa-

tion in specific tasks can mitigate AI-induced automation risks and income

inequality. This insight that does not result from the essentiality of specific

tasks but arises as an endogenous finding which results from the educational

cost function. Depending on the cost of education, we note a concentration of

the labor market in certain sectors, which helps mitigating the risk of full au-

tomation and significantly reduces income inequality. Finally, we assess how

a combination of different policy interventions—in particular re-distributing

the education costs and providing unemployment benefits—that might atten-
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uate income inequality and reduce AI-induced automation risk. We observe a

trade-off between delaying full AI-induced automation by re-distributing ed-

ucational costs to disburden low-income individuals and addressing income

inequality. Furthermore, we scrutinize an unemployment policy that provides

basic income to impoverished individuals without actively promoting skill de-

velopment. Nevertheless, generalizing the relative effectiveness of education

and unemployment policies in reducing income inequality is challenging since

it heavily relies on factors like the tax rates and the costs of education.

The paper is organized as follows: In Section 4.2, we relate our research

to the literature and we introduce our model in Section 4.3. We delineate the

specific effects of education in Section 4.4. We present a numerical example to

illustrate our model in Section 4.5 and discuss possible policy interventions.

Subsequently, we discuss the results and interpretations of our model in Section

4.6 and conclude in Section 4.7.

4.2 Literature

Our model primarily builds on Acemoglu and Restrepo (2018b); Autor et al.

(2022) Prettner and Strulik (2020) as it combines a task-based multi sector

economy with educational decision of agents in an overlapping generations set-

up. In addition, we refer to Acemoglu and Restrepo (2018a), Acemoglu and

Restrepo (2018b), Hémous and Olsen (2022) Autor et al. (2022) and Irmen

(2021) for the analysing the effect of automation on the labor market using a

task-based modelling approach for an economy with education, where capital

can increasingly replace human labor in the execution of tasks and in the

development of new ideas. The effect of automation on labor market outcomes

such as the labor share or employment patterns is highlighted in Acemoglu and

Restrepo (2018a) and Autor and Salomons (2018). Although we do not directly

model task-creation in the economy, education enables agents to engage in

more (complex) tasks and thus to be able to work in more sectors in our

framework.

In recent economic literature, there is an increasing consideration of data

and AI as separate topics (Aghion et al., 2017) compared to existing analyses

of robots and automation. For instance, Jones and Tonetti (2020) highlight the

interpretation of data as a factor that enhances the quality of ideas and can be

used by multiple firms in a non-rivalrous manner and Farboodi and Veldkamp
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(2021) underline how data stimulates economic growth. Unlike the traditional

definition of automation technologies such as robots, AI is not merely a labor

substitute technology (Trammell and Korinek, 2020), but rather a technology

that improves endogenously through its application. Drawing inspiration from

Hanson (2001), who revises the concept of learning by doing in light of techno-

logical advancements, and the notion of machine intelligence, we specifically

focus on the self-learning aspect of contemporary AI algorithms as defined by

Gersbach et al. (2022). AI—the technology in our model that places tasks at

risk of becoming automated—grows due to its learning-by-doing feature (Gers-

bach et al., 2022) with total production output. When modelling the effect

of AI on long-term economic growth, Aghion et al. (2017) consider Baumol’s

cost disease, i.e. as labor-intensive sectors, such as healthcare and educa-

tion, face difficulty in improving their productivity compared to sectors that

can adopt labor-saving technologies, leading to a widening cost gap between

different sectors. Baumol (1967) suggests that sectors with low productiv-

ity growth will experience rising labor costs over time—which would lead to

attenuated effects of AI on the labor market. Moreover, another strand of liter-

ature at the interface between economics and philosophy has been increasingly

discussing to which extent AI poses an existential risk—”risks that threaten

the destruction of humanity’s long-term potential” (Jones, 2023)—and might

foster catastrophic outcomes, e.g., making human labor obsolete (Bostrom,

2019). Eloundou et al. (2023) state that 80% of the U.S. workforce could

have at least 10% of their tasks affected by Generative Pre-trained Transform-

ers (GPTs)—irrespective of their wage level. For example, they show that

tasks distinguished by science and critical thinking are less exposed to GPT,

whereas programming and writing skills are positively correlated with Large

Language Models (LLMs). Webb (2020) identifies clinical laboratory techni-

cians, chemical engineers, optometrists, and power plant operators as some of

the occupations most exposed to AI. Further literature discussing the effect

of AI on the labor market, in specific on particular occupational abilities is

Webb (2020); Brynjolfsson et al. (2018) and Felten et al. (2018).

While many economic models assume a constant elasticity of substitution

(CES) production function, it is reasonable to consider a dynamic elasticity,

particularly in assessing the relation between new technologies and human la-

bor. For a more comprehensive framework, we assume that firms adapt their

production regime over time, initially starting from a labor-intensive regime,
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then transitioning to a regime where labor and AI serve as complements, and

ultimately reaching a regime of AI-intensive production, thus capturing the

concept of an evolving elasticity with the rise of AI. Although we do not im-

plicitly incorporate a Variable Elasticity of Substitution (VES) Model, which

allows for time-varying (Paul, 2019) and flexible elasticities of substitution

between input factors (Lu, 2020), our model highlights the changing relation

between human labor and a new technology over time.

Human capital accumulation affects the dynamics of technological advance-

ment, which in turn has its own effects on the income distribution (Galor and

Zeira, 1993). Greater educational attainment and human capital formation

can be seen as a crucial way to overcome social inequalities and to move up in

the income distribution (Kearney and Levine, 2014). De la Croix and Doepke

(2004) reveal that when there is a significant disparity in human capital en-

dowment, public schools can stimulate economic growth via the provision of

education, in particular to low-income and low-skill agents.

4.3 Model

We develop a task-based multi-sector model in which the outputs of various

intermediate-producing industrial sectors are combined to produce a single

consumable final good. Economic growth is propelled by technological ad-

vancements resulting from the development of self-learning AI algorithms. We

consider an economy where time t = 0, 1, 2, ..., T is discrete and finite. Each

individual is characterized by a discrete parameter i ∈ I, with I ∈ N+, and

lives for two periods, possessing skills to work in different sectors based on

the skill index i. Each intermediate-producing sector is characterized by a

discrete parameter j ∈ J , where J ∈ N+, which ranks all sectors accordingly.

All agents are myopic as they only consider the two periods in which they are

alive and do not consider the externalities of their decisions on their successors,

and each agent is atomistically small. Our model incorporates a straightfor-

ward relationship between task complexity and skill level, where individuals

with higher skill levels can perform a greater number of tasks and handle more

complex tasks. Our assumption in this context is that all individuals share

identical preferences and only vary in their inherited human capital (Galor and

Zeira, 1993). The production of the intermediate good from sector j requires

the use of j tasks. Autor et al. (2020b) argue that AI systems currently tend
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to be task-oriented but not yet capable of automating entire sectors. Thus, we

set up a task-based model instead of regarding entire occupations. All agents

that work in a specific sector have the same productivity. Workers with skill

i are able to work in all sectors up to sector j such that there is a one-to-one

correspondence between skills, tasks and sectors. Workers with a higher skill

level can execute more tasks and tasks with higher complexity and can thus

work in more sectors.65 The number of workers that are employed in a specific

sector j at time t is given by Ljt ∈ R+. The number of unemployed workers in

sector j at time t is given by U j
t ∈ R+. We assume a fixed endowment of labor

for simplicity such that the total number of agents in the economy is given by∑J
j=1 U

j
t + Ljt = L ∀t and stays constant over time.

4.3.1 Final Good Production

Motivated by Acemoglu and Restrepo (2018b) and Webb (2020), we argue

that a single final good firm in the economy produces a unique consumption

good. The final good firm combines different intermediate goods, given by

Y j
t from J intermediate-producing sectors to produce a final good. It has the

following production function:

Yt =

(
J∑
j=1

π
1
σ
j (Y

j
t )

σ−1
σ

) σ
σ−1

, (4.1)

The elasticity between the intermediate goods from different sectors is given

by σ. Moreover, the “distribution parameter πj” (Klump et al., 2012) can be

interpreted as the share of intermediates from sector j in the provision of the

composite intermediate supply, such that
∑J

j=1 π
1
σ
j = 1. In our analysis, we

mainly disregard the final good sector and focus on analyzing the decisions of

the intermediate-producing firms.66

65For a more detailed exploration of sophisticated task-complexity-skill relationships,
refer to Gersbach and Schmassmann (2019).

66Nonetheless, the derivation of the inverse demand for intermediates based on the opti-
mization problem of the final good firm is given in the Appendix in Section 7.3.
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4.3.2 Intermediate Good Production

There are J different intermediate sectors where firms produce a sector-specific

intermediate good. There is a continuum of homogeneous firms in each sector.

Firms in each sector can decide between three different production technolo-

gies, which we define as R = {1, 2, 3}. Firms in each sector operate on a

perfectly competitive market and always make zero profits, irrespective of the

chosen production technology, as they always pay the marginal value for the

input factors. Thus, we refer to a single representative firm in each sector.

Firms can produce only using sector-specifically skilled labor Ljt or using AI,

given by At which is a non-rival but exclusive technology that can be employed

for production in all sectors. Moreover, as we do not model the capital market

in more detail, we assume the interest rate to be exogeneously given by the

time-invariant term r. Now, we delineate the production technologies that the

representative firm in each sector can choose. For the sake of simplicity, as-

sume for now that the level of AI rises exogeneously and that there is a single

sector in the economy. Later, we expand our model to include endogenously

(self-learning) rising levels of AI in a multi-sector context.

Firstly, firms can only produce using labor (R = 1) which is the so called

labor-intensive production regime. Secondly, firms can produce combining

labor and AI, which is the semi-automated production regime (R = 2). A

third production regime is a so called complete automation regime, where only

AI is used for production (R = 3). All firms choose the production technology

that maximizes their total output.

Each sector has a sector-specific labor-productivity, given by ψj. Labor

has a comparative advantage compared to AI, the higher the rank of a sector.

AI has a comparative disadvantage in high-ranked sectors as its productivity

is given by 1
ψj
. The interpretation of this ranking suggests that a higher rank

implies a reduced relative AI productivity and a stronger comparative advan-

tage of human labor over AI. Nevertheless, recall that the determination of the

tasks that are more prone to eventual replacement by AI remain uncertain, be

it routine or manual tasks, or even abstract, creative, or judgment-based tasks.

Thus, the sole purpose of this ranking is to aid in categorizing tasks according

to their potential susceptibility to replacement by AI. The first production

regime (R = 1) has the following production function:

Y 1,j
t = ψjL

1,j
t . (4.2)
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We note the labor has constant returns to scale in Y 1,j
t . Yet, we observe

that the higher the rank of the sector, the higher the sector-specific labor

productivity. For the second production regime (R = 2), we assume that labor

and AI are complements, as we assume that εj < 1 and γ > 0. The reason is

that we suppose that when a new technology is introduced that it needs to be

complemented with human labor to be useful for production. We motivate this

by the insight of Piketty and Zucman (2015) that the elasticity of substitution

between labor and capital has been increasing over the last centuries. We

anticipate a similar trend concerning the development of AI, where it initially

serves as a complement to a wide range of tasks but gradually evolves to fully

replace numerous tasks in the long run. The second production regime implies

the following production function:

Y 2,j
t =

[
γ (At)

εj−1

εj + (1− γ)
(
L2,j
t

) εj−1

εj

] εj
εj−1

, εj < 1 (4.3)

In Y 2
t —irrespective of the sector j under consideration—all input factors have

positive but decreasing marginal returns. The third production regime (R = 3)

given by

Y 3,j
t =

1

ψj
(At)

q. (4.4)

We assume that q < 1 such that AI has positive, but diminishing returns

to scale. Nonetheless, this allows for extensive growth of production with a

growing level of AI. We use the inverse of the parameter ψj from the labor-

intensive production regime for defining the productivity of AI in production.

The reason is that we assume that AI has a comparably small effectiveness in

sectors where labor is especially productive, and vice versa. Thus, the higher

the rank of a sector j, the higher the productivity of labor and the lower the

productivity of AI.

We assume that firms can produce only using production regime one, only

using production regime two, or a combination of production regime one and

two. If a firm decides to use production regime three only using AI, it can

neither apply production regime one nor two anymore. The idea is that when

a company transitions to exclusively AI-driven production, the infrastructure

necessary for employing human labor is no longer maintained. To illustrate

the differences between the production technologies at hand, we depict the
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total output of each production regime with an (exogeneously) rising stock of

AI in a single sector in Figure 4.1.

Figure 4.1: Total Output of each Production Regime with a Rising Level of
AI.

As we assume a constant labor productivity for the sake of simplicity,

the key factor driving higher production output is an increase in the level of

AI. Recall that the total labor supply, denoted as L, is assumed to remain

fixed, representing a constant labor force. However, the distribution of labor

across different sectors j, denoted by Ljt , can change over time. Note that the

stock of AI increases gradually over time due to its self-learning features—

which we later explain in more detail—leading to changes in the comparative

advantage of specific production technologies. Initially, the labor-intensive

production regime yields the highest total output. However, as the level of AI

advances, there is a growing appeal for the production regime that combine

labor and AI in a complementary manner. Eventually, at a stage where AI

has reached a sufficient level of development to entirely substitute for labor,

the AI-intensive production regime emerges as the most effective, yielding the

highest output. We argue that if firms decide to employ production regime

126



Model AI and Education

three, all workers that were employed in these firms become unemployed as

AI completely automates and replaces human labor. Therefore, our model

builds on the extreme premise that AI will eventually have the capability to

fully replace human labor in the long run. Later, we show how firms decide on

which technology to use for intermediate good production depending on the

level of AI.

4.3.3 Artificial Intelligence

Motivated by Gersbach et al. (2022) and for the sake of simplicity, we suppose

that AI has reached a stage at which it grows autonomously and does not re-

quire any human or capital inputs for its development. Our conjecture is that

AI has self-learning characteristics such that it learns by being applied, tested

and trained in production. We define a parametric function for describing how

the technological integration of AI begins gradually and progresses incremen-

tally until it reaches a stage where it can lead to fundamental transformations

of production (Brynjolfsson et al., 2020; Autor et al., 2020b).67

Moreover, we keep a clear distinction between (pure) automation and self-

learning AI. We define automation as technologies that focus on achieving

predetermined objectives through the execution of specific tasks based on pre-

defined rules. In contrast, AI involves creating intelligent systems capable of

learning from data and experiences, allowing them to acquire new abilities and

adapt to new tasks. We exclusively consider the automation risk in the econ-

omy linked to the autonomous development of AI. We model the development

of AI in the following way:

At+1 = At

[
1 + b

(
3∑
s=2

J∑
j=1

Y s,j
t

)]
. (4.5)

We assume that the function b(·) is a (monotonously) increasing function which

is positively affected by total production that employs AI. We assume that

b(·) ∈ (0, 1) such that AI growth, defined as gA, is strictly positive but not

equal to one. We assume that AI algorithms only learn from being applied in

67Findings of related literature on robots Riener et al. (2023) find that, in spite of the
increasingly advanced technical structures, robots are still outperformed by humans in var-
ious functions. Nevertheless, the ongoing progress in robotics offers promising prospects for
narrowing this gap.
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production which employs AI, meaning that in production regime 2 or 3.

It is a difficult challenge to forecast how the future growth trajectory of

AI will look like. Motivated by an analysis of Epoch, a team of researchers

investigating and forecasting the development of AI, we refer to the predicted

AI growth rate as given by https://takeoffspeeds.com/ that we aim at rebuild-

ing using a parametric function. We use an incomplete beta distribution for

modelling the growth function of AI, given by b(·). However, the incomplete

beta function leaves room for flexibly modelling potential growth trajectories

of AI. It is defined as:

Ix(Z,w) =
1

B(Z,w)

∫ x

0

hZ−1(1− h)w−1dh

where we use Z :=
∑3

s=2

∑I
i=1 Y

s,j
t and x = 0.5 by default. Moreover, the

beta function B(Z,w), is defined as

B(Z,w) =

∫ 1

0

hZ−1(1− h)w−1dh =
Γ(Z)Γ(w)

Γ(Z + w)

which is based on the gamma function , defined as Γ(Z) =
∫∞
0
hZ−1e−hdh. We

depict in Figure 4.4 how AI would develop depending on the scale parameter

w ∈ {5, ..., 13}, holding x = 0.5 fixed. The red line in Figure 4.4 illustrates

the default parameterization that we employ for our analysis where we obtain

a curve with a sigmoidal shape which we call S-curve. The function exhibits

an initial phase of increasing positive curvature, indicating convexity, followed

by a transition to decreasing curvature, representing concavity. Consequently,

we observe that the long-term growth rate of AI approaches zero due to the

characteristics of the incomplete beta function.68

For the sake of simplicity, we assume that there is a continuum of homoge-

nous and atomistically small AI companies. The profit of AI companies is paid

out in consumption goods. We assume that all AI-developing companies can

perfectly price-discriminate the AI-acquiring industrial firms such that these

firms pay the marginal return for the acquisition of AI algorithms. Thus, we

model the behavior of a single representative AI company. As we claim that

AI has reached a level where it can learn autonomously, but concave costs need

68In contrast to Gasteiger and Prettner (2022), where automation itself is preventing
long-run growth in the OLG-economy, the self-learning of AI can be the sole driver of
growth in the fully-automated economy in our model.
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Figure 4.2: Development of AI Depending on the Parameterization of the
Incomplete Beta Function.

to be incurred for its development, the profit function of the representative AI

company is defined as follows:

ΠA
t =

J∑
j=1

pjtAt − A
η
t , (4.6)

where η < 1. This can also be interpreted as AI having high fixed costs that

require to be amortized, leading to a concave cost function.69 The profits of the

AI company are distributed to a single representative agent that we neglect

in the remaining part of our project as we focus on the income of ordinary

workers.70

69The profit of AI companies is paid out in consumption goods, such that capital and
its respective law of motion does not need to be modelled separately in the economy. Yet,
we need to impose the restriction on the AI profits that they have a finite upper bound
such that limt→T ΠA

t → P ̸=∞. Additional information on the profit of the AI company is
provided in the Appendix in Section 7.3.

