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Summary 

Mechanised tunnelling through squeezing ground is very demanding because the space available 

to accommodate ground deformations is limited. If the converging ground closes the shield gap 

in the machine area, a pressure starts to develop upon the shield and the tunnel boring machine 

(TBM) might get stuck. Behind the machine, if ground deformations are prevented by a stiff 

lining, a prohibitively high rock pressure develops, and the lining might get damaged. Shield 

jamming and lining damages are the main hazards while tunnelling in squeezing ground 

conditions, and may increase significantly construction cost. 

Ground deformations are often assumed to occur instantaneously. This assumption might result 

in overestimating the rock pressure acting upon the shield during TBM advance and short 

standstills, as field records suggest that ground deformations develop over time. Time-

dependency can be traced back to the rheological behaviour of the ground (creep) or to the 

dissipation of excess pore water pressure (consolidation).  

This dissertation aims to help improve the design and construction of tunnels excavated with TBM 

in squeezing ground considering especially the effect of creep. More specifically, motivated by 

the simplified approach of typical TBM-ground interaction analyses, the present thesis: (i) 

analyses numerically the effect of creep on the evolution of rock pressure over time and proposes 

a novel method for simulating the TBM advance which improve the reliability of shield jamming 

and lining damage risk assessment in squeezing ground; (ii) develops an equation based on 

numerical results and pre-existing nomograms for estimating the required thrust force in order to 

prevent shield jamming under creeping squeezing ground conditions during ongoing TBM 

advance, as well as, during construction standstills; (iii) compares numerically the effect of creep 

and consolidation on shield tunnelling and discusses whether these could be distinguished in 

practical situations; (iv) investigates numerically whether the risk of shield jamming depends on 

the tunnel diameter and assess the effect of an adjacent tunnel on shield loading. 
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Zusammenfassung 

Maschineller Vortrieb durch druckhafte Gebirge ist sehr anspruchsvoll, weil der verfügbare Platz 

um Baugrundverformungen zuzulassen sehr limitiert ist. Schliesst der Baugrund die Spaltbreite 

im Maschinenbereich, so entsteht ein Druck auf dem Schild und die Tunnelbohrmaschine (TBM) 

kann sich verklemmen. Dagegen wenn Verformungen hinter dem Schildbereich von einem 

starren Ausbau verhindert werden, kann sich ein sehr hoher Druck aufbauen und der Ausbau kann 

sich beschädigen. Verklemmen des Schildes und Beschädigung des Ausbaus sind die 

hauptsächlichen Gefährdungsbilder, welche im Tunnelbau im druckhaften Gebirge eintreten 

können und die Baukosten erheblich erhöhen können.  

Verformungen vom Baugrund werden oft als zeitunabhängig angenommen. Diese Annahme kann 

zu einer Überschätzung der Schildbelastung während des Vortriebs und bei kurzen Stillständen 

führen. Feldmessungen zeigen jedoch, dass sich diese Verformungen langsam im Laufe der Zeit 

entwickeln. Zeitabhängigkeit kann aufgrund des rheologischen Verhaltens des Bodens (Kriechen) 

oder durch Dissipation von Porenwasserüberdruck (Konsolidation) herbeigeführt werden. 

Diese Dissertation soll dazu beitragen, die Planung und den Bau von Tunneln, die im TBM 

Vortrieb im druckhaften Gebirge aufgefahren werden, zu verbessern, wobei insbesondere die 

Auswirkungen von Kriechen berücksichtigt werden. Motiviert durch den vereinfachten Ansatz 

einer typischen TBM-Baugrund Interaktionsanalyse untersucht die vorliegende Dissertation: (i) 

numerisch den Effekt von Kriechen auf den zeitabhängigen Gebirgsdruck und schlägt eine neue 

Methode zur Simulation des TBM-Vortriebs, welche die Zuverlässigkeit für die Bewertung des 

Risikos eines Schildverklemmens und einer Beschädigung des Ausbaus im druckhaften Gebirge 

verbessern; (ii) entwickelt eine Gleichung, welche auf numerischen Resultaten und vorhandene 

Nomogramme basiert, um die nötige Vorschubkraft zu ermitteln, um ein Verklemmen des 

Schildes zu verhindern. Dies in einen kriechenden druckhaften Baugrund während laufenden 

TBM-Vortrieb, und bei einem Vortriebsstopp; (iii) vergleicht numerisch den Effekt von Kriechen 

und Konsolidation auf TBM-Schildvortrieb, und erörtert, ob diese in praktischen Situationen 

unterschieden werden können; (iv) untersucht numerisch, ob das Risiko des Schildverklemmens 

vom Tunneldurchmesser abhängig ist und den Effekt eines nebenliegenden Tunnels auf die 

Schildbelastung. 
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1 Introduction 

1.1 Motivation and problem statement 

The excavation of long and deep tunnels relies largely on mechanised tunnelling because of the 

high TBM advance rate and construction efficiency, e.g. Brenner base tunnel (Lussu et al., 2019; 

Skuk and Wegscheider, 2015), Gotthard base tunnel (Ehrbar et al., 2016) and Mont Cenis base 

tunnel (Bufalini et al., 2017). Nevertheless, conventional tunnelling is still sometimes preferred 

in tunnel sections characterised by poor ground conditions because of the shield jamming hazard. 

In severe squeezing ground conditions high pressures may develop already upon the shield during 

tunnel excavation and impede the machine advance (Ramoni and Anagnostou, 2010a). This is 

due to the combination of the very limited space available in the machine area (i.e. overcut und 

shield conicity) and the high deformability and low strength of the surrounding ground. If the 

converging ground closes the shield annular gap, a pressure develops upon the shield which 

generates friction. If the installed thrust force is insufficient to overcome the shield-ground skin 

friction, the machine remains trapped, tunnel excavation is stopped, the machine has to be freed 

from the surrounding rock with dangerous and time-consuming auxiliary measures. On the other 

hand, behind the machine, if deformations are prevented from a stiff lining, high rock pressure 

develop which may lead to lining damage. Investigating the risk of hazard scenarios like shield 

jamming has been topic of the dissertation “On the feasibility of TBM drives in squeezing ground 

and the risk of shield jamming” held in the same institute of underground construction in the ETH 

Zurich (Ramoni, 2010). However, without taking into account the effect of time-dependency due 

to the rheological behaviour of the rock mass (creep). Thus, the present thesis analyses the effect 

of creep on the interaction between TBM, lining and rock in order to help improve the design and 

construction of tunnel excavated with TBM in squeezing ground. 

1.2 Background and state of the art 

Squeezing of the ground is generally time-dependent (Kovári and Staus, 1996). Its time-

dependency may be traced back to creep and consolidation, but also chemical processes which 

are not topic of the present thesis. Creep is associated with the rheology of the ground and 

consolidation with the dissipation of excess pore pressure triggered by the tunnel excavation in 

water-bearing low-permeability grounds. Usually in tunnel design squeezing ground is considered 

being time-independent, thus deformations which take time to develop are assumed to occur 
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instantaneously and thus assuming that the machine is loaded immediately. However, if the rate 

of advance is sufficiently high, the convergence of the ground might not affect the machine area. 

Thus, it is important to investigate the time-dependent rock mass behaviour during tunnel 

excavation in detail, with particular focus to creep, in order to reduce the risk of shield jamming 

and improve construction efficiency. 

General aspects related to the modelling of creep in tunnelling have been studied in numerous 

works, e.g. Corbetta (1990), Fritz (1981); Zienkiewicz et al. (1975) and Debernardi (2008). With 

a specific focus on shield tunnelling, several authors have investigated numerically the effect of 

creep on shield jamming during excavation (Swannell et al., 2016; Barla, 2018; Barla et al., 2014; 

Hasanpour et al., 2015) and during TBM standstills (Mohammadzamani et al., 2019; Zhang and 

Zhou, 2017). Other approaches are based on physical modelling (Arora et al., 2021a, 2021b; 

Arora et al., 2022) or artificial intelligence (Hou et al., 2022). Lining overstressing due to creep 

during advance (Hasanpour et al., 2015) and at steady state (De la Fuente et al., 2020) has also 

been examined, considering additionally the effect of backfilling (Liu et al., 2019), but it has 

attracted limited attention overall. In the above investigations there are two main limitations, as 

discussed hereafter. 

Firstly, most existing investigations are limited to specific tunnelling projects, and hence the 

applicability of their conclusions is limited. A common conclusion is that creep is always 

favourable for the shield and lining loading during advance in comparison with time-independent 

models, and even more so for higher advance rates (Swannell et al., 2016; Barla, 2018; Hasanpour 

et al., 2015; Mohammadzamani et al., 2019; Zhang and Zhou, 2017). This holds in most cases 

and is intuitively perceived as correct, since creep limits the extent of the squeezing deformations 

and pressures that develop during the short duration of excavation. Nonetheless, Ramoni and 

Anagnostou’s (2011b) investigations into the consolidation effects in a similar context indicated 

that the thrust force may paradoxically increase with decreasing permeability (an equivalent effect 

to that of increasing viscosity) under certain conditions, which raises the question of whether the 

same counter-intuitive behaviour may also occur in the case of creep. 

Secondly, all existing works on tunnelling in ground exhibiting a time-dependent behaviour 

simulate the TBM operation as a continuous process, without explicitly considering the regular 

standstills that always occur during a TBM drive (very short standstills for lining erection in 

between successive TBM strokes and shift- or day-long ordinary standstills for cutterhead 

inspections, disk replacements, TBM maintenance, face mappings, etc.), or the very long 

extraordinary standstills (due to construction site holiday shutdowns or accidental incidents, such 

as cave-ins). Regular standstills are incorporated into continuous simulations by considering a 

gross advance rate that is considerably lower than the actual net advance rate during TBM strokes 

(e.g., Barla, 2018; Barla et al., 2014; Hasanpour et al., 2015; Swannell et al., 2016); in some 

cases, this can be as low as 1 - 10 m/d (e.g., Ramoni and Anagnostou, 2011b; Barla, 2018; 

Hasanpour et al., 2015; Swannell et al., 2016), which one can only assume is intended to cover 

longer extraordinary standstills. The effect of standstills has been examined in only a few works 

and this in a simplified manner, basically considering a gross advance rate (Mohammadzamani et 

al., 2019; Zhang and Zhou, 2017). Only Ramoni and Anagnostou (2011b) explicitly simulated a 
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singular longer standstill upon completion of the excavation, but otherwise still incorporated the 

regular standstills during excavation via an average advance rate.  

Furthermore, in literature many different constitutive models for simulating the effect of creep 

have been adopted. Most of them either have complex multiparametric formulations as the 

SHELVIP (Debernardi, 2008), 3SC (Sterpi and Gioda, 2009) and Lemaitre model (Boidy et al., 

2002); or they contradict field experience, as in the example of the CVISC model (Burgers, 1935; 

Itasca, 2019) which has shown to give a lining pressure equal to the in-situ stress at steady state 

conditions (De la Fuente et al. 2020); or simulate creep via only one additional parameter but 

consider time-dependency only in the elastic regime as the Ghaboussi model (Ghaboussi and 

Gioda, 1977), which is not suited for describing squeezing ground behaviour as deformations 

mainly occur in the plastic regime. More specifically in the research field of shield tunnelling 

through creeping ground the CVISC model has been mostly adopted (Swannell et al., 2016; 

Hasanpour et al., 2015; Mohammadzamani et al., 2019; Zhang and Zhou, 2017) as it is the only 

model readily implemented in a commercial FE code (Itasca, 2019). Whereas others as Barla 

(2018) considered the SHELVIP model. 

Although several existing works have separately examined the effects of creep (inter alia Sterpi 

and Gioda 2009; Hasanpour et al. 2015; Swannell et al. 2016; De la Fuente et al. 2020) or 

consolidation in tunnelling (inter alia Graziani and Ribacchi 2001; Anagnostou 2007; Vogelhuber 

2007; Ramoni and Anagnostou 2011b) no one has compared and discussed the two time effects 

and their fundamental difference. 

1.3 Research objectives and questions 

The goal of the present thesis is to help improve the design and construction of tunnels excavated 

with TBM in squeezing ground. In this scope, the research objectives of the thesis are as follows: 

 A simple constitutive model for squeezing ground with time dependent behaviour due to 

creep is formulated and implemented.  

 A calibration method for determining the parameters of the aforementioned constitutive 

model is developed based on measurements of the time development of ground 

deformations. 

 The effect of creep on the interaction between TBM, lining and rock under squeezing 

conditions is systematically investigated. 

 Simple aids for a quick assessment of the shield jamming risk in creeping ground are 

developed. 

 Consolidation and creep are compared. 

Within the context of the objectives outlined above, the present thesis also focuses on the 

following questions, which have not been addressed in the literature thus far:  

 Whether assuming a continuous simulation of the TBM advance may lead to an 

underestimation of the required thrust force to overcome shield-ground friction; this is 

important for assessing the risk of shield jamming. 
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 Which the fundamental differences in the phenomenological ground behaviour of a 

creeping and consolidating ground are,  

 Whether it is possible to distinguish in practical situations creep from consolidation, 

 What the influence of the tunnel size on the shield loading is, 

 What the influence of an adjacent tunnel on the shield loading is. 

1.4 Methodological approach 

To fulfil the research objectives outlined in the previous section, the following: methodological 

approach is adopted. 

Firstly, a simple constitutive model is formulated and implemented for creep. For this purpose, a 

linear elastic – viscous plastic constitutive model based upon Perzyna’s (1966) overstress theory 

is considered. This model considers time-dependency only in the plastic regime with Mohr-

Coulomb (MC) yield condition and thus, it is suitable for studying squeezing ground, where 

deformations mainly occur. Moreover, the model considers time-dependency only via one single 

viscosity parameter and therefore, enables better qualitative interpretation compared to more 

sophisticated models which describe the creep behaviour with more parameters, as e.g. 3SC 

(Sterpi and Gioda, 2009), CVISC (Burgers, 1935; Itasca, 2019), Lemaitre (Boidy et al., 2002), 

SHELVIP (Debernardi, 2008). In addition, one advantage of this model is regarding its limit cases 

of very slow developing ground deformations and very fast developing ground deformations. In 

the former case the ground behaves as a linear elastic – perfectly plastic material obeying MC 

yield conditions, whereas in the latter case the ground behaves as a linear elastic material. 

Secondly, the constitutive model parameters are calibrated. The constitutive model considered 

relies on a total of only 6 parameters: 2 elasticity constants (Young’s modulus E, Poisson’s 

ratio ν), 3 plasticity constants (angle of internal friction ϕ, cohesion c, angle of dilation ψ), and 

the viscosity η that governs the viscoplastic behaviour. These parameters except the latter are 

well-known for squeezing ground material (e.g. Vrakas et al. 2018). On the other hand, the last 

parameter - the viscosity - is from engineering experience unknown. Thus, a simple tool is 

developed to estimate the viscosity for the case of an unsupported and rigidly supported tunnel, 

which if combined with field data gives the possibility to calibrate the viscosity parameter. 

Thirdly, a systematic investigation into the effect of creep on shield and lining loading for a wide 

range of parameters relevant in tunnelling is performed. Investigations are performed considering 

an axisymmetric Finite Element (FE) model developed in Abaqus® (Dassault Systèmes, 2018) 

that simulates the mechanised excavation and lining installation sequence step-by-step (see, e.g., 

Franzius and Potts, 2005). In order to assess the effect of creep, contours of plastic strains around 

the tunnel, convergences at the tunnel boundary, as well as, pressures over shield and lining are 

investigated, during TBM excavation but also during machine standstill. Moreover, as the 

pressures over the shield are known from the results of numerical computations, the required 

thrust force to overcome shield skin friction and thus to overcome a possible risk of shield 

jamming is calculated and specifically investigated for the effect of creep. In addition, as in 

literature simulations of the TBM advance are performed considering a continuous excavation of 
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the machine (i.e. no standstills for installation of the lining or maintenance are considered), 

discrete simulations are performed which take the actual TBM excavation into account (i.e. 

considering standstills for installation of the lining, for maintenance but also extraordinary). 

Finally, a semi-discrete approach is presented in which only the regular standstills are smeared 

but longer standstills are taken into account. 

Fourthly, in order to allow a quick assessment of the risk of shield jamming an equation is 

developed which relies on: (i) existing nomograms that already assess the risk of shield jamming 

in a time-independent ground developed by Ramoni and Anagnostou (2010b), and (ii) transient 

numerical creep analyses. The proposed equation is based on a so-called “metamodel”, that is a 

model with a unique formulation capable of reproducing the behaviour of multiple numerical 

models with distinct formulations. 

Fifthly, a comparison between creep and consolidation is performed. This part is structured into 

two parts: in the first part the fundamental differences in the phenomenological ground behaviour 

are investigated, whereas the second part answers two practical question regarding the influence 

on the shield loading of (i) the tunnel size and (ii) an adjacent tunnel. Creep is considered as 

previously discussed via the own implemented and formulated simple constitutive model. On the 

other hand, consolidation is simulated assuming rock as a two-phase porous medium with unit 

Biot’s coefficient, according to Terzaghi’s principle of effective stresses. The rock is simulated 

obeying a linear elastic – perfectly plastic constitutive model with MC yield condition and a non-

associated flow rule. For the seepage flow of the water Darcy’s law is considered. 

In the first part a simple plane-strain problem of a tunnel cross-section far behind the advancing 

face is examined first, with focus on the time-development of its radial displacement upon 

excavation in the absence of a tunnel support. This problem enables to demonstrate simple 

fundamental difference between the two mechanisms of time-dependency. Subsequently, the 

more complex and practically relevant problem of the interaction between ground, TBM and 

tunnel support in mechanised tunnelling is examined, with focus on the shield loading that 

develops during the advance of the TBM and during construction standstills, which is investigated 

considering the previously presented axisymmetric Finite Element (FE) model developed in 

Abaqus®.  

The second part starts by investigating firstly the so called scale effect – influence of tunnel size 

– considering, as in the first part, a simple plane-strain problem of a tunnel cross-section far behind 

the advancing face, as it allows for a simpler qualitative interpretation of the fundamental 

considerations discussed. Subsequently, the more complex problem of ground, TBM and tunnel 

support interaction is examined, focusing on the differences in the required thrust force during 

TBM advance, as well as in the rate that this develops during a subsequent standstill, for tunnels 

of different size, and the risk of shield jamming in each case. In each of these problems, the 

influence of the tunnel size is assessed and compared between creeping and consolidating ground. 

Afterwards the second part investigates the so called interaction problem – influence of an 

adjacent tunnel – however, instead of resorting to more complex, 3D, transient numerical 

simulations, the interaction problem is analysed in a simplified manner, using two 2D models 
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sequentially and adopting adequate and well-founded assumptions to facilitate the connection of 

their input and output parameters. The 2D models have been developed in Abaqus® (Dassault 

Systèmes, 2018) and comprise a plane strain model which considers the interaction between the 

two tunnels and an axisymmetric step-by-step model which considers the interaction of TBM-

shield, lining and the surrounding ground. Herein, only the influence of the first already 

constructed tunnel on the shield loading of the second tunnel is investigated and not vice versa. 

1.5 Organisation of the thesis 

The present thesis is organised in the following way: 

Chapter 2 investigates the effect of creep on the evolution of rock pressure over time, in order to 

improve the reliability of shield jamming and lining damage risk assessment in squeezing ground. 

The study is based on numerical simulations of typical mechanised tunnelling processes, generally 

consisting of shield advance phases alternating with shorter or longer standstills for lining 

installation, maintenance, etc. Creep is simulated (as throughout the thesis) as a linear elastic – 

viscous plastic constitutive model based upon Perzyna’s (1966) overstress theory. The 

investigations in the present chapter demonstrate the following:  

(i) Shield loading during advance increases with increasing viscosity under certain 

conditions, which contradicts the common perception in many existing works that 

creep is thoroughly favourable for shield jamming;  

(ii) Creep is thoroughly unfavourable for shield loading during long standstills and long-

term lining loading, due to the additional viscoplastic ground deformations 

manifested over time;  

(iii) The commonly adopted simplifying assumption of continuous excavation with the 

gross advance rate is adequate only where standstills are very short (e.g. for lining 

erection during the stop-and-go shield tunnelling process), but otherwise 

underestimates the shield loading, even in cases of regular inspection and 

maintenance standstills lasting only a few hours.  

(iv) Two application examples, the Fréjus safety gallery and the Gotthard Base tunnel, 

demonstrate the need to consider creep and the accuracy of modelling tunnel 

construction by a semi-discrete approach, where only the very short standstills for 

lining erection are considered via an average advance rate, but longer standstills are 

explicitly simulated.  

Chapter 3 gives an equation for estimating the required thrust force in creeping rock under 

squeezing conditions during ongoing TBM advance, as well as during construction standstills. 

The method partially relies on existing design nomograms and is established via multiparametric 

nonlinear regression, considering the results of 12,300 transient numerical simulations that cover 

a wide range of in-situ stresses and ground, TBM, and creep parameters relevant in tunnelling 

practice. The proposed method approximates the numerical results with sufficient accuracy to 

provide a reliable basis for decision-making during design and a valuable tool for fast assessment 
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of the shield jamming risk. Its versatility and suitability in practical situations are demonstrated 

via two application examples from the Fréjus safety gallery and the Gotthard base tunnel. 