70We refer to Gersbach et al. (2022); von Maydell (2023) for more details on the analysis
of the distribution of the AI income.
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4.3.4 Income of Agents in the Economy

Motivated by the approach of Prettner and Strulik (2020), we assume an OLG

set-up, where each agent, labelled by index i obtains utility from consump-

tion during adulthood and during retirement. Each individual i lives for two

periods. During working age, agents work and save for retirement. Retirees

finance their consumption out of their savings they carried over from adult-

hood (Gasteiger and Prettner, 2022). We assume that all agents in adulthood

inelastically supply their labor to firms to receive a wage payment. For the

sake of simplicity, we assume that population growth is zero, such that the

size of the population stays constant enclosing that each agent has a unique

successor. Newly born individuals inherit the skill-endowment of their par-

ents such that the distribution of skills stays constant over time in our default

setting without education. Nonetheless, we assume that the successors of all

agents start with the same skills as their ancestors. Based on the arguments

of De la Croix (2001), we argue that agents bequest their skill-level to their

successors in the subsequent generation such that skills prevail over time and

children inherit the human capital from the previous generation. Nonetheless,

we discuss this assumption in more detail in Section 4.6. Recall that sectors

are ordered by their task-complexity, which increases in their rank j. The

higher the rank of a sector j, the higher the skills that are required to perform

the tasks necessary to work in the respective sector j. Sectors with a higher

rank always have a higher relative labor productivity and thus the risk of AI-

induced automation is lower. Recall, that there is a one-to-one mapping from

task-complexities to sectors such that people with skills i can be employed

in all sectors with a maximum rank j and a corresponding skill-requirement.

The utility function of an individual with skill-level i at time t in the baseline

canonical OLG model is given by

ui,t = log(ci,t) + βlog [ci,t+1] = log(ci,t) + βlog [(1 + r)si,t] , (4.7)

if we assume a single sector. We assume that agents consume a single consump-

tion good which they acquire using their wage income that they obtain from the

intermediate good sector where they are employed. We define ci,t+1 = (1+r)si,t
and assume that agents face a discount factor β = 1

1+ρ
with ρ > 0. It holds
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that ci,t ≥ 0∀ t. The (baseline) budget constraint of each worker is given by

wi,t = ci,t + si,t. (4.8)

For the sake of simplicity, as in Gasteiger and Prettner (2022), the wage

is the only source of income in our OLG model. Agents can either save or

consume their wage income during adulthood. Furthermore, agents’ inter-

temporal optimization problem yields the following Euler equation:

ci,t+1

ci,t
= β(1 + r) (4.9)

In the baseline model, where agents only receive a wage income during adult-

hood, this implies that optimal consumption and savings are given by:

ci,t =
1

1 + β
wi,t, si,t =

ci,t+1

(1 + r)
=

β

1 + β
wi,t (4.10)

Later, when we assess multiple sectors and introduce the possibility to invest

in education, we illustrate how the budget constraint of agents is affected. As

there is no inter-temporal altruism in the economy, agents do not obtain utility

from bequesting income to future generations. Thus, all agents completely use

their entire income for acquiring consumption goods until the end of their life

(which is the end of the second period for each agent).

4.3.5 Transitions between Sectors

Now, we abstract from assessing a single sector and consider multiple sectors

to emphasize the transitions of agents between sectors. At the beginning

of each period, the representative firm in each intermediate-producing sector

can observe the number of available workers with the corresponding sector-

specific skills. Subsequently, if the firm decides to produce using production

regime one or two, it has to allocate the available workers to each of the

production regimes. The decision of the firms how to allocate the workers to

production regime one or two depends on the number of available workers and

the level of AI. If the firm decides to employ the AI-intensive production regime

three without any workers, all workers in the corresponding sector become
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unemployed. In such a situation, the respective agents do not obtain any

income in our baseline scenario without any unemployment benefits. Agents

can fully observe the wage that is offered to them, which is given by either

w1,j
t = ψj,

if they work in production regime one, or

w2,j
t = (1− γ)

(
Y 2,j
t

L2,j
t

) 1
ϵi

= (1− γ)

γ ( At

L2,j
t

) εj−1

εj

+ (1− γ)

 1
εj−1

,

if they work in production regime two. Moreover, the price for AI in production

regime two is given by:

p2,jt = γ

(
Y 2,j
t

At

) 1
ϵi

We observe that the marginal return to labor in production regime two depends

on both the labor supply and the level of AI. On the opposite, in production

regime one, workers receive sector-dependent wages determined by the skill

requirements of a specific sector i which are independent of the total labor

supply and the level of AI. Given the complementarity between labor and AI

in the second production regime, we observe that w2,j
t positively depends on

At. Firms choose the production regime that maximizes their total output,

allowing us to define the tipping point at which they prefer a specific produc-

tion regime. Initially, in a setting without AI, firms favor the labor-intensive

production regime, as depicted in Figure 4.1. However, as the level of AI in-

creases, the semi-automated production regime with AI becomes increasingly

attractive. With regard to the allocation of the workers, it holds that

w1,j
t > w2,j

t if L2,j
t < At

[
γ

(
ψj
1−γ )

ϵ−1 − (1− γ)

] ϵ
ϵ−1

and

w1,j
t ≤ w2,j

t if L2,j
t ≥ At

[
γ

(
ψj
1−γ )

ϵ−1 − (1− γ)

] ϵ
ϵ−1

.
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Hence, we observe a condition for the allocation of workers to production

technologies one or two, indicating that the marginal value of each worker is

equivalent under both regime one and regime two in an equilibrium. In such

an equilibrium, the total production of the representative firm is maximized.

Consequently, the equilibrium allocation of labor (in a non-corner solution,

implying that w1,j
t = w2,j

t ) to production regime two is determined by:

L2,j
t

∗ = At

[
γ

(
ψj
1−γ )

ϵ−1 − (1− γ)

] ϵ
ϵ−1

. (4.11)

Initially, labor is the only input factor that is used for production, as regime

one is the most effective when the level of AI is close to zero. With a rising

stock of AI, and due to the complementarity of labor and AI in production

regime two, the representative firm in each sector increasingly employs labor

and AI in a complementary fashion. Recall that in production regime two,

labor and AI serve as complements. Therefore, Eq. (4.11) defines when firms

prefer to incorporate AI in their production instead of solely producing using

labor. In the long-run, we argue that AI can completely substitute for labor.

The fully-automated production regime three only using AI is more effective

than using a mix of the semi-automated and non-automated production regime

if Y 3
t > Y 2

t + Y 1
t . This is the case if it holds that

1

ψj
(At)

q > ψjL
1,j
t +

[
γ (At)

εj−1

εj + (1− γ)
(
L2,j
t

) εj−1

εj

] εj
εj−1

(4.12)

However, we cannot find a tractable solution for this inequality as we cannot

solve it algebraically. As labor and AI are complements with ε < 1 in pro-

duction regime two, we know that even with an increasing level of AI, total

production using regime two converges to a constant, as limt→T Y
2
t → c. Yet,

irrespective of q ∈ (0, 1), we observe that limt→T Y
3
t → ∞. We conclude that

with a rising level of AI, there necessarily exists a tipping point, which satisfies

Eq. (4.12). This can also be interpreted that with an increasing productiv-

ity of AI, firms’ demand for human labor will unambiguously decrease. We

illustrate the worker allocation over time in Figure 4.3 for a single represen-

tative sector. Initially (in an example with 10 workers in the representative

sector), all workers are employed in production regime one. Firms increas-
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ingly allocate workers to production regime two due to the increasing level

of AI. The economy reaches a stage in the long run, where no workers are

employed as all firms decide to fully automate their production and use pro-

duction regime three. Recall that we define the conditions that determine the

Figure 4.3: Allocation of Workers to Different Production Regimes in a Single
Sector.

allocation of workers depending on the task-complexity of a sector based on

Eq. (4.11) and Eq. (4.12). For ease of illustration, we define all sectors with

j ≤ Ĵ1
t as the fully-automated sectors where firms solely employ AI. Sectors

with Ĵ1
t < j ≤ Ĵ2

t are semi-automated and use labor and AI in a comple-

mentary fashion and all sectors with Ĵ2
t < j are labor-intensive and solely use

labor for production. These thresholds are time-dependent as they depend on

the endogenously-growing level of AI.

To sum up, firms face the following decision process: At the beginning of

each period, firms register the existing stock of AI and the available number of

workers for each task. Subsequently, firms determine which production regime

they use for production to maximize their total output. Depending on the level

of AI and the available workers with a specific skill-level, we can determine
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the equilibrium allocation of workers in each sector. Thus, we can define the

total output under each production regime which determines the growth rate

of AI, as described by Eq. (4.5).

In contrast to Frey and Osborne (2017), who assume that agents in same

occupational category face the same threat of automation, we assume that the

agent specific automation risk depends on the production regime in which an

agent is employed. Moreover, our model is in line with the assumption that

labor can be interpreted as a combination of skills that is used for a specific

occupation (Felten et al., 2018). As opposed to the approach of Webb (2020),

where only some tasks can be automated, we assess the transitory dynamics of

an economy if all tasks will be automated in the long run. Thus, opposing the

assumptions made by Aghion et al. (2017) that AI will have attenuated effects

on the labor market due to the notion of the Baumol (1967) cost disease, our

framework allows for a growth path with AI-induced full automation in the

long run. We can assess the economic effects in such an extreme scenario where

automation is not “digging its own grave” (Gasteiger and Prettner, 2022). This

outcome is driven by AI’s inherent advantages over human labor in the long

run in all sectors, which ultimately renders human labor dispensable. Our

model can also be interpreted in a fashion of Acemoglu and Restrepo (2018b)

where the automation process is faster than the augmentation process such

that in the long-run all tasks are fully automated.71

4.3.6 Investments in Education

We extend our baseline canonical OLG model with the possibility for agents to

invest in education for further skill acquisition during adulthood. Due to in-

creasing skill-requirements of sectors with a higher rank and lower AI-induced

automation risk, workers may have an interest to invest in education—to in-

crease their skill level to be able to work in higher-ranked and financially more

attractive sectors. Yet, agents face an additional cost from educational effort

to increase their skill-level. In our model, education particularly refers to the

acquisition of human capital enabling agents to perform a greater number of

tasks. Thus, education in our model can also be interpreted as sectoral train-

71However, one should exercise caution when interpreting our model’s predictions, as it
helps maintain a sense of monotonicity within to guarantee that in the long run, all sectors
are expected to become automated, eliminating the need for the imposition of an (arbitrary)
threshold to determine which sectors will remain unaffected by AI-induced automation.
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ing that provides agents with the knowledge to work in new tasks—and not

to be more productive in tasks that can already be conducted. We assume

that being able to work in more tasks allows agents to obtain higher wages

in higher-ranked sectors that require knowledge of more tasks. Education in

our model does not necessarily need to be interpreted as formal educational

credentials (such as Bachelor or Master degrees), as agents with tertiary ed-

ucation may even face a higher risk of AI-induced replacement (see Webb

(2020) or Eloundou et al. (2023), e.g. their findings on GPT-powered human

replacement by software).72 However, we especially regard education that en-

ables agents to work in tasks for which they were not qualified beforehand. If

agents invest in task-based education, they can immediately work in a higher

ranked sector that requires knowledge of more complex tasks.

If agents decide to invest in education, they face heterogeneous costs, de-

pending on the sector in which they are employed. We assume the formation

of human capital is costly and requires a certain amount of effort, which comes

with the sector-specific cost Ej. Each sector j has time-invariant educational

cost that are needed to acquire the skills for sector j + 1 drawn from a distri-

bution Φ(Ej). We assume that the educational costs drawn from Φ(Ej) are

the lowest in the sector with rank j = 1 and increase with the rank of j such

that the costs in the sector with the J-th rank are the highest. In each period,

agents can only invest in education for being able to work in a one-step higher

ranked tasks.

Assumption 4.1. Agents in each sector j face sector-specific educational

costs Ej needed to be educated for working in sector j + 1. These education

costs are drawn from a distribution Φ(Ej). The higher the rank of a sector j,

the higher Ej.

Assumption 4.1 is based on the idea that the marginal costs of education

increase with higher skill requirements as it becomes increasingly costly to be

educated to work on more complex tasks. Nonetheless, we assume that the

skill-premium between two consecutive sectors is time-invariant and remains

constant over time. Thus, it holds that wj+1
t −wjt = c ∀j, where c ∈ R+ is a

constant positive value indicating that the wage differential between two con-

secutive sectors stays constant. Recall that the education demand is given by

72In addition, Webb (2020) state that in contrast to software or robots, AI may mainly
affect high-skilled tasks.
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Eq. (4.13). Thus, even if we assume a constant skill-premium, we have para-

metric flexibility in defining the educational demand via the distributional

set-up of the educational cost function Ej. In this fashion, we have differences

in educational demand between sectors as educational costs increase with the

rank of a sector and between agents, as workers in semi-automated produc-

tion have a higher perceived automation risk than workers in non-automated

production.

We posit that individuals face an educational demand function which de-

pends on the i) skill premium between sectors, ii) the educational cost func-

tion, and iii) the perceived risk of AI-induced automation. Thus, we set up

the following micro-based educational demand function:73

Ψi
j = κi(wj+1 − wj)− Ej (4.13)

where we define κi = 1{Li∈L1}

(
L2,j
t

L1,j
t +L2,j

t

)2
+1{Li∈L2}

L2,j
t

L1,j
t +L2,j

t

.74 We assume that

agents working in semi-automated production regime two have a different edu-

cation demand compared to agents working in non-automated, labor-intensive

production regime one. The rationale behind this assumption is that agents

consider their perceived risk of unemployment when deciding on their educa-

tional investments. Agents’ perceived automation risk depends on the share of

agents already working in semi-automated production compared to the total

number of agents working in a specific sector j. We observe that the more

agents work in semi-automated production, the higher the level of AI, such

that the perceived automation risk is higher. The higher agents’ perceived risk

of replaceability, the more they are inclined to invest in education for reducing

their risk of job displacement.

We describe the transition of agents in the economy using the previously

described simple example: Assume a status where sector j is semi automated.

This implies that all tasks in sectors with j̃ < j are semi-automated or fully

automated. We assume for the sake of simplicity that task j − 1 is fully auto-

mated such that agents with skill j − 1 do not obtain any income. Moreover,

sector j +1 is non-automated. We focus on stating the budget constraint of a

representative worker in semi-automated production in sector j. For the sake

73We define 1{·} as the indicator variable.
74In an economy with private education investments, workers employed in fully-

automated tasks have no income and therefore lack the means to invest in education.
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of completeness, we add the budget constraint of an agent in sector j − 1,

where production is fully automated, and of an agent in sector j + 1, where

production is non-automated.75

wj+1,N
i+1,t = cj+1

i+1,t + sj+1
i+1,t (4.14)

wj,Si,t = cji,t + sji,t (4.15)

wj+1,N
i,t − Ej = cj+1

i,t + sj+1
i,t (4.16)

0 = wj−1,F
i−1,t = cj−1

i−1,t + sj−1
i−1,t (4.17)

We index the wage in the semi-automated regime with S, in the non-automated

regime with N and in the full-automated regime with F . The budget con-

straints of agents with the skills i allowing them to work in sector j depends

on the level of AI and the employment status of the respective agent. If an

agents with skills i+ 1 is employed in a non-automated sector j + 1, s/he re-

ceives the wage wj+1,N
i+1,t and faces a budget constraint, given by Eq. (4.14). If

an agent with skills i who decides to invest in education, s/he can then obtain

the wage from the non-automated sector j + 1, given by wj+1,N
i,t , but has to

pay Ej for additional education to be qualified for being able to be employed

in sector j +1 with the respective skill-requirements, given by Eq. (4.16). We

assume that Ej is fixed such that the decision to educate is binary—agents

either educate themselves or they do not, but there is no continuum of ed-

ucational possibilities. Moreover, we assume that the costs that need to be

spent for education to increase the individual skill-level, given by Ej increases

in j. This implies that primary education is less expensive than higher-level

education as we suppose that investments in human capital have decreasing

returns to scale. Agents with skills i− 1 do not obtain any wage income, since

sector j − 1 is fully automated, as defined in Eq. (4.17).

4.3.7 Equilibrium Definition

Now, we define the long-run equilibrium of the economy, where all sectors pro-

duce using production regime three with full AI-induced automation as Eq.

75We only characterize the conditions that workers in semi-automated production face.
The budget conditions for agents working in non-automated production can be set up in
an analogous fashion but are left out for the sake of simplicity. Unemployed agents do not
obtain any income in a decentralized economy without any redistributive measures.
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(4.12) holds for all sectors. However, our emphasis is on analyzing the transi-

tory dynamics within the economy before reaching this long-run equilibrium.76

Summary 3. In the economy with self-learning AI and AI-induced task au-

tomation, all sectors will be fully automated such that all workers are unem-

ployed in the long-run. The economy reaches a steady-state if A0 > 0 where

the following holds:77

1. L1,j
t = L2,j

t = 0.

2. All firms—irrespective of the sector—produce solely using the labor-

saving production regime Y 3
t .

3. Economic Growth is autonomous due to the self-learning feature of AI

and given by gA,t. Yet, it holds that limt→∞ gA,t → 0, due to the para-

metric assumption on the growth function of AI.