Chapter 4 investigates numerically the basic time effects of creep and consolidation, placing focus 

on the time development of ground deformations and the complex interaction between ground, 

TBM and tunnel support during excavation and during construction standstills. The presented 

numerical simulations indicate several qualitative similarities between the two mechanisms of 

time-dependency, in respect of the time-development of ground deformations, the counter-

intuitive behaviour of increasing shield loading with increasing rate of advance under certain 

conditions, as well as the thoroughly adverse effect of the additional time-dependent deformations 

taking place during construction standstills on the shield loading. However, they also underscore 

two prominent differences resulting from the fundamentally different nature of creep (a purely 

mechanical rheological process) and consolidation (a coupled hydromechanical process): First, 

the consistently more extensive plastic yielding in consolidating ground, which is partially 

associated with the seepage forces exerted by the pore water on the solid rock constituents. 

Second, the role of seepage forces as a potential destabilising agent particularly for the tunnel 

face, which does not happen in the case of creep and may be critical for shield and cutterhead 

jamming.  

Chapter 5 compares creep and consolidation with respect to two practical questions. The first 

question is whether the risk of shield jamming depends on the tunnel diameter, i.e. how 

experiences obtained during the construction of a smaller-diameter tunnel (e.g. pilot tunnel) can 

be used to identify critical considerations or hazards during the construction of the larger-diameter 

main tunnel. The second question is the effect of an adjacent tunnel on shield loading; i.e. how 

the construction of a tunnel affects the subsequent construction of an adjacent, parallel tunnel. 

Both are investigated numerically. Investigations addressed to the first question demonstrate the 

following:  

(i) Time-development of the displacements in an unsupported opening are independent 

of the tunnel size in creeping ground, but proportional to the square of the tunnel 

radius in consolidating ground; in the latter case, however, the consolidation rate may 

also be much lower in cases where the geological setting poses limitations on the size 

of the seepage flow domain, as this may result in increased pore pressure gradients 

(seepage forces) that induce more extensive plastification;  

(ii) Focusing in the more complex problem of rock, TBM and tunnel support interaction: 

in the case of time-independent ground behaviour a larger radius is always more 

favourable in weak ground, while the opposite holds in better ground. In the case of 

time-dependent behaviour, a larger radius has been shown to be equally or more 

unfavourable in creeping and in consolidating ground, both during excavation and 

during a standstill, and this effect to be overall more pronounced in creeping ground, 

except for the case of small — and less practically relevant — construction standstills.  
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On the other hand, investigations addressed to the second question demonstrated: 

(iii) In creeping ground, the interaction is governed by the stress redistributions and 

plastification induced by the excavation of the first tunnel, which are limited within 

a narrow zone and generate overall more unfavourable conditions for the 

subsequently excavated second tunnel; however, this interaction has been shown to 

be generally minor in practically relevant cases where the second tunnel lies outside 

of the region of plastified ground.  

(iv) In consolidating ground, the excavation of the first tunnel relieves the pore pressures 

and increases the effective stresses and the shear strength in the surrounding ground, 

analogous to advance drainage which for mechanised tunnelling allows a remarkable 

reduction in the required thrust force of up to 85%. 
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2 Effects of creep on shield tunnelling through 
squeezing ground1 

Abstract 

The present chapter aims to improve the reliability of shield jamming and lining damage risk 

assessment in squeezing ground by analysing the effects of creep on the evolution of rock pressure 

over time. The study is based on numerical simulations of typical mechanised tunnelling 

processes, generally consisting of shield advance phases alternating with shorter or longer 

standstills for lining installation, maintenance, etc. A linear elastic—viscous plastic constitutive 

model based upon Perzyna’s overstress theory is employed, which considers the time-dependency 

of plastic deformations via a single viscosity parameter. The investigations demonstrate the 

following: (i) shield loading during advance increases with increasing viscosity under certain 

conditions, which contradicts the common perception in many existing works that creep is 

thoroughly favourable for shield jamming; (ii) creep is thoroughly unfavourable for shield loading 

during long standstills and long-term lining loading, due to the additional viscoplastic ground 

deformations manifested over time; (iii) the commonly adopted simplifying assumption of 

continuous excavation with the gross advance rate is adequate only where standstills are very 

short (e.g., for lining erection during the stop-and-go shield tunnelling process), but otherwise 

underestimates the shield loading, even in cases of regular inspection and maintenance standstills 

lasting only a few hours. Two application examples, the Fréjus safety gallery and the Gotthard 

Base tunnel, demonstrate the need to consider creep and the accuracy of modelling tunnel 

construction by a semi-discrete approach, where only the very short standstills for lining erection 

are considered via an average advance rate, but longer standstills are explicitly simulated. 

  

                                                      
1  This chapter has been published with the following reference: Leone, T., Nordas, A.N. & Anagnostou, G. 

(2023). Effects of creep on shield tunnelling through squeezing ground. Rock Mechanics and Rock 
Engineering, doi: 10.1007/s00603-023-03505-x. The contributions of each author are given in Appendix F. The 
postprint version is considered for this chapter. 
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2.1 Introduction 

In mechanised tunnelling through squeezing ground, jamming of the shield or damage to the 

lining may occur due to the development of substantial rock pressures on them (Ramoni and 

Anagnostou, 2010a). Squeezing is often time-dependent, due to consolidation or creep 

(Anagnostou, 2007). Time-dependency due to consolidation is relevant in medium- to 

low-permeability water-bearing ground, and is associated with the progressive dissipation of the 

excavation-induced excess pore pressures; its effects have been investigated inter alia by Graziani 

and Ribacchi (2001) and Ramoni and Anagnostou (2011b). The present chapter focuses on the 

creep-induced time-dependency of squeezing. 

General aspects related to the modelling of creep in tunnelling have been studied in numerous 

works, e.g. Corbetta (1990), Fritz (1981); Zienkiewicz et al. (1975) and Debernardi (2008). With 

a specific focus on shield tunnelling, several authors have investigated numerically the effect of 

creep on shield jamming during excavation (Swannell et al., 2016; Barla, 2018; Barla et al., 2014; 

Hasanpour et al., 2015) and during TBM standstills (Mohammadzamani et al., 2019; Zhang and 

Zhou, 2017). Other approaches are based on physical modelling (Arora et al., 2021a, 2021b; 

Arora et al., 2022) or artificial intelligence (Hou et al., 2022). Lining overstressing due to creep 

during advance (Hasanpour et al., 2015) and at steady state (De la Fuente et al., 2020) has also 

been examined, considering additionally the effect of backfilling (Liu et al., 2019), but it has 

attracted limited attention overall. In the above investigations there are two main limitations, as 

discussed hereafter.  

First, most existing investigations are limited to specific tunnelling projects, and hence the 

applicability of their conclusions is limited. A common conclusion is that creep is always 

favourable for the shield and lining loading during advance in comparison with time-independent 

models, and even more so for higher advance rates (Swannell et al., 2016; Barla, 2018; Hasanpour 

et al., 2015; Mohammadzamani et al., 2019; Zhang and Zhou, 2017). This holds in most cases 

and is intuitively perceived as correct, since creep limits the extent of the squeezing deformations 

and pressures that develop during the short duration of excavation. Nonetheless, Ramoni and 

Anagnostou’s (2011b) investigations into the consolidation effects in a similar context indicated 

that the thrust force may paradoxically increase with decreasing permeability (an equivalent effect 

to that of increasing viscosity) under certain conditions, which raises the question of whether the 

same counter-intuitive behaviour may also occur in the case of creep. Considering the above, and 

the limited attention given to the aspect of long-term lining loading, there is scope for a more 

systematic investigation on the effects of creep which considers a wide range of practically 

relevant parameters. 

Secondly, all existing works on tunnelling in ground exhibiting a time-dependent behaviour 

simulate the TBM operation as a continuous process, without explicitly considering the regular 

standstills that always occur during a TBM drive (very short standstills for lining erection in 

between successive TBM strokes and shift- or day-long ordinary standstills for cutterhead 

inspections, disk replacements, TBM maintenance, face mappings, etc.), or the very long 

extraordinary standstills (due to construction site holiday shutdowns or accidental incidents, such 
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as cave-ins). Regular standstills are incorporated into continuous simulations by considering a 

gross advance rate that is considerably lower than the actual net advance rate during TBM strokes 

(e.g., Barla, 2018; Barla et al., 2014; Hasanpour et al., 2015; Swannell et al., 2016); in some 

cases, this can be as low as 1 - 10 m/d (e.g., Ramoni and Anagnostou, 2011b; Barla, 2018; 

Hasanpour et al., 2015; Swannell et al., 2016), which one can only assume is intended to cover 

longer extraordinary standstills. The effect of standstills has been examined in only a few works 

and this in a simplified manner, basically considering a gross advance rate (Mohammadzamani et 

al., 2019; Zhang and Zhou, 2017). Only Ramoni and Anagnostou (2011b) explicitly simulated a 

singular longer standstill upon completion of the excavation, but otherwise still incorporated the 

regular standstills during excavation via an average advance rate. As is seen later in this chapter, 

the continuous simulation of the TBM advance may lead to a severe underestimation of the 

required thrust force, thus misleading the feasibility assessment of a TBM drive and the 

decision-making during design. 

This chapter aims to bridge the aforementioned knowledge gaps via a comprehensive and 

systematic numerical investigation into the following aspects: the effect of creep on the thrust 

force during advance or standstills and on the lining loads far behind the face under steady state 

conditions (i.e. after practically all time-dependent deformations have been completed), 

considering the range of viscosities relevant in tunnel engineering practice; the conditions under 

which the counter-intuitive behaviour (paradox) of higher thrust force during advance compared 

to that of time-independent problems is manifested (analogously to Ramoni and Anagnostou, 

2011b for consolidation); and the adequacy of considering the standstills by means of an 

equivalent average advance rate (hereafter referred to as “smearing” of standstills).  

This chapter proceeds in Section 2.2 with basic considerations on the constitutive modelling of 

creep in rock and the selection of an adequate model for the present investigations. Additionally, 

it explains the model behaviour and proposes a simple way of estimating viscosity in tunnelling 

boundary value problems. Subsequently, Section 2.3 introduces the computational model adopted 

in the numerical simulations of the construction process.  

Section 2.4 presents a systematic investigation into the effect of creep on shield and lining loading 

for a wide range of parameters relevant in tunnelling. Additionally, it demonstrates that 

disregarding creep, and thus assuming for simplicity that squeezing occurs instantaneously upon 

excavation, is not necessarily a conservative simplification, but may instead result in an 

underestimation of the pressure developing upon the shield, and thus of the necessary thrust force 

during TBM advance. This apparent paradox is explained as the result of two competing effects 

of the slower deformation development: the ground on the one hand establishes contact with the 

shield later, which is favourable, but on the other hand experiences less stress relief ahead of the 

face, which is unfavourable. The latter is also the reason that the long-term lining loading is 

always higher in the presence of creep.  

Section 2.5 addresses the question of excavation standstill modelling, by comparing the adequacy 

of various approaches. It shows that considering an average advance rate is adequate only for the 

stop-and-go process of shield tunnelling, where the very short standstills required for lining 
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erection frequently and regularly alternate with the short net advance phases during TBM strokes; 

conversely, shift- or day-long standstills, such as those regularly required for inspections and 

maintenance works, and longer extraordinary standstills must be considered explicitly. It also 

introduces a “semi-discrete” approach, where only the standstills during the stop-and-go process 

are smeared, but the longer standstills are simulated explicitly. 

Finally, Section 2.6 demonstrates the effects of creep, as well as the importance of an adequate 

modelling of standstills and the accuracy of the proposed semi-discrete simulation method, via 

two application examples concerning the Fréjus safety gallery and the Gotthard base tunnel.  

2.2 Constitutive modelling 

A broad range of constitutive models has been adopted in existing works, encompassing different 

combinations of mechanical (time-independent) and rheological (time-dependent) counterparts. 

Table 2.1 provides an overview of some of the most widely employed models in the literature.  

In the present chapter, which analyses creep effects based on numerical parametric investigations, 

the main criteria for model selection are its formulation simplicity, since models with fewer 

parameters enable a better qualitative interpretation of the results, and the consideration of time-

dependency in the plastic regime, where squeezing deformations mainly occur. The only model 

readily implemented in a commercial FE code is CVISC (Burgers, 1935; Itasca, 2019); however, 

it fulfils neither of the above criteria and has also been shown to predict a lining pressure equal to 

the in-situ stress at steady state conditions (De la Fuente et al. 2020), which contradicts field 

experience. Although this is not important for modelling the processes in the vicinity of the 

advancing tunnel face, it is important for the investigation of lining overstressing at steady state 

conditions considered in the present chapter. From the remaining models, SHELVIP, 3SC and 

Lemaitre have more complex multiparametric formulations, while the Ghaboussi model, although 

simpler, only considers viscoelasticity (cf. Table 2.1). 
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Considering the above and the objective of this chapter, which is to improve the fundamental 

understanding of time-dependent effects on shield jamming and lining overstressing, it is 

sufficient to consider the simplest possible constitutive model. An isotropic, linear elastic and 

viscous perfectly plastic model is adopted based on Hooke’s law and Bingham’s rheological 

model (Table 2.1), with a Mohr-Coulomb (MC) yield condition and a non-associated viscoplastic 

flow rule after Perzyna’s (1966) overstress theory. The model, hereafter referred to as “MC-

Perzyna”, considers solely plastic time-dependency, and hence strain rate can be resolved into an 

elastic part and an inelastic part that incorporates the combined viscous and plastic effects: 

 el vp ε ε ε    (2.1) 

The elastic part elε depends linearly on the stress rate, according to Hooke’s law, while the 

inelastic part is given by the following expression: 

 vp f g





σ

 , (2.2) 

where f is the MC yield function, g the plastic potential function and η the viscosity. Eq. 2.2 

involves the assumption that the inelastic strain rate depends on the excess stresses lying above 

the yield surface.  

The model formulation encompasses in total only 6 parameters: 2 elasticity constants (Young’s 

modulus E, Poisson’s ratio ν), 3 plasticity constants (angle of internal friction ϕ, cohesion c, angle 

of dilation ψ), and the viscosity η that governs the viscoplastic behaviour. Its simplicity enables 

an easier qualitative interpretation of the computational results. Although an isotropic model 

cannot capture the non-uniformity of rock deformations and pressure over the tunnel 

circumference, it can still be used to obtain reasonable estimates for anisotropic rocks if necessary, 

considering an appropriate set of equivalent parameters (Mezger, 2019). Systematically 

incorporating anisotropic effects in the context of the presented parametric studies would anyway 

increase their already substantial size and the complexity of the computational model, as it would 

require 3D computations that consider different combinations of anisotropy plane orientations 

and stiffness, strength and viscosity anisotropies.  

The MC-Perzyna model has been implemented in Abaqus® (Dassault Systèmes, 2018) as a user-

defined material (UMAT) subroutine. The key aspects of its formulation and numerical 

implementation are outlined in the Appendix A, the subroutine is given in Appendix B and its 

validation in Appendix C.  

While engineers have some experience in estimating common material parameters, such as the 

modulus of elasticity, compressive strength, or friction angle, this is less true for the parameters 

that determine the rate of creep, i.e. the viscosity η for the constitutive model adopted here. If 

experiences of the temporal development of squeezing or results of field measurements from 

adjacent underground openings are available, these could be used to back-calculate the viscosity. 

As an aid for a simplified back-analysis, consideration is given in the sequel to the plane-strain, 

rotationally symmetric problem of a deep, cylindrical, and uniformly supported tunnel of radius 

R, crossing homogeneous rock subjected to a uniform and hydrostatic in-situ stress field. The 
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tunnel boundary is instantaneously unloaded from the in-situ stress (σ0) to zero support pressure 

(σR = 0) and the radial displacement (u) development over time is monitored.  

The MC-Perzyna model predicts a purely elastic instantaneous displacement that agrees with the 

well-known analytical solution of Kirsch (1898). If yielding occurs in the ground around the 

tunnel, viscoplastic displacements start taking place at a rate governed by the viscosity η. For the 

borderline case η = 0 (time-independent model) all plastic displacements occur instantaneously, 

and the response is described by the well-known elastoplastic solution (see, e.g., Anagnostou and 

Kovári 1993). For the other borderline case η → ∞ (infinitely viscous model) no viscoplastic 

displacements occur within all practically relevant time periods. In intermediate cases 0 < η < ∞ 

the displacement increases at a decreasing rate, and at steady state (i.e., after the viscoplastic 

deformations have been practically completed) tends asymptotically to the elastoplastic solution. 

The displacement of the considered unsupported tunnel depends in general on all independent 

problem parameters, specifically the initial stress σ0, the tunnel radius R, the time t, the viscosity 

η and the other five material constants: 

 . (2.3) 

Based upon dimensional analysis, and considering that the elastoplastic deformations are 

inversely proportional to the Young’s modulus (Anagnostou and Kovári 1993), Eq. 2.3 can be 

written in the following nondimensional form (see, e.g., Ramoni and Anagnostou, 2010b), which 

expresses the normalised displacement (left hand side term) as a function of the normalised time 

(first right hand side term): 

 . (2.4) 

One can readily verify that the time required to achieve a given percentage, e.g., 95%, of the time-

dependent displacement increment is solely a function of the material constants: 

 . (2.5) 

This relationship was quantified numerically by means of rotationally symmetric plane strain 

computations and is presented graphically in Figure 2.1a. A similar relationship is obtained in the 

case where a rigid support is instantaneously applied over the tunnel boundary upon unloading, 

as shown in Figure 2.1b, where t95 denotes the time required for 95% of the final pressure to 

develop on the lining. 

For the case of an unsupported tunnel, t95 decreases with increasing ϕ and fc/σ0 (Fig. 2.1a), since 

higher strength parameters result in smaller total viscoplastic deformations, and thus a shorter 

time for attaining 95% of their final value. A similar trend is observed in the case of a rigid 

support, but t95 is practically constant. Interestingly, t95 is smaller by at least one order of 

magnitude than the case of an unsupported tunnel, which indicates that providing support to the 

ground, and thus fully constraining the viscoplastic deformations, accelerates the stress relief that 
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would otherwise occur through said deformations. Practically relevant cases, i.e., a lining of finite 

stiffness providing a finite support pressure after a certain ground pre-deformation, may lie 

between the curves of the two cases in Figure 2.1. 

The diagrams in Figure 2.1 allow the viscosity η to be determined in a simple manner, based upon 

the observed time-development of deformations (which provides an indication as to t95) and the 

estimated values of the strength parameters (fc, ϕ), Young's modulus E, and initial stress σ0. 

 
Figure 2.1. Normalised time t95 as function of the strength parameters: (a) unsupported tunnel; (b) tunnel 

with rigid support (ν = 0.25, ψ = ϕ - 20°)  
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2.3 Computational model of TBM advance 

For the numerical investigations presented in the next sections, an axisymmetric Finite Element 

(FE) model has been developed in Abaqus® (Dassault Systèmes, 2018) that simulates the 

mechanised excavation and lining installation sequence step-by-step (see, e.g., Franzius and Potts, 

2005), as well as the subsequent transient processes during a standstill of arbitrary duration (Fig. 

2.2). In addition to the trivial assumptions underlying rotationally symmetric tunnel analyses (e.g., 

a uniform and hydrostatic in-situ stress field, homogeneous and isotropic rock, etc.; cf. Section 

2.2), the model assumes negligible TBM weight, and thus uniform tunnel support and overcut 

around the shield, as well as uniform backfilling around the segmental lining. 

At each numerical excavation step, part of the ground is removed ahead of the advancing tunnel 

face (round length s) and an equal part of lining is installed immediately behind the shield tail. 

The model considers the actual times required for excavating the ground with the TBM cutterhead 

and for installing one ring of the segmental lining and allows each excavation step to be simulated 

either discretely (short phases of continuous advance alternating with short standstills; the 

so-called “stop-and-go”) or continuously (continuous advance at a smeared rate and no standstill).  

The tunnel face is considered unsupported. The shield is modelled with non-linear radial springs, 

which consider no loading (zero stiffness) for rock convergences smaller than the overcut ΔR, 

and a linear elastic stiffness Ks for the portion of convergences that exceeds ΔR. The lining is 

modelled with elastic radial springs of stiffness Kl, assuming that it is in direct contact with the 

ground immediately upon installation due to backfilling. The consideration of distinct shield and 

lining installation points enables capturing the ground unloading immediately behind the shield 

tail and its reloading over the lining (Fig. 2.2). For more details the reader is referred to Ramoni 

and Anagnostou (2010b). The MC-Perzyna model (Section 2.2) is adopted for the ground.  

 
Figure 2.2. Computational domain (not to scale) 
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For the spatial discretisation of the computational domain, a structured mesh encompassing 36822 

4-noded, linear, quadrilateral, axisymmetric finite elements (FEs) have been employed, as shown 

in Figure 2.3. In the radial direction (r), the element size varies with an exponential bias between 

0.02R at the tunnel boundary and 2.5R at the upper far field boundary. Along the longitudinal x-

axis of the tunnel, the element size is constant and equal to the round length s (Figs. 2.2, 2.3). 

Introducing a single FE within each round length enables eliminating the saw-shaped fluctuations 

in the distribution of the radial rock pressure that are typically observed in step-by-step 

simulations (Cantieni and Anagnostou, 2009). The round length s is taken as 0.25, except for 

cases where a specific length of the segmental lining rings is considered; in such cases, s is taken 

equal to the ring length. The various round lengths considered in different simulations are always 

sufficiently small to ensure enhanced prediction accuracy (Franzius and Potts, 2005).  