As a result, we obtain a stationary distribution in the long-run, where

the number of workers in each sector j stays constant, namely at zero. Fur-

thermore, agents’ investments into education are zero. This is the long-run

steady state of the economy. In this long-run equilibrium, no labor income

is generated and all (unemployed) agents face impoverishment, whereas only

the owners of the AI-developing companies obtain a positive income by selling

AI algorithms. Even if we start from this extreme premise of full automation,

zero (labor) income and complete unemployment in the long-run, we show how

labor income develops in the preceding transitory period and income equality

can be promoted via educational investments. In Section 4.5, we discuss un-

employment and education policies that affect the time until full AI-induced

automation in the economy and the level of income inequality. Moreover, in

Section 4.6, we discuss further potential mechanisms such as an inclusion of

a Windfall clause to reduce agents’ risk of AI-induced impoverishment in the

long-run and to promote a fairer distribution of AI income.

76In the remainder of the paper, we call the time interval before the steady-state is
reached the transitory period.

77We determine the growth rate of AI and Total Production on the BGP in the Appendix
in Section 7.3.
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4.4 Effects of Education

We now show how the educational costs affects the economy and provide expla-

nations for some comparative statics. Furthermore, we determine conditions

under which agents invest in education. Subsequently, we explain the chan-

nels via which education affects skills, sectoral concentration and AI-induced

worker replacement in the economy. All agents decide between investing in

education, consuming and saving where the following holds

Assumption 4.2. An agent invests in education if it holds that κi(wj+1 −
wj) > Ej. Thus, the decision depends on agents’ sector of employment j, the

corresponding cost of education Ej and the type of employment i ∈ {1, 2} in
a semi-automated or a non-automated production regime.

The following effects are taken into account by the agents in the economy.

We call them the direct effects of agents investing in education:

1. Agents can reach a higher-ranked skill-level. Thus, they can work in

higher-ranked tasks where they earn a higher wage.

2. If agents leave their sector of employment and transition to a new and

higher ranked sector with jnew = jold + 1, they face a lower relative

sector-specific AI productivity in the new sector and thus face a lower

risk of being replaced by AI-induced automation.

Yet, we observe the following effects which we call indirect as they are not

internalized by the agents:

1. If agents invest in education to leave a specific sector j and to work in

sector j + 1, the number of available workers Ljt decreases which leads

to an increased probability that AI will be able to replace all remaining

workers in sector j due to Eq. (4.12).

2. If AI can easily replace workers in lower-ranked sectors, let us call them

j̃ ≤ j due to a reduced number of workers in Lj̃t , its application area

increases implying an increased growth rate of AI. Thus, with a faster

growing level of AI, also the workers Ljt in sector j > j face a higher risk

of being replaced by AI.
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As a result, we obtain ambiguous effects of education on the risk of being

replaced by AI. We observe that the abovementioned effects may lead to dif-

ferent conclusions, due to educations’ different impact on individual and over-

all AI-induced replacement risk. Education may accelerate or decelerate the

risk of AI replacing workers depending on the educational costs. As previ-

ously explained, education can provide individuals with opportunities to work

in higher-ranked sectors, reducing their susceptibility to AI-induced labor re-

placement. However, when agents leave lower-ranked sectors due to education,

there is a reduction in the available workforce. This reduced workforce leads

to an increase in the marginal value of labor in production regime two com-

pared to the marginal value of labor in regime one. Consequently, more labor

is allocated to production regime two, which also incorporates AI technology.

This expanded utilization of AI accelerates its self-learning process and fosters

its development. As a result, the broader application area of AI accelerates

its development by self-learning, which in turn intensifies the economy-wide

risk of AI-induced automation. We provide numerical examples for our model

in Section 4.5 to highlight the effects of education on AI-induced automation

risk. In particular, we emphasize how the educational costs affect AI-induced

automation.

4.4.1 Human Specialization

Our model underscores the significance of a market scenario in which human

workers specialize in specific tasks, resulting in a high concentration of the

labor force in a particular sector, which we call sector ĵ. This specialization

trajectory has several implications. First, when many agents concentrate in

a specific sector, they face a decreased risk of AI-induced automation since

it becomes increasingly challenging for AI to outperform the collective work-

force. Thus, firms tend to produce rather using the labor-dependent produc-

tion regimes one or two instead of fully automating their production and solely

using AI for production. Moreover, in such a scenario, the growth rate of AI

is constrained as its application area is limited to a smaller number of tasks.

We now show how the concept of specialization within the economy coun-

teracts the rapid onset of AI-induced full automation. The underlying reason

is that as the value of Lĵt increases, the likelihood of Eq. (4.12) being satisfied

in this specific sector decreases. This implies that humans can maintain their
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relative advantage over AI in intermediate good production when they concen-

trate their labor in a specific sector. Consequently, the scope of application for

AI algorithms remains limited, leading to a decline in the risk of workers being

replaced by AI. Let us describe the underlying mechanisms in an example in

more detail. Consider a scenario where many workers in low-ranked sectors are

easily replaceable by AI. This situation can arise, for example, if AI enters the

economy when it is already highly developed, or if education is inexpensive,

allowing a large number of individuals to transition to higher-ranked sectors.

As a result, there is a decrease in the number of agents working in low-ranked

sectors, accelerating the (premature) replacement of human workers by AI as

explained by the second indirect effect. Based on the arguments presented in

the previous subsection, if a significant number of workers opt to leave low-

ranked sectors, which we refer to as j, possibly due to affordable education,

we observe a decline in L
j

t . As a consequence, the probability that Eq. (4.12)

is satisfied increases for each level of AI in sector j. Consequently, in scenarios

where education is inexpensive or AI is introduced into the economy at an al-

ready advanced stage of development, there is a rapid replacement of workers

in low-ranked sectors, leading to an acceleration of AI development.78

To sum up, the specialization of agents in a specific tasks is a result of the

educational costs distribution. Agents do not actively decide upon the sector

in which they aim at working, but by construction concentrate in the sector

with the highest wage where education is too costly to reach higher-ranked

sectors. We will now show in more detail using numerical solutions to our

model how the educational cost distribution affects income inequality and the

time until full AI-induced automation in the economy.

4.5 Numerical Example

As described in Section 4.3, two optimization problems are interlaced in our

set-up. First, intermediate firms select the optimal production regime depend-

ing on the level of AI. Subsequently, agents decide on how much to consume,

spend and invest in education. Depending on the decisions of the firms and

78If we assume moderate costs for education, agents with skills i < ĩ end up in the sector
j̃. It holds in this sector that κi(wj+1,N

ĩ,t
− wj,S

ĩ,t
) ≥ Ej and that κi(wj+2,N

ĩ,t
− wj+1,S

ĩ,t
) < Ej

such that agents Li<ĩ concentrate in sector j̃.
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agents, the self-learning trajectory of AI algorithms are determined. We il-

lustrate the development of the optimal production regimes for the firms and

the allocation of agents to labor-intensive, AI-complementary or AI-intensive

production. Moreover, we assess the development of income inequality and

the time until full AI-induced automation are assessed. We analyse a setting

with 30 different tasks and thus J = 30 corresponding sectors and an initial

condition that 5 workers are qualified to work in each task at t = 0 such that

there is a total of 150 agents in the economy. We start with an initial AI stock

of A0 = 0.1. In the model quantification, we choose the following parameters,

given in Table 4.1.

Class Parameter Choice
Production ω = 0.85

I = 30
T = 50

γ ∈ (0.1, 0.3)
r = 0.035

AI Growth x = 0.85
w = 9

q ∈ (0.8, 1)

Starting Values L0
j = 5

A0 = 0.1

Sector-Specific Ej = E0(1 + (j − 1)0.1)
ψ(i) = ψ0 ∗ i
ψ0 = 0.06
E0 = 0.01

Table 4.1: Parameters for the Numerical Example.

We first describe the main comparative statics of our model using the

parameters given in Table 4.1.79 For the sake of assessing the sensitivity of

our results, we discuss our findings if we incorporate more uncertainty with

regard to the chosen parameter values—in particular the ones that determine

the importance of AI for the economy, namely its factor share, given by γ ∈
(0.1, 0.5) and its rate of self-learning, given by x ∈ (0.8, 0.995). In addition, we

assess how differences in the cost of education—yet keeping linearly increasing

costs depending of the rank of a sector constant—affect the economy.

4.5.1 Economy without Education

We start assessing our multi-sector economy when agents cannot invest in ed-

ucation. This is the baseline setting in our analysis. Due to the production

function of the third production regime, given by Eq. (4.4), we observe a

79For the sake of simplicity, we assume that 1 − β = r, such that all agents perfectly
smooth their consumption over their lifetime.
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shift to full automation of all sectors in the long-run as previously explained.

AI eventually replaces all human labor as it continuously grows in the econ-

omy without bounds. Recall that this results in all agents being unemployed,

without any wage income, and widespread impoverishment in the long run.

We depict the employment patterns of workers in the economy in Figure 4.4

a) if there are no educational possibilities (i.e. due to excessive educational

costs in all sectors). As there is no possibility for educational investments,

there are no transitions of workers between tasks. In an initial state, all

agents work in the task for which they have the adequate skills. With a

rising level of AI, tasks are replaced in a step-wise fashion where especially

sectors with a low task-complexity move from a labor-intensive production

scheme to a labor-complementary production scheme before becoming fully-

automated. Furthermore, unemployment can first be observed in sectors with a

low rank and then increasingly in the sectors with ascending task-complexity.

We observe in Figure 4.4a) that after period t = 10, all sectors are fully

automated implying unemployment of all agents. After this period, the steady

state in the economy with full unemployment and zero income of ordinary

workers is reached.

4.5.2 Economy with Private Education

In spite of the fact that the economy will reach a steady-state with full au-

tomation in the long-run irrespective of the educational costs, we assess how

the possibility to invest in education affects income, inequality and attenuate

AI-induced replacements of laborers in the preceding transitory period. We

start by assessing an economy where agents need to use their individual income

to invest in education (private education). In Figure 4.4b), we depict how the

economy evolves if education is free and Ej = 0. Subsequently, we adapt the

framework to an environment where all agents in the economy pay a manda-

tory education contribution relative to their income to support education via

a public redistribution system.

Recall that if agents can invest in education, they invest in education as

long as Prop. 4.2 holds. If education is cheap, especially agents with a low

level of task-specific skills are able to climb the task ladder and to be able

to work in sectors with higher skill requirements if they invest in education.

The opposite holds if education is expensive, as only agents working in high-
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(a) No Education (b) Free Education

Figure 4.4: Development of the Optimal Labor Allocation Depending on Ed-
ucation.

ranked sectors with a high wage income can afford to invest in education. In

Figure 4.4b), we start from the same starting point as in a setting without

education, but with free education. Yet, due to the possibility to invest in

education, agents can transition to higher-ranked sectors as they can work in

higher ranked tasks allowing them to obtain a higher wage. We note that more

agents work in non-automated tasks during the period under consideration as

they invest in education to circumvent the higher risk of being replaced by

AI. If education is free, we also observe that in the transitory period before

full automation, more agents work in the semi-automated production regime

compared to an environment without education. In general, we observe that

the steady-state with full automation is reached at a later stage if agents can

invest in education than if there is no possibility for education.

For additional insights into how the educational costs affect the automation

trajectories due to self-learning in the economy, we depict the time until the

full automation of all sectors in the economy depending on the educational

costs in Figure 4.5. We set Ej = E0. ∗ (1 + (j − 1) ∗ 0.1) such that we have

linearly increasing costs of education with the rank of a sector. We perform

the analysis using different values for the parameter q ∈ (0.875, 0.975)—which

is the key parameter for the rate of self-learning of AI algorithms—to obtain

more insights on the sensitivity of our findings to q and to emphasize the

importance of the educational costs.

We observe that if AI has strong self-learning capabilities, e.g. q → 1,
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 = 0.1

 = 0.3

(a) With γ = 0.15

q = 0.875

q = 0.975

(b) With q = 0.9

Figure 4.5: Time until Full Automation Depending on Education Costs.

irrespective of the cost of education, all sectors are automated at an early

stage due to fast self-learning of AI which leads to an increasing replacement

of workers—irrespective of the costs of education. The smaller q, we observe

that the level of AI that is necessary to reach full automation is at a later

point in time, which basically holds for all levels of educational costs. We

observe the same pattern if we keep q fixed but vary the factor share of AI in

industrial production, given by γ. Nonetheless, it is especially striking that

full automation of all sectors can especially be deferred if education has a

moderate cost level. If this is the case, the previously described channel that

humans specialize in specific tasks can be observed, leading to a prolonged

period without AI-induced automation.

Additional graphical illustrations of the link between the level of AI, the

time until full automation of all sectors and the cost of education are enclosed

in the Appendix in Section 7.3 in Figure 4.5. These illustrations additionally

underline how specializations in specific tasks delay full AI-induced automa-

tion.

4.5.3 Effect of Human Specialization

Depending on the costs of education Ej, there are scenarios where (low-skilled)

agents end up working in a medium-ranked sector, creating a trajectory of

specialization. Therefore, we infer that the combination of moderate education

costs and the resulting specialization trajectory contributes to lower inequality

146



Numerical Example AI and Education

levels. Recall that human specialization leading to a concentration of (low-

skilled) workers in a specific sector reduces the application area of AI and

thus reduces AI-induced automation risk. Yet, we emphasize that the agents

do not actively decide to specialize because they have internalized the AI risk.

Rather, their path towards specialization is merely a consequence of how costly

education is.

For this reason, we further illustrate the relation between sectoral concen-

tration, education costs and the time until full automation in the economy in

Figure 4.6 to underline the importance of human specialization. The period

in which all sectors in the economy are fully automated is illustrated using the

dot at the right end of each line. We depict the development of sectoral concen-

tration based on the analysis of the Herfindahl-Hirschmann Index (HHI) - the

sum of the squared market shares of the labor force in an economic sector.80

E
0
 = 0

E
0
 = 0.07

Figure 4.6: Sectoral Concentration and Time until Full Automation of all
Sectors with γ = 0.15 and q = 0.9.

We observe that in case of expensive education, given by a high level of

E0, the economy is fully automated at a very early period and a very low

80The HHI is determined using the following equation, where at Lj represents the number

of workers in a single sector j, and H =
∑J

j=1

(
Lj∑J

j=1 Lj

)2

. The obtained value is multiplied

by 10000 and the HHI thus takes values between 10000
N ≤ H ≤ 10000. The higher the HHI,

the higher the sectoral concentration of workers.
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level of sectoral concentration is reached.81 If education is inexpensive, full

automation of the economy is reached at a later stage with a similar level

of sectoral concentration of workers as many agents have already invested in

education and work in higher-ranked tasks. If we consider moderate educa-

tion costs, we observe that the economy reaches a state of full automation at

the latest stage coming in hand with high sectoral labor force concentration.

These findings illustrate the connection between education costs and the time

until full automation. In particular, we emphasize that an educational cost

distribution that leads to human specialization in specific sectors and tasks

mitigates the risk of premature AI-induced automation as explained in more

detail in Section 4.4.

4.5.4 AI and Income Inequality

Now, we emphasize how the costs of education relate to income inequality in

the economy. We depict the education costs and the Gini coefficient82 as a

measure for wage inequality (the only source of income for ordinary workers in

our economy) before the long-run steady-state is reached in Figure 4.7, again

with different values for q and γ to assess the sensitivity of our findings.

We observe that if the factor share of AI is high, given by a high γ, or the

self-learning of AI is strong, given by a large q, the economy reaches a state

with a high level of inequality and a Gini coefficient close to one, regardless

81For the sake of simplicity, we assess the economy with q = 0.9, γ = 0.4.
82The Gini coefficient, is a measure of statistical dispersion used to quantify the inequal-

ity of a distribution, in our case income and commonly employed to assess the degree of
inequality present in a society or economy. It is defined within a range of 0 to 1, where a
Gini coefficient of 0 represents perfect equality, indicating that everyone in the population
has an equal share of the attribute being measured. A Gini coefficient of 1 represents perfect
inequality, implying that one individual possesses all the attribute being measured, while
everyone else possesses none. It is calculated as follows:

G =

∑n
i=1

∑J
j=1 |xi − xj |
2n2x̄

Where:

• n is the number of individuals in the population.

• xi and xj are the values of the attribute being measured for individuals i and j.

• x̄ is the mean of all x values in the population.

.
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 = 0.15

 = 0.3

(a) With q = 0.9

q = 0.875

q = 0.975

(b) With γ = 0.15

Figure 4.7: Income Inequality Depending on the Cost of Education.

of whether education is cheap or expensive. The reason for that is that only

high-skilled agents, who can afford to invest in costly education can remain

employed and earn a wage income whereas agents in lower-ranked sectors are

increasingly replaced by AI. As a result, significant wage inequality emerges.

The same holds true if education is inexpensive and either the learning rate

of AI, represented by q, or its factor share, represented by γ, is large. In such

cases, even though agents have the opportunity to educate themselves for

being able to work in high-ranked sectors, AI develops too quickly and fully

automates all sectors before agents can transition to non-automated sectors.

This premature AI-induced automation also leads to a state of high inequality.

Conversely, if AI development is characterized by a lower factor share of

AI, agents have a sufficient time horizon to invest in education and engage in

more complex tasks with higher wages. As a result, a lower level of inequality

is reached in the economy as agents persistently invest in education to work

in more complex tasks with higher wages. It is particularly noteworthy that

the lowest levels of inequality can be achieved when education costs are at

a low or moderate level, regardless of the values of the parameters γ and q.

As explained earlier, this occurs because moderate education costs create a

situation where all agents can afford to work in a sector of moderate rank but

the educational cost in this sectors with a moderate rank does not allow them

to educate themselves to reach higher-ranked sectors.
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4.5.5 Economy with Public Education

In addition to an environment with private investments in education, we assess

an environment with public investments in education. We assess an economy

where all agents pay a mandatory contribution relative to their income to

support education via a public redistribution system. Thus, all (employed)

agents contribute a share τ of their wage income to the educational fund.