The developed computational model provides inter alia the longitudinal profile of the ground 

pressure σR (x) acting upon the shield and the lining. The thrust force required for overcoming 

shield skin friction can then be evaluated from the following expression:  

 , (2.6) 

where μ is the shield skin friction coefficient, L the shield length, and ͞σR the mean pressure over 

the shield. In each numerical simulation, the excavated tunnel stretch is considered sufficiently 

long for the thrust force to become constant and the standstill stage is initiated thereafter.  

The validation of the step-by-step computation is performed for the case of zero viscosity in 

Appendix C.3. 

 
Figure 2.3. Finite element mesh configuration (a) and detail in the vicinity of the tunnel face (b) 
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2.4 Effects of creep on rock pressure 

The effects of creep on the shield and lining loading are numerically investigated in this section 

using the computational model presented in Section 2.3, considering a continuous excavation at 

an average advance rate of 20 m/d followed by a standstill and the parameters given in Table 2.2. 

Table 2.2. Parameters considered in numerical computations of Sections 2.3 - 2.5 

Ground  
 

 
Young’s Modulus E [MPa] 1000 
Poisson’s ratio ν [-] 0.25 
Angle of internal friction ϕ [°] 25 
Dilatancy angle ψ [°] 5 
Uniaxial compressive strength fc [MPa] 1.25 
Viscosity η [MPa.d] variable 
In-situ stress σ0 [MPa] 25 

 TBM     
Boring radius R [m] 5 
Shield length L [m] 10 
Annular gap (overcut) ΔR [cm] 12.5 
Shield radial stiffness Ks [MPa/m] 2000(a) 

Shield skin friction coefficient µ [-] 0.1, 0.15(b) 
Boring force  Fb [MN] 17 

 Lining     
Radial stiffness  Kl [MPa/m] 100(a) 

 Computational model     
Round length s [m] 0.25 
Model size in radial direction Rm [m] 110 
Model size in longitudinal direction Lm [m] 180 

 (a)  Conservative assumption after Ramoni and Anagnostou (2010b) 
(b) Sliding and static friction coefficients with lubricated shield extrados after Ramoni and Anagnostou 

(2011a) 
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2.4.1 Basic behaviour 

First, the basic behaviour of the system is examined, with the focus on the rock-shield-lining 

interaction. Three cases of viscosity are considered: a very low viscosity, characterising 

practically time-independent behaviour (η = 0.5 MPa.d, t95 = ca. 30 sec – 1 d in the boundary 

value problems of Figs. 2.1b and 2.1a, respectively); an intermediate viscosity, at which steady 

state is reached within hours or months (η = 200 MPa.d, t95 = ca. 3 hours – 14.5 months after Figs. 

2.1b and 2.1a, respectively ); and a high viscosity, which would result in time-dependent 

deformations for several months or years (η = 300,000 MPa.d, t95 = ca. 6.5 months – 1830 years 

after Figs. 2.1b and 2.1a, respectively).  

Figures 2.4a – 2.4c show the equivalent plastic strain ε p (magnitude of plastic strain vector) 

around the tunnel heading during advance (black lines), after a 6-month standstill (red lines), and 

at steady state (green lines) for the three viscosity cases. In the low-viscosity case (Fig. 2.4a) time-

dependency is negligible; all plastic deformations occur practically simultaneously with 

excavation and remain practically constant over time (green and red lines coincide). Conversely, 

in the high-viscosity case (Fig. 2.4c), where time-dependency is very pronounced, plastic 

deformations in the immediate vicinity of the tunnel are negligible during excavation and within 

the 6 months of the standstill, and only occur later. In the intermediate case (Fig. 2.4b), plastic 

deformations occur partially during excavation and partially within the 6-month standstill, mainly 

in the ground ahead of the face, and remain constant thereafter (green and red lines coincide). 

The occurrence of plastic deformations, or the lack thereof, is reflected in the longitudinal rock 

pressure and convergence profiles (Figs. 2.4d – 2.4f and 2.4g – 2.4i, respectively). In the low-

viscosity case, the ground deformations during excavation, and thus the contact area with the 

shield (Fig. 2.4g) and the exerted pressure (Fig. 2.4d), are the greatest amongst the three cases, 

and increase only slightly during the standstill. Conversely, in the high-viscosity case there is no 

contact between ground and shield during excavation, as elastic convergences do not exceed the 

overcut ΔR (Fig. 2.4i), while during the standstill viscoplastic deformations develop extremely 

slowly and exert a small pressure on the shield (Fig. 2.4f). For the intermediate viscosity, contact 

between shield and ground already occurs during excavation (Fig. 2.4h) over a smaller area 

compared to the low-viscosity case; however, the prevention of additional viscoplastic 

deformations during the 6-month standstill by the static shield results in the most unfavourable 

shield loading among the three cases (Fig. 2.4e). The local pressure peak close to the unsupported 

face, which has also been observed in the investigations of Ramoni and Anagnostou (2011b) into 

the effects of consolidation on shield jamming, is associated with plastic yielding of the core 

ahead of the face, and has been shown to vanish in the presence of a sufficient face support.  

These results clearly indicate that the interplay between standstill duration and viscosity is the 

most critical aspect. These effects are investigated in the sequel in more detail. 
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Figure 2.4. Contour-lines of plastic strain for η = 0.5 MPa.d (a), η = 200 MPa.d (b) and η = 300,000 MPa.d 

(c); longitudinal rock pressure distribution for η = 0.5 MPa.d (d), η = 200 MPa.d (e) and 

η = 300,000 MPa.d (f); and longitudinal convergence profile for η = 0.5 MPa.d (g), η = 200 

MPa.d (h) and η = 300,000 MPa.d (i) during advance (black), after a 6-month standstill (red) 

and at steady state (green) (advance rate  20 m/d; other parameters: Table 2.2) 

2.4.2 Time-development of shield loading during standstills  

Figure 2.5 shows the increase in the average rock pressure developing upon the shield ( ͞σR ) during 

the standstill and, on the second vertical axis, the corresponding thrust force required to overcome 

shield skin friction (Fr; Eq. 2.6). For the low viscosity (solid line), the behaviour is almost time-

independent and steady state is reached practically already during excavation; the thrust force 

increases only slightly and only for a few hours, remaining practically constant thereafter. This is 

also reflected in the rock pressures and convergences in Figs. 2.4d and 2.4g, where the red lines 

which hold after a 6-month standstill are very close to the black lines which hold for the conditions 

during excavation. For the high viscosity (dotted line), the annular gap remains open during 

excavation (see black line in Fig. 2.4i); the ground establishes contact with the shield during a 

standstill, after about 40 days (point P3), and subsequently exerts an increasing pressure which, 

after about 500 days, exceeds the pressure that would develop in the case of practically time-

independent behaviour (point P4); however, this case is irrelevant from the practical engineering 
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viewpoint since standstill durations are typically much shorter. Nevertheless, a similar behaviour 

can be observed for the moderate viscosity too (dashed line). In this case, the instantaneous thrust 

force is smaller than with the time-independent model (η = 0.5 MPa.d) but reaches the same value 

very rapidly during a standstill (within less than 1 day; point P1) and a value about 50% higher 

after almost 10 days (point P2). This case is therefore the most critical from a practical engineering 

viewpoint. 

In conclusion, assuming that the plastic deformations develop instantaneously is in no way a 

conservative assumption: Models that disregard creep may overestimate the shield loading during 

excavation but considerably underestimate the rock pressure developing during (even short) 

standstills.  

It  

Figure 2.5. Increase in the thrust force and in the average rock pressure developing on the shield during 

a standstill (advance rate 20 m/d; other parameters: Table 2.2) 
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2.4.3 Effect of viscosity on shield loading 

Figure 2.6 shows the effect of viscosity on the average rock pressure developing upon the shield 

and on the thrust force during advance, after a 6-month standstill and at steady state. The second 

abscissa axis shows the time required to reach practically steady state conditions in the plane 

strain problem of a rigidly supported tunnel of Fig. 2.1b, thus providing a sense of the creep 

intensity for any given η-value. The rock pressure is identical in all three time-instances for very 

small viscosities, where the behaviour is practically time-independent. The curves separate 

thereafter, since additional viscoplastic deformations that occur over time increase the pressure 

on the shield; this effect is more pronounced in the case of intermediate and high viscosities, for 

which the conditions during advance are far away from the ones at steady state. With increasing 

viscosity, the rock pressure increases to a maximum value and thereafter decreases, becoming 

zero (no contact between ground and shield) for sufficiently large values, both during excavation 

and after a standstill. Conversely, the steady-state curve remains constant after a point, since 

contact will eventually occur after a sufficiently long time, even for extremely high viscosity 

values. The 6-month and the steady-state curves coincide for viscosities up to about 1000 MPa.d, 

as in this range steady state is reached in less than 6 months. 

 
Figure 2.6. Thrust force and average rock pressure developing on the shield as a function of the viscosity 

η (advance rate 20 m/d; other parameters: Table 2.2) 
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2.4.4 Analysis of the counter-intuitive behaviour 

The peak in the relationship between rock pressure and viscosity is counter-intuitive at first 

glance. One would expect the pressure to monotonically decrease with increasing viscosity, due 

to delayed occurrence of viscoplastic deformations. This seemingly paradoxical behaviour is 

explained with reference to Figure 2.7, which shows the equivalent plastic strains (Fig. 2.7a) and 

the longitudinal rock pressure and convergence profiles (Figs. 2.7b, 2.7c, respectively) during 

advance for cases A, B and C annotated on Figure 2.6.  

Figure 2.7 demonstrates two counteracting effects of increasing viscosity: (i), the annular gap 

closes later, and hence the contact area between ground and shield decreases (Fig. 2.7c), whereas, 

(ii), stress relief in the ground ahead of the face is less pronounced (Fig. 2.7b) due to the smaller 

plastic deformations (Fig. 2.7a), and hence the pressure transferred to the shield when excavating 

the ground is higher. In case A, where the behaviour is practically time-independent, contact 

occurs closer to the face than in cases B and C (Fig. 2.7c), but the relaxation of the ground ahead 

of the face is much greater, as the plastic zone is much more extended (Fig. 2.7a) and the radial 

stresses are much lower (Fig. 2.7b). In case B, the contact point moves further behind the tunnel 

face than in case A (Fig. 2.7c); however, the stresses exerted on the shield are higher because the 

pre-excavation stresses are higher (Fig. 2.7b), and the contact occurs close enough to the face for 

this influence to be relevant. In case C with the highest viscosity, the pre-excavation stresses 

ahead of the face are even higher than in case B (Fig. 2.7b) but contact is established too far 

behind the face (Fig. 2.7c) for the average shield loading to be influenced, and the latter is thus 

lower than in case B.  

In conclusion, it can be said that for the range of lower viscosities (between points A and B), the 

effect of the pronounced stress relief (ii) dominates over that of the contact area (i), whereas the 

opposite holds in the range of higher viscosities (between points B and C). This interplay produces 

the counter-intuitive behaviour, which has not been reported in the literature thus far, but is 

unfavourable for shield jamming during advance and also later on (Fig. 2.6). 
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Figure 2.7. Contour-lines of plastic strain (a), longitudinal rock pressure and radial stress distribution (b), 

and longitudinal convergence profile (c) during advance for η = 0.01 MPa.d (black), 

η = 30 MPa.d (red) and η = 300 MPa.d (green) (advance rate  20 m/d; other parameters: Table 

2.2) 
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2.4.5 Effect of viscosity on lining loading 

Figure 2.8 shows the effect of viscosity on the pressure that develops on the lining at a cross-

section far behind the face (distance 10R) at steady-state conditions. With increasing viscosity, 

the lining pressure increases practically monotonically and reaches a maximum value at very high 

viscosities, for which the ground response to tunnelling is practically elastic in the vicinity of the 

advancing heading. The higher the viscosity, the lower will be the short-term lining load, the 

lesser will be the stress relief that the ground experiences before lining installation, and the greater 

will be the stress relief of the ground over time that will be accommodated by the lining (see green 

lines of steady-state lining pressure in Figs. 2.4d – 2.4f). This effect is qualitatively similar in the 

case of consolidation: a low permeability (equivalent to high viscosity) is more unfavourable for 

the final lining loading since the excess pore pressure dissipation and the resulting ground 

relaxation due to consolidation happen long after the excavation (Ramoni and Anagnostou, 

2011b).  

 
Figure 2.8. Steady-state lining pressure at a distance of 5 diameters behind the tunnel face as a function 

of the viscosity η (advance rate  20 m/d; other parameters: Table 2.2)  
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2.5 Modelling of standstills 

Regular TBM operation can be idealised as a discrete process of periodically repeated excavation 

cycles of duration ΔT, as shown in Figure 2.9. Each cycle starts with a stop-and-go phase, where 

continuous boring takes place over a period ΔT1 = LT / vN, LT being the length of one lining ring 

and vN the net advance rate, followed by a short standstill for the erection of the lining ring over 

a period ΔT2. The installation of N lining rings is followed by an ordinary standstill for cutterhead 

inspections, disk replacements, maintenance, face mappings, etc. over a period ΔT3, which 

typically ranges between a few hours and 1 – 2 days. The total duration of one excavation cycle 

can thus be expressed as ΔT = N (ΔT1+ ΔT2) + ΔT3. Exceptional incidents, e.g. cave-ins, may 

also occur at any point during the advance (“extraordinary standstills”), forcing the TBM to 

remain at standstill for much longer periods. 

 
Figure 2.9. Parameters for discrete, semi-discrete and continuous simulations of a full TBM operation 

cycle consisting of several stop-and-go cycles followed by one standstill. 
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As mentioned in the Introduction, all existing works on ground exhibiting time-dependent 

response to tunnelling simulate the TBM advance as continuous (e.g., Ramoni and Anagnostou, 

2011b; Barla et al., 2014; Barla, 2018; Hasanpour et al., 2015; Mohammadzamani et al., 2019; 

Zhang and Zhou, 2017, etc.), which is equivalent to a smearing of the full excavation cycle 

considering a gross advance rate vG (red line in Fig. 2.9). The latter is considerably lower than the 

net advance rate vN, according to the following expression: 
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An intermediate approach to considering the gross advance rate is to smear only the very short 

standstills for lining erection during the stop-and-go phase (ΔT2), considering an equivalent 

advance rate vS (green line in Fig. 2.9), with 
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but otherwise explicitly simulate the longer ordinary standstills (ΔT3). This so-called “semi-

discrete” approach was also adopted in the computations in Section 2.4.  

In the following, the accuracy of the simplified method that considers continuous excavation with 

the gross advance rate and of the proposed semi-discrete simulation will be assessed in relation 

to a formally correct discrete simulation, based on the predicted required thrust force. The total 

required thrust force during TBM advance consists in general of a boring force and a friction force 

(Eq. 2.6), which is evaluated considering the sliding shield skin friction coefficient. For the TBM 

restart after a standstill only the friction force needs to be considered, which, however, must be 

evaluated for the higher static shield skin friction coefficient. This distinction is only possible in 

discrete simulations; in semi-discrete and continuous simulations, the thrust force is assumed 

equal to the maximum between its values during advance and during TBM restart after a standstill. 

For the results discussed hereafter, a typical value of 17 MN is assumed for the boring force. 

As the boring force is constant, the total required thrust force depends only on the friction force 

or, equivalently, the average shield pressure ͞σR (Eq. 2.6). In a discrete simulation, ͞σR depends in 

general on the in-situ stress σ0, on the material constants of the ground (E, ν, fc, ϕ, ψ, η), on the 

shield and lining stiffnesses (Ks, Kl), on the geometric parameters (R, L, ΔR, LT) and on the process 

parameters (vN, N, ΔT1, ΔT2, ΔT3, ΔT ). Considering the parameter dimensions, the inverse 

proportionality between the Young’s modulus E and the displacements in elastoplastic media 

(Anagnostou and Kovári, 1993; Ramoni and Anagnostou, 2010b) and the interdependencies of 

some parameters (e.g., ΔT1 = LT / vN), ͞σR can be expressed in the following non-dimensional form: 

 . (2.9) 

In the proposed semi-discrete simulation, the list of parameters reduces as follows: 
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 , (2.10) 

and in the fully continuous simulation as follows: 

 . (2.11) 

Using Eqs. 2.7 and 2.8, the dimensionless arguments of Eqs. 2.10 and 2.11 related to time-

dependency can be expressed as functions of the independent dimensionless parameters of Eq. 

2.9. 

Section 2.5.1 evaluates the accuracy of the semi-discrete simulation of the stop-and-go phase, 

while Section 2.5.2 considers a full operation cycle, investigating the adequacy of the continuous 

and semi-discrete simulations. In both sections the basic behaviour is analysed first, followed by 

a parametric study that considers a common range of normalised net advance rates 

η vN /E/R = 10-5 – 104 and a constant normalised segment length LT/R = 0.2. 

2.5.1 Stop-and-go phase 

The effect of the proposed smearing of a stop-and-go advance (Eq. 2.8) is examined in Figure 

2.10, which shows the typical development of the thrust force along the tunnel according to the 

results of a discrete simulation (TBM strokes with continuous advance for ΔT1 with vN, alternating 

with standstills for ΔT2) and a semi-discrete simulation (continuous advance with vS and no 

standstill). The discrete simulation predicts a saw-shaped curve where the upper-values 

correspond to the TBM restart phases and the low-values correspond to the continuous advance 

phases. The smeared simulation, by contrast, predicts a smooth curve, which captures reasonably 

well the upper values of the discrete simulation.  

Figure 2.11 shows the error of semi-discrete simulations (with respect to fully discrete 

simulations) as a function of the ratio ΔT2 /ΔT1. As expected, the error is smallest for very small 

ΔT2 /ΔT1, where the advance becomes practically continuous. In all other cases, except for 5 

outliers, the overall error falls below 10%, indicating that the accuracy of a semi-discrete approach 

over the stop-and-go phase is adequate in engineering terms. 
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Figure 2.10. Thrust force evolution during the stop-and-go TBM operation based on discrete and semi-

discrete simulations (ΔR = 0.25 m, LT = 1 m, vN = 50 m/d, vS = 25 m/d, η = 60 MPaꞏd, 

ΔT2 = ΔT1; other parameters: Table 2.2) 

 
Figure 2.11. Error of semi-discrete simulations of the stop-and-go phase with respect to discrete 

simulations versus normalised lining erection duration (EΔR/σ0/R = 1, 2; fc/σ0 = 0.05, 0.2; 

ϕ = 25°; L/R = 2; KsR/E = 10; KlR/E = 0.5; ηvN/E/R = 10-5, 10-4, ... , 104; LT/R= 0.2; 

ΔT3/ΔT = 0, other parameters: Table 2.2; 640 computations in total)  
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2.5.2 Full excavation cycle 

Full excavation cycles consisting of 16 hours long stop-and-go TBM operations alternating with 

8 hours long maintenance standstills (2+1 shifts) are considered. Figure 2.12 shows the time-face 

location diagram (bottom) and the required thrust force along the tunnel (top), as determined from 

the three simulations, that is from the discrete simulation (black lines; vN = 50 m/d), the 

semi-discrete simulation (green lines; vS = 25 m/d) and the continuous simulation (red lines; 

vG = 17 m/d).  

During the 8 hour maintenance standstill at xf = 16.5 m (point A) the necessary thrust force 

increases by a factor of 4 (from 56 MN to 224 MN) because the shield partially prevents the 

development of the time-dependent deformations. Upon restart of the TBM (point A), the thrust 

force remains high during the advance through the plastified ground ahead of the tunnel face, 

starts decreasing as the TBM approaches the plastic zone boundary, and rapidly drops (complete 

unloading) when the shield exits the plastic zone and enters the adjacent, still elastic, rock. 

Subsequently, it starts increasing again due to ground plastification ahead of the face, reaching 

lower values in comparison to point A (ca. 56 MN, similar to the stop-and-go phase preceding 

point A). After the stop-and-go period (point B), the thrust force increases again substantially 

during the maintenance standstill (ca. 240 MN; point C), and the whole excavation cycle is 

repeated thereafter. The continuous simulation (red line) underestimates the maximum thrust 

force by more than 40% (point D: 140 vs. 240 MN), while the semi-discrete simulation (green 

line) approximates it to within 15% (point E: 205 vs. 240 MN).  