Consequently, the total volume of the fund is given by Γ =
∑J

j=1

∑2
s=1 τw

j
tL

s,j
t .

We argue that this fund is redistributed to all agents in the economy, such that

each agent obtains a lump-sum transfer given by Ω =
∑J

j=1
Γ∑3

s=1 L
s,j
t +Us,jt

that

can solely be used to invest in education.

 = 0.0

 = 0.5

Figure 4.8: Time until Full Automation of all Sectors with Public Education,
with q = 0.9 and γ = 0.25.

We depict how such a mechanism affects the economy and the time until

full-automation in the economy in Figure 4.8. We observe that a higher tax

rate, given by τ , dedicated to supporting educational investments can lead

to higher levels of education, thereby enabling agents to remain employed

for more periods. For instance, in a scenario where education is costly and

E0 = 0.06, and no public education policy is installed (τ = 0), all sectors

would become automated within 11 periods. However, if a public education

mechanism is introduced with a tax rate of τ = 0.5, all agents would face

unemployment after 19 periods. Thus, by introducing a public educational tax
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system, agents would be able to invest in more education and acquire better

skills, allowing them to secure employment for a more extended duration.

4.5.6 Unemployment Policy

Unemployed agents in our baseline economy do not obtain any income and can

neither borrow nor lend—as they have a zero future income. An unemployment

policy would be their only source of income. In case of a public unemployment

policy, all employed agents pay a share ξ of their wage (which in our model

is the only source of income) such that the total fund that is used for the

unemployment policy is given by Ξ =
∑J

j=1

∑2
s=1 ξw

j
tL

s,j
t . We argue that this

fund is redistributed to all unemployed agents in the economy, such that each

unemployed agent obtains a lump-sum transfer given by Φ = Ξ∑J
j=1

∑3
s=1 U

s,j
t

.

Yet, the introduction of an unemployment tax reduces the net income of

each employed agent and thus reduces the possibility that these agents invest

in education. Therefore, their individual risk of being replaced by AI rises

as they can only invest less in education to evade AI-induced replacement.

Nonetheless, an unemployment fund might serve as a measure for reducing

income inequality and curtailing the risk of mass impoverishment due to a

re-distributive measure allocating a minimum income to unemployed agents.

We depict the effect of a re-distributive unemployment policy on the de-

velopment of the Gini coefficient with a rising stock of AI in Figure 4.9.83

We note that the higher the tax rate (τ ∈ (0.0, 0.3)) that is deducted by all

employed agents in the economy, the lower income inequality in the economy.

However, we observe that the effectiveness of an unemployment policy relative

to a scenario without such a measure declines over time with a rising level of

AI.

Moreover, we compare the effect of an educational policy and unemploy-

ment policy on inequality and the time until full automation in Figure 4.10.

We observe that irrespective of the education costs, an education policy re-

distributing the educational costs is more effective than an unemployment

policy in prolonging the time until full automation. Yet, a comparison of the

two policies with respect to their effect on mitigating inequality remains dif-

ficult. On the one hand, an unemployment policy distributes a basic income

83For the sake of simplicity, we assess the economy with q = 0.9, γ = 0.4 and E0 = 0,
such that education is free.
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 = 0.0

 = 0.5

Figure 4.9: Income Inequality Depending on the Tax Rate for the
Unemployment Policy,

with γ = 0.15, q = 0.9 and E0 = 0.072.

to agents without any labor income which reduces economy-wide inequality,

albeit without promoting further skill development. On the other hand, a

public education policy, especially benefits low-income agents that would not

be able to invest in education without the education support. In this way,

inequality is reduced as especially low-income agents benefit from more edu-

cation possibilities allowing them to acquire new skills. Nonetheless, in case

of solely a public education measure, unemployed agents still face impoverish-

ment as they do not obtain any income, which increases inequality. Therefore,

an education policy and unemployment policy target inequality reduction via

different channels which renders a comparison of their effectiveness difficult.

We additionally illustrate the ambiguous results on the relative effectiveness of

an unemployment policy compared to an education policy in Figure 7.5 in the

Appendix in Section 7.3—which is based on Figure 4.10. However, we observe

in Figure 7.5 that if only low taxes can be charged, there are scenarios, where

a public education policy is always more effective in reducing inequality than

an unemployment policy.

We note that in the numerical example at hand and in particular in case

of low education costs, we cannot provide conclusive insights into the relative
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(a) Income Inequality (b) Time Until Full Automation

Figure 4.10: Income Inequality and Time until Full Automation
with q = 0.9 and γ = 0.25.

effectiveness of education and unemployment policies. In a scenario with high

education costs and little fiscal possibilities—only allowing for low taxes—an

unemployment policy might be more effective in mitigating inequality than an

education policy. Yet, with higher potential tax rates, the education policy

becomes increasingly effective in reducing inequality. In case of low education

costs, our numerical results regarding the policy effectiveness rather suggest

that an unemployment policy is more effective in reducing inequality.

In conclusion, we observe a trade-off between delaying full AI-induced au-

tomation through a focus on educational policies to uplift low-skill individu-

als and implementing a basic income mechanism for unemployed individuals.

Both mechanisms also contribute to reducing income inequality, but we cannot

make a universal comparison of their effectiveness in achieving this goal. Yet,

we note that an unemployment policy serves primarily in serving already ex-

isting AI-induced inequality but not for slowing down the pace of AI-induced

automation. We thus speak in favor of increasingly discussing how educational

support enabling agents to acquire new skills could be promoted in AI-intensive

economies.

4.6 Discussion

In our model, we assume that AI eventually automates all sectors in the long

run, and as a result, our analysis focuses on the transitory dynamics leading
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up to that equilibrium. Even if we were to consider the creation of new tasks

and sectors as AI advances, the long-run steady state would still be deter-

mined by the relative speed of task automation compared to the speed of task

augmentation. In our approach, where task creation is not considered, an al-

ternative interpretation suggests that task automation progresses at a faster

pace than task augmentation. This dynamic leads to a long-run scenario where

AI-induced automation encompasses all tasks, resulting in a fully automated

landscape.

Our framework posits that firms select the production technology that

maximizes their total output. Consequently, we find that a high concentra-

tion of labor force within a sector reduces the risk of automation. However, it

is essential to acknowledge that alternative mechanisms defining firms’ tech-

nological choices, such as considering the marginal return of different input

factors, could yield different outcomes in our model. Despite the limitations

of our approach, we highlight the significant advantages of advocating for hu-

man specialization in specific tasks where they can maintain a comparative

advantage over AI.

Eloundou et al. (2023) state that exposure to AI tend to be heterogeneous

within occupations and depend on the task-level. They already assess the

validity of a task-based framework as it may be unreasonable to break down

occupations to separate tasks. In our model, we solely focus on tasks and do

not consider entire occupations. Yet, each occupation can be interpreted as a

bundle of tasks. This should not be disregarded in the interpretation of our

model. Nevertheless, our focus remains on AI-induced automation specific to

tasks. This decision is driven by the ongoing (empirical) challenge of quanti-

fying the potential for AI to entirely replace entire occupations. For instance,

Gries and Naudé (2022) argue that a distinction between abilities and tasks

facilitates an empirical analysis of AI-induced automation. An avenue for fu-

ture research would be an empirical analysis to estimate the development of

the elasticity of substitution between AI and human labor for tasks, abilities

or entire occupations to be able to determine which jobs are especially at risk

of being automated. Furthermore, we encourage researchers to increasingly

explore and collect empirical information on sector-specific AI adoption and

to invest in further investigations into the potential growth path of AI. These

efforts will not only broaden the scope of economic research beyond theoretical

and conceptual studies in the economics of AI but also foster the calibration

154



Discussion AI and Education

and empirical estimation of an increasing variety of existing models.

Education in our framework is defined as knowledge that can immediately

be applied on the labor market. Therefore, we do not have to assume a time

lag between investments in education and its financial payoff. In reality, e.g.,

primary education and the first salary are very much time separated from each

other. In our case, we therefore rather assume task-based education, so that

by investing in education, agents can immediately perform a greater number

of tasks and can thus advance to better-paid sectors.

Cervellati and Sunde (2005) argue that all humans are unskilled at their

birth and then need to subsequently acquire human capital such that each

generation has to build up its stock of knowledge embodied in persons. Thus,

our model needs to be interpreted with caution as we do not grasp the time

component in the educational decision process and regard skills as inheritable

to future generations.

A possible expansion to our model is to consider not only the channels

that affect agents’ wage income but also their capital income. Especially in a

long-term steady state without human labor, capital income is of major impor-

tance for determining income inequality. It would be interesting to explore the

strategies agents could adopt to maintain an income and leverage AI without

actively participating in the labor force. Additionally, one could discuss the

potential implementation of a government-initiated redistribution mechanism

to ensure that the benefits of AI are shared in the long run, rather than solely

benefiting AI entrepreneurs that own AI-developing companies.

The Windfall clause (O’Keefe et al., 2020) proposes an ex-ante commit-

ment of AI firms to donate parts of their profit to broadly benefit humanity.

We see the introduction of a Windfall clause such that the benefits of AI are

distributed for the common good and technology companies have social re-

sponsibilities to serve the interest of the broad society as an interesting avenue

for future research. Moreover, it should be more extensively discuss how an

AI-tax (see Gersbach et al. (2022)) could raise per capita output and welfare—

aligned with the proposition of Gasteiger and Prettner (2022), who advocate

the introduction of a robot tax redistributing robot income to labor income.

Moreover, it is an interesting avenue for future research to investigate how

agents could actively invest in same kind of share value to benefit from future

AI profits. In addition to investing in education, agents could then choose to

purchase assets linked to the development of AI. These investments in AI could
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also be seen as a form of automation insurance where agents can benefit from

the profits generated by AI. As a result, unemployed agents can still benefit

from AI if they have previously invested in AI shares. Such a mechanism

that may guarantee a basic income even in case of full AI-induced automation

should be assessed in future research. Schaefer and Schneider (2023) discuss

in more detail how a private technology insurance scheme with precautionary

savings, a universal basic income and a governmental technology insurance

scheme can promote growth in an economy with AI in an inclusive manner

and mitigate income inequality that arises from AI-induced displacement risks.

4.7 Conclusion

This study highlighted the pivotal role of education in shaping economic

growth, income inequality, and unemployment, especially in the context of the

evolving impact of Artificial Intelligence. Motivated by Autor et al. (2020b),

we assessed how AI-induced automation reduces the number of jobs when hu-

mans’ comparative advantage compared to AI vanishes over time, eventually

spurring mass unemployment and impoverishment in the long-run. Using a

multi-sector and task-based growth model with overlapping generations, AI’s

self-learning characteristics are particularly highlighted. In our approach, the

growth trajectory of AI is parameterized as an S-shaped curve, characterized

by an initial period of rapid acceleration, followed by gradual attenuation,

ultimately converging to zero growth in the long run. In our model, as in-

termediate good production becomes more reliant on AI, various scenarios

involving the interplay among AI, education, and inequality are assessed using

comparative statics analyses and numerical quantifications. We stress how the

widespread deployment of self-learning AI across various sectors is accelerating

the risk of AI-driven automation and job displacement. The concentration of

(especially low-skilled) workers in a specific sector—which we define as human

specialization—narrows the application area of AI, consequently diminishing

the risk of automation driven by AI. Moreover, human specialization can mit-

igate AI-induced income inequality.

We thus discussed several policy interventions, in particular unemploy-

ment benefits and public funding fur the financial support of education. An

unemployment fund can reduce income inequality by providing a minimum

income to the jobless, whereas a public education policy particularly benefits
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low-income agents. A (public) education policy re-distributing educational

costs tends to be more effective than an unemployment policy in prolonging

the time until full AI-induced automation. However, comparing the impact

of education and unemployment policies on reducing inequality is challenging.

We observed a trade-off between delaying full AI-driven automation by pri-

oritizing education for low-income individuals and addressing inequality. We

conclude that the effectiveness of a re-distributive unemployment and (public)

education mechanism depends on factors like tax rates and educational costs,

making generalizations difficult. Yet, we emphasize that it is essential to im-

plement adequate educational policies that enable humans to preserve their

comparative advantages in tasks that are currently unaffected by AI.
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Chapter 5

AI Regulation: The Rise of

Artificial Intelligence—Towards

a Modernisation of Competition

Policy∗

Abstract

We aim at investigating to what extent the increasing importance of software,

data and AI poses a threat to competition that requires further supervision

and regulation of antitrust and competition policy. Today, higher market

concentration and higher markups can be observed in industries with high

investments in intangible assets. Despite initial findings on the relationship

between investments in software and data and effects on market concentration

and possible distortions of competition, no clear conclusions can be drawn

by now about the specific effects of AI on competition due to a lack of an

appropriate database. Nonetheless, we suggest that political funding is needed

to support the entrepreneurial integration of AI, as well as a modernisation

of competition policy and anti-trust legislation in order to be able to prevent

emerging competition deficiencies in increasingly AI-intensive economies at an

early stage.

∗This project is joint work with Christoph Menzel. We thank Hans Gersbach, Michael
Vogelsang and members of the departments WA, IC1 and IB1 of the German Federal Min-
istry for Economic Affairs and Climate Action, participants of the ETH Astute Modeling
Seminar 2022 and EPEAI Conference 2023. We thank IBM Germany for the database of
the IBM AI Index 2022.
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5.1 Introduction

Already today, an increase in market concentration is noticeable in the mar-

kets for software, social media or communication networks-especially due to

the rapid rise of Tech Giants, companies such as Apple, Alphabet, Meta, Mi-

crosoft or Amazon. Novel political and economic challenges need to be faced

in increasingly digitally-intensive markets, which have already led to new com-

petition regulations such as the Digital Market Act (DMA), American Choice

and Innovation Online Act or the Digitalization Act as an amendment of the

German Competition Act.

The rise of the Tech Giants is largely based on progress in information

and communications technologies (ICT) and direct and indirect network ef-

fects Rochet and Tirole (2006), as well as the growing importance of machine

learning and Artificial Intelligence (AI) technology. In recent years, there

has been a significant acceleration in the development and employment of AI,

with strong differences in the corporate integration of AI between countries

and between sectors. The corporate development and employment of AI offers

a wide range of new and often unforeseeable opportunities: from an increase

in efficiency and sustainability in production (Industry 4.0) to targeted, cus-

tomisable provision of products and services to entirely new business models.

Nonetheless, there is an increasing debate about the extent to which AI and

will lead to imperfect competition, price markups and market barriers—as it

has happened in the Tech Giant-dominated software industry due to the rising

importance of ICT. Especially online markets exhibit high profit margins and

low rates of market entry hinting at significant market barriers Stigler Com-

mittee (2019). The increasing corporate integration of AI has the potential

to further reinforce market concentration and create situations where leading

companies (”first movers”) gain a dominant position in the market. Especially,

the economies of scale and scope in digital economies may be a great compar-

ative advantage for dominant firms and aggravate contestability of firms with

market dominance Schweitzer et al. (2022).

A rise in market concentration can be observed especially in sectors with

increasing investments in intangible assets. Recent studies (Bajgar et al., 2021;

De Loecker et al., 2020; De Ridder, 2019; Goldin et al., 2020) show that such

investments have been a key driver for increasing market concentration over

the last two decades. Rising corporate profits can be especially attributed
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to the increasing use of ICT, with market shares increasingly concentrated

in individual companies with high price markups. As an appropriate dataset

that would allow for an analysis of the effect of corporate AI integration on

market concentration is not yet available, we examine investments in intan-

gible assets (e.g., software and databases) as an essential prerequisite for the

deployment of AI. We explore to what extent market concentration is linked

to markups and investments in intangibles and discuss policy interventions

that may decrease the risk of declining competition in digital economies. In

particular, we call upon an introduction of an early warning system for de-

tecting competition-hampering trends in digital markets and a modernisation

of anti-trust regulation in light of the increasing importance of AI.

5.2 Literature

The literature makes a distinction between “weak” and “strong” AI, the first

describing the software-driven solution of specific application problems and

the second characterising a technology that can (at least) reproduce human

intelligence (Menzel and Winkler, 2018). However, an overarching, general

definition of AI is still missing and we thus will use the following definition: The

term AI describes algorithms and their use in software tools that simplify tasks

such as search operations, pattern recognition, inference or planning (”weak

AI”). In contrast to previous ICT technologies, however, AI is unique, as it

can develop autonomously through its self-learning properties (Brynjolfsson

et al., 2017), by application and training, for example through deep machine

learning or reinforcement learning (Lu, 2020). It can therefore be described

as a “self-learning technology” (Gersbach et al., 2022). Furthermore, AI is

described as an intangible asset that is easy to scale up since AI software can

be used simultaneously by multiple users (in a non-rival fashion) at relatively

low variable costs.84

With growing regularity, the topic of AI is considered separately in the

economic literature, as distinct from automation (Aghion et al., 2017), and

discussed in connection with topics such as the economics of data, for instance

84Barker et al. (2022) define intangible assets as assets acquired through research and
development, human capital developed through investment in employees, the value of supply
chains and product distribution systems, brands, software investments and the organisation
of the company.
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by Jones and Tonetti (2020). For example, Trammell and Korinek (2020) ad-

dress the effects of AI on the employment structure, income structure, and the

resulting productivity effects. In addition to the classic economic factors of

production—namely labor, capital and natural resources—data, software and

AI are playing an increasingly important role in digital economies (Varian,

2018; Wagner, 2020). Schweitzer et al. (2022) refer to the necessity for invest-

ments in AI for training and development and point out that the assumption

that only a few firms can afford to invest in data-driven AI tends to further

increase the risk of monopolisation in concentrated markets. Increasingly, AI

is not only playing a crucial role in the tech industry, but is also increasingly

employed in other industries, such as the automotive industry (Falcini et al.,

2017), the agriculture and food industry (Patŕıcio and Rieder, 2018), supply

chain management and logistics (Cioffi et al., 2020), and in automated contract

verification and automated sales (Ernst et al., 2019). Varian (2018) points out

that there is great potential to include AI in industrial production, especially

in the ICT, high-tech and energy industries. He addresses the limitations of AI

applications in the travel industry, tourism industry or construction industry.

Considering the global developments of the last decades, Akcigit et al.

(2021) note that average market concentration at the macroeconomic level

has increased, firms’ markups and profitability have increased significantly,

and market shares are increasingly concentrated in single companies with high

markups, a tendency that is particularly pronounced in the ICT and pharma-

ceutical industries. Increased market concentration does not necessarily imply

weaker competition. It can also be observed when the most innovative and

productive firms have a high market share (Bajgar et al., 2021; Bighelli et al.,

2021). However, Autor et al. (2020a) and Raurich et al. (2012) show that

higher markups are being charged, in particular in markets with imperfect

competition. Therefore, Effenberger et al. (2020) summarise that increased

market concentration can be a sign of allocative efficiency, but also of reduced

competitive pressure and associated productivity losses. Davis and Orhangazi

(2021) provide empirical evidence that market concentration has increased,

especially in the retail and ICT sectors, whereas Calligaris et al. (2018) note

that this increase leads to a decrease in firm dynamics. Bajgar et al. (2021)

show that an increase in market concentration occurred especially in globalised

and digitization-intensive industries. Markiewicz and Silvestrini (2021) explain

market concentration dynamics in various industries by different exposures to
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Information and Communication Technology with an increase in entry costs

in a setting with heterogeneously-productive firms. They show that markups,

market concentration and profits are higher in high-ICT industries, compared

to low-ICT reference industries. In this sense, Aghion et al. (2019) conceptual-

ize how increasing firm concentration and profits have risen due to advances in

ICT. According to Aghion et al. (2019), advances in information and commu-

nication technology (ICT) have led to increasing corporate concentration and

higher profits. Additionally, Diez et al. (2021) observe a similar rise in market

concentration, particularly within the information and communications indus-

try. In their empirical analysis focusing on France, Lashkari et al. (2018) find

that the decline in ICT prices plays a significant role in explaining changes

in market concentration and impacts the labor share. Akcigit et al. (2021)

observe that market shares have been increasingly concentrated on a minority

of firms with high price markups, a phenomenon that is especially pronounced

in the technological and pharmaceutical industry. Furthermore, Raurich et al.

(2012) argue that changes in price markups account for 63% of the variations

in the labor income share in Spain and 57% in the USA.

At the same time, Autor et al. (2020a) describe a rise of superstar firms, as

mostly large firms with a high degree of ICT can become more productive, and

as firms with high investments in intangible assets have higher profit margins

and lower labor shares. With the increasing importance of intangible assets,

fixed costs incurred for the development of databases or the acquisition of

software are playing a greater role in the integration of new technologies into

production processes (Grossman and Oberfield, 2021; European Commission,

2021a). However, high fixed costs can have a significant impact on market

competition when serving as market barriers for competing firms (Haskel and

Westlake, 2017), as is already visible today in the Tech Giants-dominated

software industry. Moreover, Wagner (2020) discusses how the structure of AI

networks can lead to increasing market dominance.

5.3 Descriptive Evidence

A detailed dataset on corporate investments in AI applications and their effect

on market concentration is not yet available. However, the IBM AI Adoption

Index 2022, which is based on company surveys, provides initial indications

of application areas, driving forces and barriers to AI by industry and coun-
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2018 2020
Software/Inform. Service /Telecomm. 6.88 4.47
Information and Communication 5.59 3.81
Electric Engineering 1.22 3.12
Legal/Business Corporate Consulting 1.46 2.17
Financial Services 1.43 1.82
Electronic/Metrology/Optics 2.56 1.74
Professional/Scientific/Technical Services 1.18 1.52
Railroads/Ships/Airplanes 0.72 1.28
Publishing/Film/Broadcasting 0.89 1.27
Advertising/Creative Services 0.95 1.14
Glass/Ceramics/Stoneware 0.28 0.28
Mining 0.31 0.26
Food/Beverages/Tobacco 0.15 0.23
Metal Production 0.17 0.22
Mineral Oil 0.05 0.10

Source: ZEW (2020) – Annual German Innovation Panel.

Table 5.1: Expenditures on Software and Databases in % of Sales of all German
Firms by Industry.

try. Only around 25% of the 7502 companies surveyed in the IBM Global AI

Adoption Index 2022 indicate that they have a holistic strategy on AI across

the organisation (International Business Machines Corporation, 2022). In Ger-

many, for instance, the IBM Global AI Adoption Index 2022 shows that across

industries, above all a need to reduce costs, automate processes (for example

advancing “Industry 4.0” Brühl (2015)) and a shortage of skilled workers are

promoting increased AI use in companies. In general, investments in software

and data infrastructure represent a prerequisite for the implementation of AI

applications. With the help of the annual German innovation panel from 2018

and 2020, which was commissioned by the Federal Ministry of Education and

Research in Germany and is provided by the Centre for European Economic

Research (ZEW), further insights into sector-specific investments in software

and data can be made.

Table 1 shows expenditures on software and databases as a percentage

of turnover for all enterprises for selected economic industries in Germany

(according to Level 2 NACE Rev. 2 classification). We show the values for

the ten industries with the highest investments and five industries with the
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lowest investments in software and data. The highest investments in software

and data are made in ICT, electronics, as well as financial and consultancy

services. The lowest investments in software and data can be observed in

mining, metal production and the food and beverages industries. In general,

great heterogeneity can be observed between industry-specific expenditures.

For example, in 2020, the expenditures in the software and ICT sector were

44 times higher than in the mineral oil sector.
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Figure 5.1: Market Concentration measured by HHI per Economic Area.

In the following, market concentration in different economic sectors is con-

sidered and placed in the context of investments in intangible assets. The con-

sideration of sector-specific market concentration is based on the Herfindahl-

Hirschmann Index (HHI)—the sum of the squared market shares of the com-

panies in an economic sector.85 The average HHI (weighted by the revenue

85The HHI is determined by using the following equation, where xi represents the turnover

of a single firm i, and H =
∑N

i=1

(
xi∑N

j=1 xj

)2

. The value of HHI thus obtained is multiplied

by 10000 and takes values between 10000
N ≤ H ≤ 10000. The higher the HHI, the higher the

market concentration, with values below 1000 considered harmless and considered critical
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of each firm) for each aggregated economic area (Level 1 by NACE Rev. 2

classification) is determined86 and the development of the HHI in Germany

per economic area is illustrated in Figure 5.1.

Based on the HHI, we note strong differences in revenue concentration

between economic areas. In 2019, we observe the maximum market concen-

tration (HHI = 2015) in the financial and insurance services sector, while

the lowest value (HHI = 23) was found in real estate and housing. We see

over time that low values of the HHI are realised primarily in the economic

sectors of real estate and housing, hotels and restaurants, construction and

water supply. In contrast, we observe high values of the HHI especially in

the sectors of information and communication, energy supply, mining, finan-

cial and insurance services. We note medium levels of business concentration

in the transport/warehousing and manufacturing sectors. Moreover, we ob-

serve strong differences in the fluctuations of market concentration between

the economic sectors. While there are hardly any year-related differences in

real estate and housing or water supply, there are great temporal variations

in mining, the information and communication sector or energy supply, which

could indicate a shift in the changing market dominance of individual firms

but will not be further examined.

To further highlight the link between investments in intangible assets ,

market concentration and markups we depict several scatterplots in Figure

5.2, which are based on CompNet data for the countries France, Germany,

Netherlands, Switzerland, Italy, Spain and Poland. An observation point rep-

resents a specific economic industry (Level 2 by NACE Rev. 2 classification)

from the abovementioned countries in 2018. We note that industries with high

investment in intangible assets and industries with high market concentration

show higher markups on average. The provided confidence intervals addition-

ally indicate a positive relationship between markups, market concentration,

and investments in intangibles. Yet, no direct link between markups and mar-

ket concentration can be noted. Moreover, it should be to emphasised that

mark-ups are particularly associated with a lower labor share, which could be

above 1800 (Effenberger et al., 2020).
86For the calculation, a weighted average of all economic classes is determined based on

the total revenue, in order to determine the HHI for an entire economic sector. Another
measure for assessing market concentration is the concentration rate (CR), which we cal-
culate for each economic sector, based on official data from the German Federal Statistical
Office. Using this measure, we obtain similar results regarding sector-specific concentration.
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indicative of an increasingly unequal society, where asset owners benefit from

markups at the expense of the labor income. As mentioned in Section 5.2,

existing literature points to the relevance of intangible assets for the increase

in market concentration, especially in the ICT sector. A descriptive study of

the available data, for Europe and especially for Germany, strongly supports

this hypothesis. In Germany, high investment in software and data can be

observed in the ICT-intensive sectors (see Table 5.1), as well as high market

concentration in the energy, ICT, financial and insurance services sectors (see

Figure 5.1).
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Figure 5.2: Scatterplots Markups, Investments in Intangible Assets, Labor
Share and Market Concentration.

Based on the available data, we draw initial conclusions about the effects

of intangible assets and in particular, software and data on market concen-

tration and potential distortions of competition. We note high investments in

software and data in Germany go hand in hand with high market concentra-

tion in the ICT and financial and insurance services sectors. We thus obtain
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initial findings that investments in AI may further lead to increased market

concentration, higher price markups and to lower labor shares. Nonetheless,

the relation between AI and the competition indicators under investigation

remains unclear. On the one hand, new and innovative companies could use

AI to challenge the market dominance of individual companies. On the other

hand, in sectors in which high market concentrations have already been ob-

served in recent years, such as in the energy, financial and insurance services or

ICT sector, a stronger corporate integration of AI could hamper market entry

of competitors. This could result in higher market concentrations, markups

and lower labor shares. However, more detailed empirical research and new

data sets with more information on the economic integration of AI are needed

to assess the (causal) relationship between AI and market competition. Nev-

ertheless, we discuss policy interventions for reducing the risk that AI might

lead to further distortions in competition enclosing allocative inefficiency.

5.4 Policy Implications

Now that the Tech Giants have established their powerful market position in

online services such as search engines, social networks or mediation—it is rea-

sonable to assume that similar developments can also be expected in other

industries due to the rise of self-learning AI. At the EU level, an initial step

for regulating digital markets was made with the Digital Market Act (DMA)

focusing on central platform services and gatekeeping firms with large market

shares. In Germany, the GWB was mainly a result of the recommendations of

the Monopolkommission (2018, 2022), promoting an adaptation of competi-

tion policy and legal framework to the digital transformation for counteracting

potentially reduced firm competition in digital markets. Yet, the effectiveness

of newly established regulatory interventions such as the GWB, DMA, Data

Governance Act, or American Choice and Innovation Online Act in light of an

increasing importance of AI—enclosing novel challenges for market regulation

– remain unclear. Increasingly, the European Union is considering far-reaching

legislation on artificial intelligence (AI) for fundamental rights and safety re-

quirements of AI systems European Commission (2021b). Despite efforts to

address issues like market fragmentation through new measures, Borgogno and

Zangrandi (2022) underscore the significance of the interplay among data con-

trol, national security, and competition law. Therefore, we stress the need for

168



Policy Implications AI and Regulation

a thorough evaluation of new potential competition challenges in markets that

are becoming progressively AI-intensive.

5.4.1 Challenges in Regulating Digital Economies

Podszun (2022) refers to the fundamental architecture of competition law and

the enforcement of traditional antitrust law, which increasingly shows signif-

icant inefficiencies in digital ecosystems. More specifically, Furman and Sea-

mans (2019) and Wagner (2020) refer to the risk of winner-take-all market

structures that could make competition in AI-intensive industries more chal-

lenging. Especially in concentrated markets, firms have the potential to harm

the competitiveness of a market as monopolistic firms can personalise decisions

to users and firms Hardt et al. (2022), and can thus steer consumers towards

more profitable behaviour. Existing antitrust concepts have struggle in iden-

tifying anti-competitive patterns in digital ecosystems Hardt et al. (2022), es-

pecially regarding platform competition in digital markets. The reason is that

several competition measures (i.e., Lerner or Herfindahl-Hirschmann Index)

require appropriate market definitions to be able to detect market dominance.

As market boundaries can only be hardly determined Stigler Committee (2019)

in digital economies, it is difficult to employ appropriate measures for an ef-

fective competition enforcement in case of market failure in digital ecosys-

tems. With the increasing risk of data-based market concentration, there are

novel requirements for national and international competition policy to limit

i.e., the purchase of rivals by incumbents. Moreover, the definition of market

boundaries needs to be adjusted to new and expected developments in digital

economies to adapt competition law. In addition to an appropriate minimum

taxation of digital firms and an internationally consistent reform of the tax sys-

tem Faulhaber (2019), novel intervention options for taxing tech monopolies

should be discussed in order to be able to guarantee a market order that pro-

motes competition in software-intensive industries. We argue that distortions

resulting from taxation, public spending and subsidies should be prevented,

but innovative firms should still be adequately supported to be able to compete

against technological leaders. Nevertheless, the system of privatised gains and

socialised losses in digital economies should be further reviewed and modified,

i.e., by the introduction of an international minimum tax OECD (2021). Fur-

thermore, new international legal frameworks are needed to define intellectual
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property rights for non-human work, in particular software and AI, through

adequate patent regulations Ernst et al. (2019). A modernisation of property

rights to render such laws flexible and versatile would be advantageous to en-

able a co-ownership of data users and data holders that does not favour any of

the parties Schweitzer et al. (2022) and give each party the independent right

to use the data without the approval of the other party.

5.4.2 Measures supporting the Economic Integration of

AI

The aim should be to create incentives for AI development, to promote the

availability of data and AI applications as a public good and to prevent

possible—sometimes “natural” (network and scale effects)—monopolisation

tendencies. Haskel and Westlake (2017) suggest the creation of new insti-

tutional foundations in order to secure market competition in view of the in-

creasing relevance of intangible assets. A digital environment should be created

that supports corporate integration of AI and allows for fair firm competition.

Diez et al. (2021) argue that especially the elimination of obstacles that hinder

technologically-lagging firms (referring to their potential for corporate AI in-

tegration) from competing with technological-frontier firms are an appropriate

policy intervention. For this reasons, we propose that technologically-lagging

firms should be subsidised to invest in AI infrastructure so that they can com-

pete with technologically more advanced firms. One idea, for example, might

be to grant technologically-lagging companies with funding for their expansion

of AI infrastructure (i.e. servers, data centres) or their general AI productivity

in order to promote their competitiveness. To stimulate growth-enhancing AI

competition and sharing the benefits of AI across all actors in an economy, a

tax on profits in digital markets with imperfect competition or a so-called “AI

tax” Gersbach et al. (2022) could be introduced. However, further scientific

research on such tax policy interventions is needed to adequately assess the

effectiveness of such measures. In addition, access to data, software and the

use of AI should be increasingly promoted to support innovative, small and

medium-sized firms in the research, development and deployment of AI. Yet,

the IBM Global AI Adoption Index 2022 points to the current challenges in

corporate AI integration that persist despite AI support measures such as the

AI/Blockchain Investment Support Program at the European level European
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Commission (2021a). The absence of AI know-how continues to pose a sig-

nificant barrier to the integration of AI in businesses. This is succeeded by

challenges in effectively integrating and scaling AI projects, dealing with high

AI expenses, and the lack of a comprehensive corporate strategy for AI imple-

mentation (IBM Corporation, 2022). Moreover, Schweitzer et al. (2022) point

out that only few firms nowadays consider data sharing as a relevant feature of

their operating business model and attribute only minor importance to the ac-

quisition of external data. There is little empirical research on the importance

of data sharing, data portability and interoperability which is characterised

by issues related to liability, privacy, data and cybersecurity. All the more,

interoperable standards for data sharing should be established and trust and

communication in digitally-intensive economies should be promoted, especially

in the presence of substantial network externalities (Stigler Committee, 2019).

In this regard, Wagner (2020) emphasises that legislature and property rights

should facilitate data use, provision and sharing.

5.4.3 EarlyWarning System andModernisation of Com-

petition Policy

From a competition policy perspective, it is central to recognise increasing

concentrations and decreasing competitive pressure on digital-intensive mar-

kets and to be able to counteract anti-competitive developments at an early

stage. There is a need for anti-trust intervention options to regulate data-

driven monopolies at an early stage and not only after observing that firms

have reached market dominance. Competition-enhancing measures should be

on the political agenda in times of a growing AI integration and increasing

income inequality in data-based economies. Yet, the question arises at which

point regulatory institutions should intervene to not suffocate innovation but

still foster competition. Enforcement practices need to be adapted for being

able to cope with new challenges in a digital economy. Smart legislation with

competition by design (Podszun, 2022) should be promoted. To this end, either

new competition policy instruments can be used or established instruments,

such as merger control, can be modernized and strengthened. Research should

assess to which extent the increased use of AI applications poses a new risk

to competition, especially in areas where high market concentration already

prevails.
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There is a need for anti-trust intervention options that can regulate ex-

cessive market power in software-intensive industries at an early stage and

not only ex post in the case of classic market dominance, in order to be able

to guarantee a pro-competitive market order. Current regulatory measures

such as the DMA, Data Governance Act, or American Choice and Innova-

tion Online Act have the weakness that they can hardly react flexibly to new

technological developments and resulting distortions of competition and abuse

of market power. New competition policy instruments need to be developed

or established instruments, such as merger control, must be modernised to

be more effective. An ideal concept would be the establishment of an early-

warning system enabling market authorities to distinguish between harmful

and monopolistic competition and merely more concentrated markets where

innovative activities prevail. Experts of different fields should assess how to

improve ex-ante regulations that foster competition while also enabling the rise

of innovative firms. For example, a multi-factor indicator could be developed

such that an independent competition authority can detect imperfect compet-

itive markets and intervene, if necessary. Schweitzer et al. (2022) argue that

a sector-specific assessment of innovation and competition is required to have

an appropriate data governance regime and targeted regulation possibilities.