 
Figure 2.12. Thrust force evolution during two full excavation cycles based on discrete, semi-discrete and 

continuous simulations (ΔR = 0.25 m, L = 10.5 m, LT = 1.5 m, η = 100 MPaꞏd, 

ΔT2 = ΔT1 = 0.72 h, ΔT3 = 8 h, ΔT = 24 h, vN = 50 m/d, vS = 25 m/d, vG = 17 m/d; other 

parameters: Table 2.2) 



Chapter 2 32

 
Figure 2.13. Error of continuous (a) and of semi-discrete simulations (b) of a full excavation cycle with 

respect to discrete simulations versus normalised net advance rate η vN  /E/R in four stop-

and-go and standstill scenarios (EΔR/σ0/R = 1, 2; fc/σ0 = 0.05, 0.2; ϕ = 25°; L/R = 2; 

KsR/E = 10, KlR/E = 0.5; LT/R = 0.2; ΔT2/ΔT1 = 1, other parameters: Table 2.2; 320 

computations in total for each diagram) 

Figures 2.13a and 2.13b show the error of continuous and semi-discrete simulations, respectively, 

with respect to fully discrete simulations, as a function of the normalised net advance rate 

η  vN  /E/R. The parametric study assumes ΔΤ2 /ΔΤ1 = 1 (i.e., the time for one lining ring erection 

equals to the duration of one TBM stroke), ΔΤ3 /ΔΤ = 1/14, 1/12, 1/3.5, 1/3, and vN ΔΤ/R = 10, 70, 

which for a 10 m diameter tunnel and a net advance rate of 50 m/d covers the following realistic 

scenarios: 

 6.5 d stop-and-go followed by a 0.5 d standstill (ΔT3 = 0.5 d, ΔT = 7 d); 

 5 d stop-and-go followed by a 2 d standstill (ΔT3 = 2 d, ΔT = 7 d); 

 22 h stop-and-go followed by a 2 h standstill (ΔT3 = 0.083 d, ΔT = 1 d); 

 16 h stop-and-go followed by an 8 h standstill (ΔT3 = 0.33 d, ΔT = 1 d). 
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For very small viscosities or advance rates, the error is zero, as expected, since there is no 

time-dependency. The error increases with increasing viscosity in both cases, exceeding 30% in 

continuous simulations for values η vN /E/R greater than 1. (The 100% errors for very high 

η vN /E/R correspond to cases where the continuous simulation predicts zero shield pressure.) The 

error of the semi-discrete simulation is considerably smaller and does not exceed 20% for 

η vN /E/R below 0.1 – 1 or beyond 10. In the range 1 – 10 the error is considerable, indicating that 

the proposed approach is inapplicable and that TBM simulations must consider even the short 

standstills of the stop-and-go process explicitly. 

2.6 Application examples 

The importance of considering the effects of creep (Section 2.4) and adequately modelling the 

excavation standstills during the construction process (Section 2.5) is demonstrated in this section 

via two application examples. The first example analyses the TBM drive during construction of 

the Fréjus safety gallery, whereas the second presents a feasibility assessment of a TBM drive 

through the conventionally excavated Sedrun North critical zone of the Gotthard base tunnel.  

2.6.1 Fréjus safety gallery 

The 13 km long Fréjus highway tunnel connecting Modane (France) to Bardonecchia (Italy) is 

located on the French-Italian border in the Western Alps. Construction started in 1974 by 

conventional tunnelling (full-section drill and blast with 4.5 m advance steps) and the tunnel 

opened to road traffic in 1980. The single main tube of the tunnel has an approximately NS 

orientation and crosses three alpine lithotypes at a maximum depth of 1800 m, the principal being 

the Piemontaise zone that consists of calc-schist with phyllitic and carbonate facies. In 2009 works 

started on a parallel safety gallery located 50 m from the highway tunnel. The 6.5 km long stretch 

of the gallery in France was excavated between 2011 and 2013, with drill and blast over the first 

650 m and with a single shield TBM over its remaining part. The latter crosses black and green 

schist between chainages 650 – 1500 m, anhydrite between chainages 1500 – 1750 m, and 

calc-shist between chainages 1750 – 6500 m (Schivre et al., 2014; De la Fuente et al., 2020).  

To ensure that the TBM was able to adjust to various adverse scenarios previously encountered 

during the highway tunnel construction in the 70s, the following specifications were used (Schivre 

et al., 2014): shield length of 11.2 m; nominal shield diameter of 9.37 m with conicity of 60 mm 

on the diameter; nominal boring diameter of 9.46 m (90 mm overcut on the diameter at the tunnel 

crown in the shield front), adjustable to 9.56 m or 9.66 m (to accommodate an increase of the 

overcut by 100 and 200 mm on the diameter, respectively); and installed thrust force of 106 MN.  

Monitoring data were collected during the TBM drive from 10 hydraulic jacks installed over the 

upper shield extrados. The data indicated maximum average convergences of up to 300 mm in 

two zones in calc-schist, between chainages 1750 – 3000 m and 4300 – 6500 m (cf. Fig. 8 in 

Vinnac et al., 2014). The higher convergences in these zones are partially attributed to buckling 

of rock layers along the schistosity planes oriented parallel to the tunnel axis, which resulted in 

the detachment of rock blocks and their collapse on the shield and lining. Despite these effects, 

the TBM specifications, the use of the intermediate overcut in parts and the continuous adjustment 
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of the TBM operation based on real-time monitoring data, enabled an uneventful drive with a 

moderate thrust force up to 30 MN in the calc-shist zone. The maximum thrust force of 52 MN 

was recorded in the anhydrite zone (ca. chainage 1550 m), where the recorded convergences were, 

however, much lower (cf. Fig. 8 in Vinnac et al., 2014). 

The present application example analyses the TBM drive through the calc-schist zone, based upon 

fully discrete transient numerical simulations that consider the effects of creep (Section 2.3). 

Comparative computations are also conducted to assess the accuracy of the time-independent 

(η = 0) and time-dependent (η > 0) continuous models usually employed, and of the semi-discrete 

model proposed in Section 2.5. The simulations do not consider the anhydrite zone, where the 

maximum thrust force was recorded, since the adopted computational model is not suitable for 

capturing the additional time-dependency related to chemical processes in anhydrite (“swelling”). 

2.6.1.1 Adopted parameters 

The parameters adopted in the simulations are given in Table 2.3. A t95 = 60 – 120 days, indicating 

moderate creep intensity, is estimated from monitoring data for the convergence evolution over 

time at chainage 5080 m of the highway tunnel. The data concerns the most unfavourable 

direction over the horseshoe-shaped profile, normal to the schistosity planes (cf. Fig. 4b in De la 

Fuente et al., 2020), and was recorded prior to the installation of the final lining. The estimated 

t95 is used to determine the expected range of viscosity η after Figure 2.1a (open tunnel profile 

with low support resistance), considering additionally two parameter sets for calc-schist: (i) the 

set reported by Vinnac et al. (2014), and, (ii), a set calibrated based on the monitoring data. For 

simplicity, set (ii) is chosen to be identical to (i), except for the Young’s modulus E; the latter is 

adjusted such that the maximum radial displacement predicted by a ground response curve (GRC; 

Anagnostou and Kovári, 1993) for an unsupported opening matches the one of the monitoring 

data. The GRC for set (i) gives a maximum displacement of ca. 600 mm on the diameter, which 

includes the ground pre-deformation ahead of the tunnel face. On the other hand, the monitoring 

data indicates maximum long-term convergence (i.e., displacement relative to the tunnel face) of 

ca. 480 mm on the diameter, in the most unfavourable cross-sectional orientation. Assuming that 

the pre-deformation is 50% of the total displacement far behind the face (typically 30-70%), the 

latter is ca. 2*480 = 960 mm. A Young’s modulus of 7500*600/960 = ca. 4700 MPa is thus 

adopted in set (ii), 1.6 times lower compared to set (i). Since fc and ϕ are identical in the two sets, 

η is estimated at the same point of Figure 2.1a using only different E values; the η-ranges of the 

two sets are thus linearly dependent by a factor of 1.6. 

2.6.1.2 Analysis of TBM drive 

The fully discrete model predicts contact between shield and ground only when considering the 

nominal overcut of 60 mm and the lowest viscosity value of 1700 MPa.d for set (ii). Figure 2.14 

shows with black lines the time-face location diagram (bottom) and the required thrust force along 

the tunnel (top) for this case. Analogously to Section 2.5 two full excavation cycles are 

considered, each consisting of 16-hour long stop-and-go TBM operations (2 shifts; part between 
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points A, B) alternating with 8-hour long maintenance phases (1 shift; part between points B, C), 

with realistic typical durations for the various operations (Table 2.3). The maximum predicted 

thrust force is 41 MN, very close to the maximum value of 30 MN recorded in the critical zones 

(Fig. 8 in Vinnac et al., 2014). Differences may be partially attributed to the asymmetric loading 

of the shield resulting from the detachment of blocks following buckling, which cannot be 

captured by the adopted rotationally symmetric computational model (Section 2.3). When 

considering the nominal overcut with higher viscosity values for any of the two parameter sets, 

or the intermediate overcut of 110 mm with any of the viscosity values and parameter sets, the 

model predicts no contact between shield and ground, and hence the thrust force is constant and 

equal to the boring force (these cases are not shown in Fig. 2.14). 

 
Figure 2.14. Fréjus safety gallery: Thrust force evolution predicted by discrete and time-independent 

continuous simulations of two full excavation cycles (parameters: Table 2.3)  
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Table 2.3. Parameters considered in application examples 

Ground    Fréjus safety gallery Gotthard Base tunnel 

Young’s modulus E [MPa] 7500(a), 4700(b) 1000 ± 15%(r) 

Poisson’s ratio ν [-] 0.2(a) 0.25 

Angle of internal friction ϕ [°] 35(a) 27 ± 3(s) 

Dilatancy angle ψ [°] 15(c) 5 ± 2(s) 

Uniaxial compressive strength fc [MPa] 3.8(a) 1.3 ± 0.3(s) 

Time to reach 95% of displacement  t95 [d] 60 – 120(d)  

Viscosity η [MPa.d] 2700 – 5400(e) 

1700 – 3400(f) 
10 - 100(t) 

Overburden H [m] 1200 – 1400(g) 800 

In-situ stress σ0 [MPa] 40(h) 20 

TBM      
Nominal boring radius R [m] 4.73(i) 5 
Shield Length L [m] 11.2(i) 10 
Overcut ΔR [mm] 60, 110(j) 200 
Shield thickness ds [mm] 75 75 
Young modulus of the shield (steel) Es [GPa] 210 210 
Shield stiffness(k) Ks [MPa/m] 704 630 
Coefficient of shield skin friction µ [-] 0.3, 0.4(l) 0.1, 0.15(u) 
Maximal cutter force(m) Fc [kN] 267 267 
Number of cutters n [-] 63(i) 63(v) 
Thrust force (boring process)(n) Fb [MN] 17 17 

Lining  
   

 
Lining thickness dl [mm] 400(i) 500 

Young's modulus of the lining (concrete) Ec [GPa] 35 35 

Lining stiffness(k) Kl [MPa/m] 626 700 

Segmental ring width LT [m] 1.8(i) 1.5 

Construction process 
   

 
Time for one ring advance(o) ΔT1 [min] 28 36 

Time for one ring build  ΔT2 [min] 30 30 

Duration of the longer standstill ΔT3 [h] 8 8 

Time for one cycle ΔT [h] 24 24 

Net advance rate vN [m/d] 94(p) 60 

Smeared stop-and-go advance rate (q) vS [m/d] 45 33 
(a) Residual values after Table 1 in Vinnac et al. (2014) 
(b) Calibrated based on monitoring data at Chainage 5080 of the Fréjus road tunnel (De la Fuente et al., 2020); see Section 2.6.1 
(c) ψ = ϕ-20º 
(d) Estimated from monitoring data of convergence development over time at Chainage 5080 (Fig. 4b in De la Fuente et al., 2020) 
(e) Estimated after Fig. 2.1a for fc/σ0 = 0.1, ϕ = 35°, t95 E / η = 167, t95 = 60 - 120 d, E = 7500 MPa 
(f) Estimated after Fig. 2.1a for fc/σ0 = 0.1, ϕ = 35°, t95 E / η = 167, t95 = 60 - 120 d, E = 4687.5 MPa 
(g) After Fig. 8 in Vinnac et al. (2014) for the critical squeezing zone between chainages 4500 and 5300 m 
(h) Rounded value of higher horizontal in-situ stress (lateral earth pressure coefficient of 1.2-1.4), considering overburdens of 

1200-1400 m and unit weight of 27 kN/m3 (Vinnac et al., 2014) 
(i) Schivre et al. (2014) 
(j) Equivalent uniform overcuts for rotationally symmetric analyses; taken equal to the value in the middle of the shield length, 

considering nominal and intermediate overcuts of 90 and 190 mm on the diameter in the shield front, and conicity of 60 mm 
on the diameter after Schivre et al. (2014): (90+60/2)/2 = 60 mm, (190+60/2)/2 = 110 mm on the radius. 