A possibility to modernise antitrust would be a transition from an adversar-

ial to a cooperative enforcement in increasingly digitally-intensive markets.

Yet, such novel political measures should also be practically put to the test

e.g., in real-world laboratories and regulatory sandboxes—to answer current

competition-related questions in increasingly AI-intensive markets. Addition-

ally, data intermediaries could be more involved for assisting in merger controls

and competition regulation for preventing collusion from market-dominating

firms.

5.5 Conclusion

AI is already considered one of the key technologies that will determine the

competitiveness of economies in an increasingly digitized world (European

Commission, 2021a). A detailed report of investments in AI applications in

companies combined with information on market concentration is not yet avail-

able as a data set. Yet, investments in intangible investments (e.g., computer

programs, databases and copyrights) represent a prerequisite for the imple-
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mentation of AI applications. In Germany, for example, high expenditures

on software and data can be particularly noticed in the ICT, electronics and

financial and insurance services sectors. By assessing data from the annual

German innovation survey and information from the CompNet database, we

observe increased price markups in the last decade in the European region

both in industries with high investment in intangible assets and with high

market concentration. Although there are large differences in market concen-

tration between economic sectors in Germany, there is no clear evidence of a

link between distortions of competition and AI investments. We emphasise

that economic research should examine more profoundly to what extent an

increased use of AI applications poses an additional risk to competition, es-

pecially in sectors where high market concentration already prevails. There

is still uncertainty about the legal development and the scope of regulatory

measures in the digital economy. This may further complicate the integration

of data, software and AI into business processes. New private law concepts,

anti-trust regulation and contemporary merger control laws are needed to en-

able an adequate balance and flexibility between regulation and shaping of

the market that enables market integration of data-driven applications and

reduces monopoly risks in digital economies (Schweitzer et al., 2022). We sug-

gest that a consistent international legal framework for the application of AI is

introduced and overlapping and interlocking sets of rules are examined. Fur-

thermore, financial support is needed to promote corporate AI integration in

the sense of a driver of technological development and a competition-promoting

instrument, as well as a legal adjustment of competition and anti-trust policy

to prevent market concentration in increasingly digital economies at an early

stage.
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Conclusion and Outlook

In the course of this thesis, my aim was to highlight the new social, economic,

and political opportunities and risks related to the rise of AI. One particular

aspect of AI that I sought to conceptualize, setting it apart from existing au-

tomation technologies, is its self-learning capacity. This feature introduces new

challenges for economic research, necessitating tools that extend beyond the

conventional economic theory toolbox. Modeling the future growth patterns

of AI and integrating them into standard economic models proved to be a sig-

nificant challenge during the writing of this dissertation, leading to trade-offs

in terms of tractability, flexibility, and alignment with existing expectations

for the development of AI. At the end of this dissertation, my primary aim is

to provide a subjective summary, emphasize crucial insights, and expand the

scope of discussion to include perspectives that go beyond my explorations.

The impact of AI on the labor market is a prominent focus of economic

research. While I start from the extreme premise of AI fully replacing hu-

man labor in some parts of my thesis for the sake of feasibility and consis-

tency, I do not completely align with the concerns of AI pessimists who argue

that humans’ comparative advantage over AI will inevitably erode over time,

leading to mass unemployment and long-term impoverishment. Throughout

history, the development of industry and technology has given rise to many

innovations—initially seen as luddite threats to human relevance. As a result,

I maintain a more optimistic view, particularly when considering human spe-

cialization. I believe that humans will continue to find their place in the labor

market, despite the new pressures of AI-induced automation.

Nonetheless, I advocate a more considerate dealing with the new challenges
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posed by AI. In particular, I suggest a thorough evaluation of potential com-

petition challenges in markets that are becoming progressively AI-intensive.

Even without large replacement of human jobs due to the rise in AI, I see a

risk that the current market situation will lead to further income divergences

as it is still unclear how to determine the beneficiaries of non-human work that

could lead to further income or firm concentration, as it has been already the

case in the ICT sector, where high market concentration already prevails. In

particular, it should be prevented that there is a growing disparity in income

and consumption between ordinary workers and AI-owning entrepreneurs that

can increasingly benefit from non-human work. Moreover, it should be pre-

vented that rising market dominance in AI-intensive economies accelerate the

decline in the labor share.

It is essential to develop a consistent international legal framework for

corporate AI incorporation and its regulation, along with an examination of

interlocking sets of rules. Yet, I also propose a legal adjustment of compe-

tition and anti-trust policies to prevent early-stage market concentration in

increasingly digital economies. Currently, existing antitrust concepts struggle

to identify anti-competitive patterns within digital ecosystems, e.g., in the con-

text of platform competition in digital markets. There should be more political

discussion regarding the creation of new institutional foundations to safeguard

market competition in light of the growing economic significance of software,

data, and AI. Furthermore, modernizing property rights to make competition

laws more flexible and versatile would be advantageous for addressing the risks

of imperfect competition and for ensuring a fair distribution of the benefits of

AI. An ideal concept involves the establishment of an early-warning system

that empowers market authorities to distinguish between harmful monopolistic

competition and markets that are merely more concentrated due to prevail-

ing innovative activities. Therefore, I support the evaluation of implementing

proactive regulations that promote competition while also fostering the emer-

gence of innovative firms in digital markets by financially supporting corporate

AI integration as a driver of technological development.

Potential governmental interventions like AI or profit taxes, a basic income,

or other re-distributive measures should be discussed more profoundly at the

interface between research and policy making for preventing the rise of an

increasingly unequal society while guaranteeing a growth-enhancing introduc-

tion of AI in the economy. In particular, the effectiveness of a re-distributive
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unemployment and education mechanism fostering human specialization in

specific tasks should be considered.

A topic that has garnered my attention, yet is broadly neglected in this

thesis, is the distinction between developing and industrialized countries con-

cerning the potentially distinct economic and social effects of AI. Developing

countries, in particular, may lack the institutional framework to address the

rise in inequality driven by unevenly-distributed skill levels and technological

advancements in AI. To mitigate the risks associated with AI, there is a need

for multilateral measures that can effectively pave the way for appropriate

international AI integration.

Forecasting the future growth trajectory of AI continues to pose significant

challenges. Consequently, additional models and experimentation are essen-

tial to create an optimal and manageable framework for assessing the effect

of AI on economic indicators. Furthermore, exploring the potential use of

variable elasticity of substitution models, which assess the substitutability be-

tween technologies, labor, and capital, presents new analytical challenges for

economic research. However, it holds the promise of providing more insights

into the intricate relationship between technology and humanity.

Throughout this dissertation, my primary goal was to conceptualize the

impact of AI, specifically focusing on its influence on growth, competition

and inequality, while also identifying potential inefficiencies that could be ad-

dressed through a variety of measures. Presently, the field of AI and its future

development remains shrouded in uncertainty, presenting challenges on both

academic and political fronts. As a result, it is crucial for experts across various

domains, including philosophy, law, economics, and computer science, to foster

more extensive collaboration. This effort should prioritize the comprehensive

assessment of the economic and social opportunities and risks associated with

AI, with particular attention to aspects such as competition, fairness, inequal-

ity, and the long-term prospects for humanity.
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7.1 Appendix Chapter 2

Derivation of the Euler Equation in a Decentralized Econ-

omy

In a decentralized economy, each individual optimizes his consumption under

the conditions on the evolution of the capital stock (2.9) and an individual

budget constraint. Recall that depending on the sector of employment, the

individuals’ budget constraints differ. For instance, a constellation where all

entrepreneurs are employed in AI, high-skilled agents are employed in AR

and low-skilled agents work in the final good production, is characterized by

(2.21). In such a constellation, the individual budget constraints are specified

by (2.10), (2.11) and (2.12) and the optimization problem reads as follows:

argmax Uη =
∞∑
t=0

βtu(ct,η),

s.t. Kt+1,η = (1− δ)Kt,η + st,η,

ct,η + st,η = wt + rtKt,η +ΠR
t for η ∈ {U} in final good production,

ct,η + st,η = wRt + rtKt,η +ΠR
t for η ∈ {H} in AR,

ct,η + st,η = wAt + rtKt,η +ΠR
t +

N∑
j=1

ΠA
t,j for η ∈ {E} in AI,

with K0,η given.

By setting up a Lagrange Equation for an individual with skill level η with a

Lagrange multiplier λt,η and taking into account the evolution of the capital

stock, we obtain the following first order conditions:

FOCct,η : βtu′(ct,η)− λt,η0,
FOCKt+1,η : −λt,η + λt+1,η(1− δ) + λt+1,ηrt+10.

Combining the first order conditions translates into the following Euler Equa-

tion:

u′ (ct,η)

u′ (ct+1,η)
= β (1− δ + rt+1) .
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We note that the Euler Equation is independent of the individual skill level η.

Moreover, it is easy to verify that the same Euler Equation holds in all other

possible labor market constellations.

Final Good Firm’s Demand for AR and AI Intermediates

Differentiating (2.7) with respect to RD
t yields the following inverse demand

function for an AR intermediate of the representative firm:

γt = (1− α)ϕR
Yt

lDt + ϕAADt + ϕRRD
t

. (7.1)

Combining (2.23) with (7.1) yields

γt = ϕRwt. (7.2)

Maximizing (2.7) with respect to ADt,j yields the following price for an AI

intermediate of firm j:

pt,j = (1− α)ϕA
Yt

lDt + ϕAADt + ϕRRD
t

(
ADt,j
πjADt

)−1
σ

. (7.3)

Combining this finding with Equation (2.23), we deduce that

pt,j =

(
ADt,j
πjADt

)−1
σ

ϕAwt. (7.4)

Rewriting the price for an AI intermediate, defined by (7.4), we see that the

inverse demand of a final good firm for an AI intermediate j is given by (2.24).
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AI Firms’ Optimality Conditions

The profit of an AI form reads

ΠA
t,j = pt,jA

D
t,j − wAt l

A,D
t,j = pt,j

(
pt,j
ϕAwt

)−σ

πjA
D
t −

(
ADt,j
Rq
t−1

− 1

)
wAt
θA
,

= p1−σt,j (ϕAwt)
σπjA

D
t −

((
pt,j
ϕAwt

)−σ
πjA

D
t

Rq
t−1

− 1

)
wAt
θA
, (7.5)

where we substituted lA,Dt,j using the AI production function (2.1). Moreover,

we used the price for an AI intermediate, from (7.4). We maximize (7.5) with

respect to pt,j and obtain the price AI firm j sets

pt,j =
σwAt

θA(σ − 1)Rq
t−1

, (7.6)

where we find that the price is set as a mark-up σ/(σ − 1) over the marginal

cost of producing a new unit of AI, which requires 1/θAR
q
t−1 units of labor

compensated with the wage wAt . By equating pt,j from (7.6) with (7.4), we

deduce that wages in the AI sector are given by

wAt =
(σ − 1)θAϕAwtR

q
t−1

σ

(
ADt,j
πjADt

)−1
σ

. (7.7)

The higher the substitutability between AI variants, the higher the markdown

on wages.
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Growth of AI on a BGP

On a BGP, where lAt = 0 and the growth rate of AR blueprints is given by gR,

we write

At+1 = At(1 + gA) = Rq
t−1(1 + gA)→

(1 + gA)
1
q =

Rt

Rt−1

=
Rt−1(1 + gR)

Rt−1

→

(1 + gA) =

(
Rt−1(1 + gR)

Rt−1

)q
= (1 + gR)

q →

gA = (1 + gR)
q − 1.

Figure 7.1: Log of the Level of AI and AR.

Convergence to the Steady State

Recall that after passing all tipping points, labor market Constellation (2.21)

is in place, in which all entrepreneurs and high-skilled workers are employed in
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the AR sector, but the low-skilled agents work in final good production. We use

ct,H for the consumption of a high-skilled agent and ct,U for the consumption

of a low-skilled agent. The corresponding value for an entrepreneur is denoted

by ct,E. Consumption of high-skilled workers employed in AR grows due to

increasing wages, growing profits in the AR sector, and the accumulation of

capital. On top of that, entrepreneurs additionally obtain their share of the

profits from the AI sector. The consumption of low-skilled workers in the final

good firm increases only due to the accumulation of capital over time and

growing profits in the AR sector. Considering the individual savings denoted

by (2.9), the budget constraint of a low-skilled worker U , employed in the final

good firm, can be rewritten as

Kt+1,U = wt + (1− δ + rt)Kt,U − ct,U +Πt +ΠR
t ,

whereas for a high-skilled worker H in AR, we have

Kt+1,H = wRt + (1− δ + rt)Kt,H − ct,H +Πt +ΠR
t ,

and for an entrepreneur E in AR

Kt+1,E = wRt + (1− δ + rt)Kt,E − ct,E +Πt +ΠR
t +

N∑
j=1

ΠA
t,j.

We add the three equations and integrate over all agents, while assuming that

all agents of a specific type act in the same way, to obtain the aggregate capital

stock.1 This yields

Kt+1 =l
UKt+1,U + lHKt+1,H + lEKt+1,E

=(1− δ + rt)Kt − Ct + lUwt + (lH + lE)wRt +Πt +ΠR
t +

N∑
j=1

ΠA
t,j.

As demonstrated in Section 2.5, the economy will undergo a process with

several tipping points if R0 ≥ Rcrit, finally leading to an equilibrium where

Condition (2.21) holds. We replace the interest rate and the wages in the

final good firm and AR sector by the equilibrium values, specified in Table

1The aggregate capital stock and aggregate consumption are defined by Kt = lUKt,U +
lHKt,H + lEKt,E and Ct = lUct,U + lHct,H + lEct,E .
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2.1. Accordingly, we can rewrite the aggregate profits in the sectors based on

the equilibrium wages and given the labor force in the specific sectors after

reaching the steady state to obtain

N∑
j=1

ΠA
t,j = ϕAwtR

q
t−1, ΠR

t = ϕRwtRt−1 and Πt = 0,

where we use the evolution of AR blueprints given by (2.3) and the fact that

lt = lU , lAt = 0, and lRt = lH + lE after passing all tipping points. It follows

that

Kt+1 =
(
1− δ + αB (lt + ϕAAt + ϕRRt)

1−αKα−1
t

)
Kt − Ct+

(1− α)B (lt + ϕAAt + ϕRRt)
−αKα

t

{
lt + ϕAR

q
t−1 + ϕRRt−1(1 +

θRl
R
t

M
)

}
.

In the long run, Rt becomes arbitrarily large, and when we divide the above

expression by Rt, we can neglect the terms lt/Rt, l
R
t /Rt, R

q
t−1/Rt and At/Rt.

Defining kt ≡ Kt/Rt and ct ≡ Ct/Rt, we obtain2

kt+1(1 + θR(l
H + lE)) =

(
1− δ + αB

(
ϕR
kt

)1−α
)
kt − ct + (1− α)B

(
ϕR
kt

)−α

ϕR

= (1− δ)kt + αBϕR

(
ϕR
kt

)−α

+ (1− α)BϕR
(
ϕR
kt

)−α

− ct

= (1− δ)kt + kαt ϕ
1−α
R B − ct. (7.8)

Next, we consider the Euler equation given by (2.13), which holds for all

individuals. Combined with an iso-elastic utility function u(C) = C1−κ

1−κ , with

κ <∞ and κ ̸= 1, it follows that(
Ct+1,m

Ct,m

)κ
= β

(
1− δ + αB (lt + ϕAAt + ϕRRt)

1−αKα−1
t

)
.

2Assuming in a steady state that Rt+1 = Rt(1+ θR(l
H + lE)), we obtain kt+1 = Kt+1

Rt
=

Kt+1(1+θR(lH+lE))
Rt+1

and ct+1 = Ct+1

Rt
= Ct+1(1+θR(lH+lE))

Rt+1
.
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Rewriting Kt/Rt as kt and Ct/Rt as ct, and neglecting the arbitrarily small

terms, we obtain(
ct+1(1 + θR(l

H + lE))

ct

)κ
= β

(
1− δ + αB

(
ϕR
kt

)1−α
)
. (7.9)

Along a steady state, we have k = kt+1 = kt and c = ct+1 = ct, such that (7.8)

and (7.9) yield the following steady state values:

css = (kss)αϕ1−α
R B − (δ + θR(l

H + lE))kss and

kss =

((
(1 + θR(l

H + lE))κ

β
+ δ − 1

)
1

αB

) 1
α−1

ϕR.

Given Equation (7.9) which depends on the values for ct and kt, we note that

for k > kt, the fraction on the left-hand-side has to diminish, entailing that

ct+1 < ct, and vice versa, for k < kt. Accordingly, as shown in (7.8), we can

see that, for ct > c, it has to hold that kt < kt+1 and kt+1 < kt, for ct < c.

These links between c and k allow us to depict the steady state values and

the described dynamics in a phase diagram in Figure 7.2. We find saddle-path

stability that can occur either from the left lower sector or the right upper

sector. Hence, Figure 7.2 shows that given some initial conditions on k0, R0

and A0, there exists a unique path of the economy and that this BGP converges

to the steady state.

kt

c t

∆c = 0

∆k = 0

Figure 7.2: Phase Diagram for Consumption and Capital per Level of AR.

186



Appendix Chapter 2 Appendix

Social Planner Problem

The Lagrangian for the social planner problem reads as follows:

L =
∞∑
t=0

βt
{
u(ct) − λt

[
At − (1 + θA

lAt
N
)Rq

t−1

]
− ζt[Rt − (1 + θRl

R
t + ψAl

A
t )Rt−1]

(7.10)

−µt
[
Kt+1 −B(l + lZ − lAt − lRt + ϕAAt + ϕRRt)

1−αKα
t + ct − (1− δ)Kt

]
−ξt

[
lAt + lRt − lZ

]}
.

For notational ease, we write l + lZ − lAt − lRt + ϕAAt + ϕRRt = Vt. We

obtain the following derivatives:

∂L
∂ct

= βt [u′(ct)− µt] = 0, (7.11)

∂L
∂lAt

= βt
[
1

N
λtθAR

q
t−1 + ζtψARt−1 − µt

(1− α)Yt
Vt

− ξt
]
≤ 0, (7.12)

∂L
∂Kt+1

= βtµt + βt+1µt+1

[
αYt+1

Kt+1

+ 1− δ
]
= 0, (7.13)

∂L
∂At

= βt
[
−λt + µt

(1− α)ϕAYt
Vt

]
= 0, (7.14)

∂L
∂lRt

= βt
[
ζtθRRt−1 − µt

(1− α)Yt
Vt

− ξt
]
≤ 0, (7.15)

∂L
∂Rt

= βt
[
−ζt + µt

(1− α)ϕRYt
Vt

]
+ βt+1

[
λt+1(1 + θA

lAt+1

N
)qRq−1

t

]
+

βt+1
[
ζt+1(1 + θRl

R
t+1 + ψAl

A
t+1)

]
= 0. (7.16)

We can use (7.11) and (7.13) to obtain the Euler equation in the social plan-

ner’s optimization, i.e., Equation 2.38. Additionally, we have two complemen-

tary slackness conditions referring to the labor market clearing for high-skilled

workers:(
1

N
λtθAR

q
t−1 + ζtψARt−1 − µt

(1− α)Yt
Vt

− ξt
)
(lAt + lRt − lZ) = 0 and

(7.17)(
ζtθRRt−1 − µt

(1− α)Yt
Vt

− ξt
)
(lAt + lRt − lZ) = 0, (7.18)
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where we have to consider whether ξt = 0 or lAt + lRt = lZ holds. Let us look

at the first case. In the main text, we focus on the first case and discuss the

second case below, showing that it leads to the same tipping point.

For investigating the allocation of agents from the final good firm to the

AR sector in the social planner’s solution, we substitute ζt, µt, λt+1, and ζt+1

into (7.16) to obtain the following equation:

βt
[
−u

′(ct)(1− α)Yt
θRRt−1Vt

+
u′(ct)(1− α)ϕRYt

Vt

]
+

βt+1u
′(ct+1)(1− α)ϕAYt+1

Vt+1

(1 + θA
lAt+1

N
)qRq−1

t

+ βt+1u
′(ct+1)(1− α)Yt+1

θRRtVt+1

(1 + θRl
R
t+1 + ψAl

A
t+1) = 0,

which yields (2.43) after some simplification.

Complementary Slackness Condition in the Social Plan-

ner’s Problem

In the social planner’s solution, we have to take into account whether ξt = 0

or lAt + lRt = lH + lE holds. The complementary slackness condition requires

that ξt(l
A
t + lRt − lH − lE) = 0. Thus, we distinguish between the following two

cases:

1. lAt + lRt < lH + lE: The constraint on the maximum amount of workers

in AI and AR is not binding and is ineffective. For the complementary

slackness condition to hold, we thus have to show that ξt = 0.

2. lAt + lRt = lH + lE: The social planner favors an allocation where all

high-skilled individuals and entrepreneurs are employed in the AR sector

or the AI sector. For the complementary slackness condition to hold, we

thus have to show that ξt ≥ 0.

In the following, we show that the value for ξt ∈ R≥0 depends on the allocation

of entrepreneurial-skilled and high-skilled workers to the sectors and thus on

the tipping points, as shown in Section 2.7. We have to distinguish between
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the case when the social planner favors an allocation of the agents to the (i)

AI sector, or to the (ii) AR sector.3

(i) Substituting (7.11) into (7.14) and (7.15), we obtain

λt =
u′(ct)(1− α)ϕAYt

Vt
and ζt =

u′(ct)(1− α)Yt
θRRt−1Vt

+
ξt

θRRt−1

.

Combining these findings with (7.12), we see that

1

N

u′(ct)(1− α)ϕAYt
Vt

θAR
q
t−1 + ζtψARt−1 −

u′(ct)(1− α)Yt
Vt

− ξt = 0.

After inserting ζt into this equation, we are in a position to show that

this entails

ξt =
θR

θR + ψA

u′(ct)(1− α)Yt
Vt

(
1

N
θAR

q
t−1ϕA +

ψA
θR
− 1

)
.

As θR
θR+ψA

u′(ct)(1−α)Yt
Vt

> 0 by construction, the value of ξt depends on the

term 1
N
θAR

q
t−1ϕA + ψA

θR
− 1. We note that this term is equivalent to the

tipping point for transitions of agents from the final good firm to the AI

sector, given by Condition (2.39).

We can thus determine how ξt is specified, depending on the employment

in AI

(I) ξt > 0 and lAt + lRt = lH + lE if
1

N
θAR

q
t−1ϕA >

ψA
θR
− 1,

(II) ξt = 0 and lAt + lRt < lH + lE if
1

N
θAR

q
t−1ϕA ≤

ψA
θR
− 1.

In case (II), entrepreneurs and high-skilled workers prefer an employment

in the final good firm compared to the AI sector. This implies that they

stay in the final good firm and that lAt + lRt < lH + lE. The constraint

3We separately compare the allocation of high-skilled workers and entrepreneurs to the
final good firm with an allocation to the AI sector or the AR sector, respectively. We neglect
transitions of agents between the AI sector and the AR sector, where the sector with a larger
net gain will employ all high-skilled workers and entrepreneurs as lAt + lRt = lH + lE applies
in any case.

189



Appendix Appendix Chapter 2

on the maximum amount of workers in AI and AR is not binding and is

ineffective. Therefore, the marginal utility of relaxing the constraint is

zero and ξt = 0. In case (I), entrepreneurs and high-skilled workers prefer

an employment in the AI sector, compared to the final good production.

This implies that they leave the final good firm, work in the AI sector

and that lAt + lRt = lH + lE. The constraint on the maximum amount of

workers in AI and AR is binding and as a result, ξt ≥ 0. To sum up,

we have ξt = 0 before the tipping point defined by Equation (2.39) and

ξt ≥ 0 afterwards.

(ii) Substituting λt, ζt+1, ζt and µt into (7.16), we obtain

βt
[
−u

′(ct)(1− α)Yt
θRRt−1Vt

− ξt
θRRt−1

+
u′(ct)(1− α)ϕRYt

Vt

]
+ βt+1

(
u′(ct+1)(1− α)ϕAYt+1

Vt+1

)
(1 + θA

lAt+1

N
)qRq−1

t

+ βt+1

(
u′(ct+1)(1− α)Yt+1

θRRtVt+1

+
ξt+1

θRRt

)
(1 + θRl

R
t+1 + ψAl

A
t+1) = 0.

We proceed by showing that

θRϕRRt−1 = 1 +
Vt

u′(ct)(1− α)Yt
(ξt − βξt+1)−

βu′(ct+1)

u′(ct)

Vt
Vt+1

Yt+1

Yt

Rt−1

Rt

[
(1 + θRl

R
t+1 + ψAl

A
t+1) + ϕAθRqR

q
t (1 + θA

lAt+1

N
)

]
︸ ︷︷ ︸

D

.

Without a loss of generality, we now turn to the case where ξt = ξt+1

and write

ξt =
u′(ct)(1− α)Yt
Vt(1− β)

(θRϕRRt−1 − 1 +D) .

As is holds that u′(ct)(1−α)Yt
Vt(1−β) > 0 by construction, the value of ξt depends

on the term (θRϕRRt−1 − 1 +D). We note that this term is equivalent

to the tipping point for transitions of agents from the final good firm to

the AR sector, given by Condition (2.43).

We can thus determine how ξt is specified, depending on the employment
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in AR,

(I) ξt > 0 and lAt + lRt = lH + lE if θRϕRRt−1 > 1 +D,

(II) ξt = 0 and lAt + lRt < lH + lE if θRϕRRt−1 ≤ 1 +D.

In case (II), entrepreneurs and high-skilled workers prefer an employment

in the final good firm, compared to the AR sector. This implies that they

stay in the final good firm and that lAt + lRt < lH + lE. The constraint

on the maximum amount of workers in AI and AR is not binding and is

ineffective. Therefore, the marginal utility of relaxing the constraint is

zero and ξt = 0. In case (I), entrepreneurs and high-skilled workers prefer

an employment in the AR sector, compared to the final good production.

This implies that they leave the final good firm, work in the AR sector

and that lAt + lRt = lH + lE. The constraint on the maximum amount

of workers in AI and AR is binding and as a result, ξt ≥ 0. Again,

ξt = 0 before the tipping point defined by Equation (2.43) and ξt ≥ 0

afterwards.

To sum up, we have shown how the value for ξt ∈ R≥0 depends on the distri-

bution of high-skilled workers and entrepreneurs to the sectors, as defined in

Section 2.7. We see that the value of ξt is determined by those same condi-

tions that also define the tipping points, and we note that the complementary

slackness condition ξt
(
lAt + lRt − lH − lE

)
= 0 always holds.

Derivation of Equation (2.39)

Substituting (7.11) into (7.14) and (7.15), we can obtain the following expres-

sion

λt =
u′(ct)(1− α)ϕAYt

Vt
and ζt =

u′(ct)(1− α)Yt
θRRt−1Vt

.

Combining these findings with (7.12), we see that

1

N

u′(ct)(1− α)ϕAYt
Vt

θAR
q
t−1 +

u′(ct)(1− α)Yt
θRRt−1Vt

ψARt−1 −
u′(ct)(1− α)Yt

Vt
= 0

which yields (2.39) after simplifications.
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We presented a model of AI as self-learning capital that displays sharp

transitions of workers between sectors and allows for AI that can develop en-

tirely autonomously in the long run. Of course, extensions of the model will

provide a more nuanced perspective while retaining the self-learning charac-

teristics of AI.

Patents on AR Blueprints

Our model is based on the assumption that acquired knowledge from previous

periods is publicly accessible for all AR firms in the AR sector. Still, e.g.

Gersbach et al. (2018) point out that firms protect their innovations over

many years with the help of patent registration. If we extend our model

and assume that M symmetric AR firms operate in a perfectly competitive

AR sector instead of only one representative firm, we can extend our model

by assuming patent protection for AR blueprints. We thus consider a more

limited use of the knowledge stock of AR. Suppose that a share ρ ∈ (0, 1) of

the knowledge stock of AR is protected. Then, firms can always re-use their

own AR blueprints from the last period, but only have access to the non-

patented share (1 − ρ) of blueprints from competing firms. Accordingly, the

stock function for AR blueprints of a single firm k can be rewritten as follows:

RS
t,k =

[
RS
t−1,k + (1− ρ)

M∑
v ̸=k

RS
t−1,v

]
(1 + θRl

R,D
t,k + ψAl

A,D
t ).

This entails the following wage in the AR sector:

wRt = γt

[
RS
t−1,k + (1− ρ)

M∑
v ̸=k

RS
t−1,v

]
θR.

We note that the higher the share ρ of non-publicly accessible AR blueprints,

the lower the wage in the AR sector. If an increasing quantity of knowledge is

”closed source”, the development of AR blueprints is hampered by a smaller

knowledge base in AR, which negatively affects the wage in the AR sector.

Lower wages in AR shift the tipping points at which employment in the AR

sector becomes profitable for entrepreneurs and high-skilled workers. This

means that agents are working in AI development for a longer period and that

the steady state, in which nobody is employed in AI anymore, is reached at a
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later stage.

Basic Research on AI

We showed that the initial stock of AR is decisive for the path the economy

takes. Only if the stock of AR is large enough, entrepreneurs will find it op-

timal to start running AI firms and develop new AI. If the stock is not large

enough, entrepreneurs remain in the final good firm and no economic growth

takes place. The same holds if the productivity of AI in final good production

is small, since the smaller the AI productivity ϕA, the higher the initial stock

of AR required to set the economy on a growth path. In such a situation, a

publicly funded basic research sector may expand AI productivity by acquir-

ing new ideas, theories and prototypes (Gersbach et al., 2018). Balconi and

Laboranti (2006) highlight the importance of the link between universities and

industries for knowledge exchanges.

In general, there has been a strong increase in the productivity of classical

AI techniques over the last few years, as revealed in the AI Index Report

(Zhang et al., 2021). For instance, the precision of image recognition has

increased from 85% in 2013 to 99% in 2020, whereas humans perform with an

accuracy of 94%. Also other measurands, such as training time, training costs

or hardware costs have sunk noticeably within the same period. This advocates

investments into basic AI research in order to i.e. expand the application

possibilities of AI in final good production. In this sense, basic research on AI

could promote innovative activity that positively affects long-term growth.

In addition, publicly-funded investments into basic research on AI would

induce a different timing of the tipping points, due to new relative productivity

differences between AI and AR. However, such basic research would have to be

financed by taxes, of course. We propose to model the productivity of AI in the

production of the final good, given by ϕA,t, as a function of the basic research

activity on AI. A simplification for the law of motion of the productivity of AI

could be as follows:

ϕA,t = ϕA,t−1(1 + θBl
B
t ),

where we assume that lBt are workers in basic research, with a skill index

η ∈ {H,E}, who search for possibilities to enhance the productivity of AI by

a specific factor θB. However, since high-skilled workers in basic research need
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to be paid adequately to have an incentive to work in basic research and to leave

AR or AI, the government would have to provide public funds to pay these

agents. In addition, employees in basic research would have to quit their former

jobs, so that production would decline at their previous employer. Thus, some

employees who were previously responsible for the development of AI and AR

would move to basic research, which leads to different growth dynamics in

both the AI sector and the AR sector, as well as in the economy as a whole.

Moreover, with a time-dependent, increasing AI productivity, the timing of

the tipping points is altered over time. In addition to the policy interventions

mentioned in Section 2.8, the promotion of basic research activities to an

adequate extent offers a further possibility to enable an earlier development

of AI algorithms. The higher the productivity parameter ϕA,t, the easier to

incentivize transitions of workers from final good production to AI. On the

reverse, when considering transitions from AI to AR, a higher ϕA,t leads to

delayed transitions of agents from AI to AR.

In conclusion, basic research on AI and the patenting of AR blueprints

are two factors that play a key role in the economic analysis of innovations

and technological progress. If we extend our basic model by these factors,

innovations in AI are made earlier and workers remain employed in the AI

sector longer before they move to the AR sector. However, a more detailed

analysis of the interplay of these two factors is beyond the scope of this paper.

Yet, it seems to be an attractive avenue for future research.

Special Case q=1

For the special case of q = 1, the self-learning of AI has constant returns.

We show how this assumption affects the tipping points the possible long-run

growth rate of the economy:

The first and the second tipping point in a decentralized economy are given

by (2.32) and (2.34) so that we have R∗
t1
>
(

N
ϕAθA

)
and R∗

t2
>
(

N
ϕAθA

(
σ−1
σ

)−1
)

when q = 1. The respective conditions on parameter that we obtain from

(2.33) and (2.35) are

1

ϕRθR
>

N

ϕAθA
and

1

ϕRθR
>

Nσ

(σ − 1)ϕAθA
. (7.19)
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Recall that the third tipping point which is characterized by wRt > wAt reads

wtθRϕRRt−1 >
(σ − 1)

Nσ
θAϕAwtR

q
t−1

and hence the AR sector becomes favorable for high-skilled workers if

θRϕR >
(σ − 1)

Nσ
θAϕA. (7.20)

The fourth tipping point is determined by

wRt l
E +

N∑
j=1

ΠA
t,j > wAt l

E +
N∑
j=1

Π̂A
t,j,

and it follows that the AR sector becomes favorable for entrepreneurial-skilled

workers if

θRϕR >
1

N
θAϕA. (7.21)

We find that Condition (7.20) and Condition (7.21) contradict (7.19). This

means that we can either observe the first two or the last two tipping points

but not all four, implying that once an agent moves from the final good sector

to either the AR or the AI sector s/he will remain there and not change the

sector for a second time.

Thus, three different constellations can arise

(I) Condition (7.20) and Condition (7.21) are fulfilled. Entrepreneurs and

high-skilled workers supply their labor to the AR sector and the growth

rate of AR is gR = ϕA(l
H + lE), while AI grows at rate gA = gR.

(II) Only Condition (7.20) is fulfilled. Entrepreneurs work in the AI sector,

while high-skilled workers supply their labor to the AR sector and the

growth rate of AR is gR = ϕAl
H + ψlE while AI grows at rate gA = gR.

(III) Condition (7.20) is not fulfilled, which implies that Condition (7.21) is

not fulfilled. Entrepreneurs and high-skilled workers supply their labor

to the AI sector and the growth rate of AR is gR = ψA(l
H + lE), while

AR grows at rate gA = gR.
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We find that the economy can find itself in one of three steady states in

the long-run which imply a different growth rate, depending on the model’s

parameters.
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7.2 Appendix Chapter 3

Markups in the Economy

For conceptualizing markups in a simple way, we consider a production func-

tion Yt = G(Kt, L, At) and take into account a single representative firm. To-

tal income accrues as payments to production factors or is composed of profits

minus fixed costs (Grossman and Oberfield, 2021). Thus, holding the goods’

selling price fixed at the numeraire, Euler’s theorem implies the following in a

setting with perfect competition on the product market and zero profits4

Proposition 7.1. Suppose that G(Kt, L, At)→ R is differentiable in L ∈ R+,

Kt ∈ R+ and At ∈ R+, where the partial derivatives are given by wt, rt and

pt, respectively and fixed costs Ft have to be paid for production. Then,

Yt − Ft = G(L,Kt, At)− Ft = wtL+ rtKt + pA,tAt − Ft.

On a product a market with perfect competition, we can thus define the

labor, capital and AI share, respectively as

κL,t =
wtL

Yt
, κK,t =

rtKt

Yt
, κA,t =

ptAt
Yt

.

In case of imperfect competition on the product market, firms can sell products

to a higher effective price and charge a price markup µt > 1. Therefore, we

write the net profit of a firm at time t as

Πt = (1 + µt)G(Kt, L, At)− rtKt − wtL− ptAt − Ft.

Therefore, we define the labor share under imperfect competition in the fol-

lowing way:

ϕICL,t =
wtL

(1 + µt)Yt
.

We see that the higher the markup µt the lower the labor share in production.

Using analogous definitions for AI and capital, we obtain ϕICK,t =
rtKt

(1+µt)Yt
and

ϕICA,t =
ptAt

(1+µt)Yt
. Moreover, we are in a position to show that the profit share is

4The proof for this this theorem is derived from Euler’s homogeneous function theorem.
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defined as

ϕICP,t =
µtYt − Ft
(1 + µt)Yt

,

and the share of total income that has to be paid on fixed costs is given by

ϕICF,t =
Ft

(1 + µt)Yt
.

By applying Proposition 7.1, we note that

ϕICL,t + ϕICK,t + ϕICA,t + ϕICP,t + ϕICF,t =
wtL+ rtKt + ptAt + µtYt − Ft + Ft

(1 + µt)Yt
= 1,

Proof Proposition 3.1

We show for two extreme cases, how the productivity distribution could look

like to show how the number of active firms and the resulting factor allocation

in equilibrium depends on Φ(θj,t):

1. All firms have the same AI productivity, such that Φ(θj,t) = Φ(θj+ν) ∀ν ∈
N,∀j ∈ N

2. The technological frontier is the only firm that can produce with AI,

such that Φ(θj) > Φ(θ1+ν) = 0 ∀ν ∈ N

In the first extreme case, all firms have the same equilibrium production

Y ∗
j,t,m = Y ∗

j̃,t,m
∀j, as no firm has a comparative advantage compared to the

others. Thus, no firm can afford to oust competing firms from the market and

all firms are active, enclosing that mt = N .

In another extreme case, when Φ(θ1) − Φ(θ1+ν) > δ such that there is a pro-

ductivity difference between the technological frontier and all other firms, the

technological frontier can afford to oust all firms out of the market. Thus, only

one firm—namely the technological frontier—will be active. This stands in line

with the findings of Ernst et al. (2019), stating that large productivity differ-

ences are indeed a barrier for technological progress leading to a rise in market

concentration. Apart from the two extreme cases, where either all or only

one firms are active, we conclude that the number of active firms m ∈ [1, N ]

depends on the underlying productivity distribution.
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Proof Proposition 3.2

Assume Fq,t ≤ Fw,t, for arbitrary firms q and w. It holds that q < w such that

q is ranked lower in productivity than w.

Case 1: Fq,t = µt,NYN,t,N

Given that Fq,t = µt,NYN,t,N , it necessarily follows that Fw,t > µt,NYN,t,N .

Thus, due to profit maximizing considerations of the firms, only N − w firms

will be active on the market.

Case 2: µt,N−q+1YN−q+1,t,N−q+1 ≤ Fq,t ≤ µt,N−qYN−q,t,N−q

In such a setting, there are a maximum of N − q active firms in the market.

Analogously, it holds that there are N − w active firms if the fixed costs are

Fw,t. As Fq,t ≤ Fw,t there are Nw active firms, which is fewer than Nq firms.

Proof Proposition 3.3

Increasing Number of Active Firms

There are different channels that affect firms’ total output depending on the

number of active firms in opposite directions

1. If less firms are active, there is less competition for the available rival

input factors, leading to more available input factors for each active firm.

2. If less firms are active, only more productive firms are operating, leading

to different productivity relations between active firms affecting the labor

and capital allocation.

We thus note that

∂L∗
j,t,m

∂mt

⋛ 0,
∂K∗

j,t,m

∂mt

⋛ 0.

This encloses that

∂r∗t,m
∂mt

=
∂

∂mt

α
Y ∗
j,t,m

K∗
j,t,m

1
ϵ

⋛ 0,
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∂w∗
t,m

∂mt

=
∂

∂mt

(1− α)γL∗
j,t,m

−1
ω Y ∗

j,t,m

1
ϵ

[(
γL∗

j,t,m

ω−1
ω + (1− γ)(θj,tAt)

ω−1
ω

) ω
ω−1

]−1
ϵ

(
γL∗

j,t,m

ω−1
ω + (1− γ)(θj,tAt)

ω−1
ω

) 1
ω−1

⋛ 0,

∂p∗j,t,m
∂mt

=
∂

∂mt

(1− α)θj,t(1− γ)A
−1
ω
t Y

1
ϵ
j,t,m

[(
γL

ω−1
ω

j,t,m + (1− γ)(θj,tAt)
ω−1
ω

) ω
ω−1

]−1
ϵ

(
γL

ω−1
ω

j,t,m + (1− γ)(θj,tAt)
ω−1
ω

) 1
ω−1

⋛ 0,

Partial Derivatives of the Input Factors

We observe that due to the nested CES structure of our production function,

the cross-derivatives with regard to AI are given by

∂Yj,t,m
∂Kj,t,m∂At

=
∂rt,m
∂At

=
∂

∂At
α

(
Yj,t,m
Kj,t,m

) 1
ϵ

. (7.22)

Due to the CES production function, we conclude that
∂r∗t,m
∂At
≥ 0 irrespective

of ϵ.

∂Yj,t,m
∂Lj,t,m∂At

=
∂wt,m
∂At

=

∂

∂At
(1− α)γL

−1
ω
j,t,mY

1
ϵ
j,t,m

[(
γL

ω−1
ω

j,t,m + (1− γ)(θj,tAt)
ω−1
ω

) ω
ω−1

]−1
ϵ

(
γL

ω−1
ω

j,t,m + (1− γ)(θj,tAt)
ω−1
ω

) 1
ω−1

. (7.23)

We note that
∂w∗

t,m

∂At
≥ 0 if ω > 1. The opposite holds if ω ≤ 1. Due to the

concavity of our nested CES production function, we additionally note that

∂Y 2
j,t,m

∂A2
t

=
∂pj,t,m
∂At

=

∂

∂At
(1− α)θj,t(1− γ)A

−1
ω
t Y

1
ϵ
j,t,m

[(
γL

ω−1
ω

j,t,m + (1− γ)(θj,tAt)
ω−1
ω

) ω
ω−1

]−1
ϵ

(
γL

ω−1
ω

j,t,m + (1− γ)(θj,tAt)
ω−1
ω

) 1
ω−1

≤ 0. (7.24)
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We can conclude from Eq. 7.23 and Eq. 7.22 that the wage increases in

the level of AI if we assume an elasticity of substitution larger than 1 between

labor and AI, given by ω ≥ 1. The opposite holds if we assume ω < 1. In

addition, we note that ∂rt,m
∂At
≥ 0 if ϵ > 1. The opposite holds if ϵ ≤ 1. Thus,

the equilibrium allocation of the input factors is affected by the elasticities of

substitution. Moreover, due to Proposition 3.1, the productivity distribution

additionally affects the equilibrium factor allocation.

Revenue-maximizing Social Planner: Factor Market Equi-

librium

The equilibrium factor allocation can also obtained by assessing the approach

of a revenue-maximizing social planner who maximizes the economy-wide rev-

enue from production. A social planner maximizes the following:

max
At,Lj,t,m,Kj,t,m

m∑
j=1

G(Aj,t,m, Lj,t,m, Kj,t,m)

s.t.
m∑
j=1

Lj,t,m = Lt,
m∑
j=1

Kj,t,m = Kt ∀t.

This approach resembles a revenue-maximizing problem, where the total pro-

duction of all firms gets maximized. The equilibrium factor price for each

production input must be equal to its aggregate marginal revenue (Mas-Colell

et al., 1995). Therefore, the marginal rate of technical substitution (MRTS)

of the input factors labor, capital and AI of all active firms have to be equal,

given by

MRTSLj,t,m =MRTSL
j̃,t,m

MRTSAj,t,m =MRTSA
j̃,t,m

MRTSL,Aj,t,m =MRTSL,A
j̃,t,m
∀j,∀t.

201



Appendix Appendix Chapter 3

Growth Path of the Economy

We know from Eq. (3.1) that the production function has the following form:

Yj,t =

(
αK

ϵ−1
ϵ

j,t + (1− α)
[(
γL

ω−1
ω

j,t + (1− γ)(θj,tAt)
ω−1
ω

) ω
ω−1

] ϵ−1
ϵ

) ϵ
ϵ−1

.

Moreover, we assume that the available labor force remains constant, such

that its growth rate is given by gL = 0. Moreover, due to the assumption of

bounded growth of AI, we see that limt→∞At = B, such that the growth rate

of AI in the long-run is given by gA = 0. In addition, we know from Eq. (3.5)

that the fixed costs have to comove with the level of production if the markups

stay constant in the long-run and only depend on the number of active firms

mt if AI has reached its upper boundary. Thus, we note that the growth rate of

fixed costs spent, given by gF has to be proportional to the production of each

firm gY , such that gF ∝ gY in the long-run. As a result, as gA = gL = gµ = 0 in

the long-run, we note that the capital growth rate, given by gK is the decisive

for determining the growth rate of production, as defined by Eq. (2.9). For

any Kt > 0, we have ∂Kt
∂t

> 0 and therefore limt→∞Kt = ∞. Due to Uzawa

(1961)’s theorem, we can additionally conclude that gK = gY . Furthermore,

due to the constant savings rate and the relation between consumption and

total production, given by Eq. (3.19), we observe that gC = gY .

Utility Maximization with Elastic Labor Supply: Perfect

Competition

In this subsection, we set up the maximization problem for an economy with

perfect competition, zero markups, a representative agent and no fixed costs.

The first order conditions of the maximization problem described are given

by:

uc (ct, Lt) = β
[
fK

(
Kt+1, Lt+1, Â

)
+ (1− δ)

]
uc (ct+1, Lt+1) ,

ul (ct, Lt) = −uc (ct, Lt) fl
(
Kt, Lt, Â

)
.
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This implies for the steady state that

fk

(
kss, Lss, Â

)
= 1/β − 1 + δ

ul (css, Lss) = −uc (css, lss) fl
(
kss, Lss, Â

)
.

Combining these results with our production function, defined in Eq. 3.1,

we obtain that

α
Kt

Yt

−1
ϵ

=
1

β
− 1 + δ,

γ

1− Lss
=

1

css
(1− α)γL

−1
ω
ss Y

1
ϵ
t

[(
γL

ω−1
ω

ss + (1− γ)(θj,tÂ)
ω−1
ω

) ω
ω−1

]−1
ϵ

(
γL

ω−1
ω

ss + (1− γ)(θj,tÂ)
ω−1
ω

) 1
ω−1

.

Consequently it has to hold for the minimal Lmint to have ct > that

(
αK

ϵ−1
ϵ

t + (1− α)
[(
γL

ω−1
ω

t + (1− γ)(θj,tAt)
ω−1
ω

) ω
ω−1

] ϵ−1
ϵ

) ϵ
ϵ−1

+ (1− δ)Kt −Kt+1 > 0.

This implies that

Lmint >
1

γ



(
(Kt+1 − (1− δ)Kt)

ϵ
ϵ−1 − αK

ϵ−1
ϵ

t

) ϵ
ϵ−1

1− α


ω−1
ω

− (1− γ)(θj,tAt)
ω−1
ω


ω
ω−1

.

The recursive optimization problem of the agents is given by the following

equation

Assuming a lower and upper bound for ct and Lt enclosed the feasibility

constraint that

Γ(K) = [0, f(K, 1, Â) + (1− δ)k].
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Finally, we can set up a recursive formulation of the agents’ problem that do

not anticipate the growth of AI

V (K) = max
K′∈Γ(K)

F (K,K ′) + βV (K ′) ,

where F (K,K ′) is the value of the recursive maximization procedure

F (K,K ′) = max
c,L

u(c, L)

s.t. c+K ′ ≤ f(K,L.Â) + (1− δ)K and c ≥ 0, 1 ≥ L ≥ 0.

Utility Maximization with Elastic Labor Supply: Imper-

fect Competition

In this subsection, we set up the maximization problem for a representative

agent in an environment with imperfect competition, non-zero markups and

positive fixed costs. The first order conditions of the maximization problem

described are given by:

uc (ct, Lt) = β
[
(1 + µt)fK

(
Kt+1, Lt+1, Â

)
+ (1− δ)

]
uc (ct+1, Lt+1) ,

ul (ct, Lt) = −uc (ct, Lt) (1 + µt)fl

(
KE
t , L

E
t , Â

)
.

This implies for the steady state that

(1 + µt)fK

(
kss, Lss, Â

)
= 1/β − 1 + δ

ul (css, Lss) = −uc (css, lss) (1 + µt)fl

(
kss, Lss, Â

)
.

Combining these results with our production function, defined in Eq. (3.1),

we obtain that
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(1 + µt)α
Kt

Yt

−1
ϵ

=
1

β
− 1 + δ,

γ

Lmax − Lss
=

1

css
(1 + µt)(1− α)γL

−1
ω
ss Y

1
ϵ
t

[(
γL

ω−1
ω

ss + (1− γ)(θj,tÂ)
ω−1
ω

) ω
ω−1

]−1
ϵ

(
γL

ω−1
ω

ss + (1− γ)(θj,tÂ)
ω−1
ω

) 1
ω−1

.

Consequently it has to hold for the minimal Lmint to have ct > that

(1 + µt)

(
αK

ϵ−1
ϵ

t + (1− α)
[(
γL

ω−1
ω

t + (1− γ)(θj,tAt)
ω−1
ω

) ω
ω−1

] ϵ−1
ϵ

) ϵ
ϵ−1

− Ft + (1− δ)Kt −Kt+1 > 0.

This implies that

Lmint >
1

γ



(
(Kt+1−(1−δ)Kt+Ft

(1+µt)
)
ϵ−1
ϵ − αK

ϵ−1
ϵ

t

) ϵ
ϵ−1

1− α


ω−1
ω

− (1− γ)(θj,tAt)
ω−1
ω


ω
ω−1

.
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Additional Figure on the Factor Income Shares

(a) Stakeholder: Entrepreneurs (b) Stakeholder: Workers.

Figure 7.3: Development of the Factor Income Shares with ϵ = 0.85 and
ω = 1.25.
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7.3 Appendix Chapter 4

Profit of AI companies

Recall that we define the profit of the AI companies as ΠA
t =

∑J
j=1 p

j
tAt−A

η
t .

In the long run, all intermediate good firms produce using the function Y 3,j
t =

1
ψj
(At)

q. All firms pay the price pjt equal to their marginal product for the

acquisition of AI which is given by pjt = q 1
ψj
(At)

q−1. Thus, total profit made

by the AI-producing company is given by ΠA
t =

∑J
j=1 q

1
ψj
(At)

q−1At − Aηt .

Final Good Firm’s Demand for Intermediates

Differentiating Eq. (4.1) with respect to Y j
t yields the following inverse demand

function for intermediate goods from sector j of the final good firm: Maximiz-

ing Eq. (4.1) with respect to Y j
t yields the following price for a sector-specific

intermediate of sector j:

pjt =

(
Y j
t

πjYt

)−1
σ

. (7.25)

Therefore, the we see that the inverse demand of a final good firm for an AI

intermediate j is given by

Y j
t = (pjt)

−σπjYt. (7.26)

Growth of AI and Total Production on the BGP

On the Balanced Growth Path (BGP), all tasks are automated such that only

production regime three is used in all sectors. The growth of AI is given by

the growth rate of Total Production which vice versa depends on AI

At+1 = At(1 + gA) = At

[
1 + b

(
3∑
s=2

J∑
j=1

Y s,j
t

)]
→

gA = b

(
3∑
s=2

J∑
j=1

Y s,j
t

)
= b

(
J∑
j=1

1

ψj
(At)

q

)
(7.27)
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As defined in Section 4.3, we know that the incomplete beta function that

we use to model the growth trajectories of AI has the characteristic that

limX→∞ b(X)→ 0. Thus, we conclude that in the long run, the growth rate in

the economy is given by gA = gY = 0. Yet, as long as the long-term BGP has

not been reached and total production has not reached a level at which the

value for the incomplete beta function is zero, we observe that the growth rate

of AI is given by Eq. (7.27) and that gY = (1 + gA)
q − 1. As the growth rate

of AI converges to zero in the long-run due to our parametric assumptions of

its growth trajectory, we additionally reduce the importance of scale effects,

which is a potential shortcomings of e.g., the Romer (1990) model.

 = 0.15

 = 0.3

(a) With q = 0.9

q = 0.875

q = 0.975

(b) With ψ = 0.15

Figure 7.4: Level of AI until Full Automation of all Sectors
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Figure 7.5: Heatmap of the Effectiveness of Unemployment Policy vs.
Education Policy with q = 0.9, ψ = 0.25 and ω = 0.8.

Figure 7.5 depicts the relative effectiveness of an unemployment policy

compared to a public education policy with regard to the effect on income

inequality—measured by the Gini coefficient. On the x-axis, we depict the

maximum tax rate that can be charged to either finance public education or

an unemployment insurance. On the y-axis, we depict the education costs.

The heatmap illustrates how the difference between the Gini coefficient after

implementing an unemployment policy compared to an education policy looks

like. Therefore, red (blue) tiles indicate that the unemployment policy is less

(more) effective than a public education policy in reducing income inequality.

Our findings indicate that except for a particular corridor, the unemployment

policy is more effective in reducing inequality than a (public) education policy.
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