(k) Kl = El dl / R2; Ks = Es ds / R2 
(l) Sliding and static friction coefficient without shield extrados lubrication; after Table 2.3 in Ramoni and Anagnostou (2011a) 
(m) After Sänger (2006) 
(n) Fb = n Fc 
(o) ΔT1=LT /vN 
(p) Average of 50 - 80 mm/min after Fig. 8 in Vinnac et al. (2014) 
(q) Eq. 2.6 
(r) After Fig. 5 in Vrakas et al. (2018), E50-value for 20 MPa in-situ stress  
(s) After Table 1 in Vrakas et al. (2018) 
(t) After Section 5.5.1 in Cantieni et al. (2011) 
(u) Sliding and static friction coefficient with shield extrados lubrication after Table 2.3 in Ramoni & Anagnostou (2011a)  
(v) Assumed value; taken equal to that of the Fréjus application example 
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2.6.1.3 Accuracy evaluation of semi-discrete and continuous simulations 

Both the semi-discrete and the continuous time-dependent models fail to capture the shield ground 

contact that actually occurred, for both overcuts and viscosity ranges. The prediction error is 

moderate and justifiable in this specific case, due to the relatively high viscosity values and the 

very conservative TBM specifications. The accuracy of these models can thus not be assessed in 

this example. Either way, the applicability of the semi-discrete model would be questionable in 

this case, since the normalised net advance rate η vN /E/R ranges between 7 and 14, which overlaps 

with the region of highest errors in Figure 2.13b.  

Most interesting are the results of the time-independent continuous models. These overestimate 

the required thrust force excessively, predicting values between 720 MN for a 110 mm overcut 

(point E in Fig. 2.14) and 920 MN for a 60 mm overcut (Point D in Fig. 2.14), ca. 24-30 times 

higher compared to those observed in reality. Such values lie far beyond technical limits for TBMs 

and would be thoroughly misleading for a feasibility assessment of the TBM drive. This result 

clearly demonstrates that relying on continuous time-independent models in cases of moderately 

to pronouncedly creeping ground may prove excessively conservative, erroneous and misleading.  

2.6.2 Gotthard Base tunnel 

The 57 km long Gotthard Base railway tunnel in Switzerland was constructed between 1999 and 

2011 and opened to traffic in 2016. Its two main tubes cross four geological zones from north to 

south: the Aar Massif (AM), the Intermediate Tavetsch Massif (TM), the Gotthard Massif (GM) 

and the penninic gneiss (PM) (Mezger et al., 2013, Vogelhuber et al., 2023). Over the major part 

of the tunnel crossing the AM, GM and PM zones, which consist of competent gneisses and 

granites with very few local geologically disturbed regions, the conditions for tunnelling were 

favourable overall and hard rock TBMs were used. Conversely, over the 1100 m long stretch 

crossing the southern part of the AM zone (Clavaniev zone) and the northern part of the TM zone 

at 800 m depth, heavily and pronouncedly variable squeezing conditions were both anticipated 

and encountered during construction. This critical zone consists of alternating layers of kakiritic 

gneisses, slates and phyllites, and is commonly referred to as “Sedrun North”. The observed 

variability of squeezing is attributed to differences in the degree of kakiritization, the schistosity 

orientation and the competent-weak rock layer alternations (Mezger et al., 2013). 

The unfavourable conditions for mechanised tunnelling in Sedrun North necessitated resorting to 

conventional, full-face excavation of the 10 m diameter circular tunnel cross-section, with 

over-excavation of up to 0.8 m, systematic anchoring of the cross-section and various auxiliary 

measures, including systematic bolting of the tunnel face (Vogelhuber et al., 2023). In the first 

stage, a yielding support was installed, consisting of two overlain sliding steel rings connected by 

friction loops, to accommodate convergences in a controlled manner and allow for stress relief of 

the ground. In the second stage, after the rate of convergences slowed down, a 0.3 – 0.6 m thick 

shotcrete ring was initially applied, followed later by an in situ-cast final lining with maximum 

thickness of 1.2 m. The maximum average radial convergence was ca. 40 cm, with peak values 

as high as 70 cm measured at specific points over the tunnel boundary (Kovári et al., 2008). 
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The main aim of the present example is to reassess the feasibility of the TBM drive through 

Sedrun North, considering our knowledge today about the mechanical behaviour of the kakirites, 

the latest thrust prediction methods and the current state of TBM technology. Concerning the 

latter, Ramond and Schivre (2019; pp. 32) provide an overview of the installed nominal thrust in 

single-shield TBMs used in some of the most important tunnelling projects between 2000 and 

2019. One can readily identify values as high as, e.g., 140 MN in the Pajares tunnel in Spain, or 

155 MN in the Brenner Base tunnel crossing Austria and Italy. Installing additional thrust is 

possible with an appropriate modification of the TBM, e.g., by installing removable auxiliary 

hydraulic jacks. This approach was used during the construction of Section 4 of the 10 m diameter 

Pajares tunnel between 2007 and 2009, where the nominal thrust of 140 MN was initially 

increased to 193 MN and subsequently to 225 MN, following jamming of the TBM due to the 

pronounced squeezing conditions (Ramoni and Anagnostou, 2010b). Considering that an installed 

thrust of 225 MN was materialised 15 years ago, moderately higher values appear thoroughly 

feasible with incremental developments of current technology.  

The feasibility of mechanised tunnelling is assessed with the aid of fully discrete, transient 

numerical simulations which consider the effects of creep and a reliable set of parameters 

collected from various rigorous investigations on the Gotthard Base tunnel. Additionally, 

comparative computations are performed to assess the adequacy for decision-making during 

design of the proposed semi-discrete model (Section 2.5), the time-independent (η = 0) and time-

dependent (η > 0) continuous models (which currently constitute the standard in both engineering 

practice and research), and the design nomograms of Ramoni and Anagnostou (2010b). 

2.6.2.1 Adopted parameters 

The parameters adopted in the computations are given in Table 2.3 and discussed hereafter.  

The elasticity and plasticity parameter ranges are taken after Vrakas et al. (2018), which consider 

the results of 90 consolidated drained triaxial compression tests on kakiritic samples from Sedrun 

North. During the project planning phase between 1998 and 2000, 55 of these tests were 

conducted (Vogelhuber, 2007), and a further 35 during the construction phase between 2004 and 

2007 (Anagnostou et al., 2008), as part of a large experimental programme undertaken by the 

ETH Rock Mechanics laboratory.  

The range of viscosity η = 10 – 100 MPa.d corresponds to the one estimated by Cantieni et al. 

(2011), based on in-situ monitoring data for the tunnel face extrusion during a construction 

standstill at chainage 2090 m. The data was recorded using reverse-head-extensometers installed 

along the tunnel axis and showed that the extrusion stopped after 30 days and that 95% of its final 

value was achieved within about 20 days, thereby indicating a rather low viscosity. The estimation 

of viscosity by Cantieni et al. (2011) is performed analogously to Section 2.2, assuming that the 

time-development of extrusion is similar to that of the radial displacement in a cross-section far 

behind the face. Formally speaking, unlike the radial displacement, the extrusion is also 

influenced by the stress redistributions taking place ahead of the face in the longitudinal direction, 

and considering this effect may lead to a different viscosity range. However, the differences are 
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not expected to be significant, considering that the rheological properties of the material are 

unique, hence the order of magnitude of the viscosity is expected to be the same. Viscosities 

within the same order of magnitude will lead, as seen in Figure 2.6, to similar thrust forces and 

thus the conclusions remain valid.  

A single shield TBM with shield length equal to the 10 m tunnel diameter is considered. Very 

low sliding and static shield skin friction coefficients are adopted (μ = 0.1 and 0.15, respectively), 

which can be achieved via lubrication of the shield extrados (cf. Table 2.3 in Ramoni and 

Anagnostou, 2011a), and a large overcut is assumed (ΔR = 200 mm), which can be materialised 

with existing overboring systems (cf. Table 2.2 in Ramoni and Anagnostou, 2011a). These 

specifications are deliberately selected to be as favourable as possible, while typical specifications 

for the shield and lining are otherwise considered. Analogously to Section 2.5, two full excavation 

cycles are assumed, consisting of 16-hour stop-and-go TBM operations (2 shifts) alternating with 

8-hour maintenance phases (1 shift) with typical, realistic durations. 

2.6.2.2 Feasibility assessment  

Figure 2.15 shows the predicted range of the required thrust force, considering the inherent 

uncertainties associated with the stiffness, strength, and viscosity of the ground (cf. Table 2.3), as 

well as different simulation methods. The feasibility assessment is discussed with reference to the 

four black bars, which correspond to fully discrete simulations. From top to bottom, these show 

the predicted range considering: (i) the expected range of viscosity η = 10 – 100 MPa.d in 

combination with the mean strength and stiffness parameters; (ii) the minimum expected viscosity 

η = 10 MPa.d in combination with the expected range of the strength and stiffness parameters; 

(iii) the maximum expected viscosity η = 100 MPa.d in combination with the expected range of 

the strength and stiffness parameters; and, (iv), the expected ranges of the viscosity, strength and 

stiffness parameters. 

 
Figure 2.15. Gotthard base tunnel: Predicted thrust force range from discrete, semi-discrete and 

continuous time-dependent and time-independent simulations of two full excavation 
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A comparison of the 1st bar with the 2nd and 3rd bars shows that the uncertainty associated with 

the strength and stiffness parameters of the ground is far more critical than that associated with 

the viscosity and leads to a much broader range. The 4th bar, which embeds all uncertainties, 

indicates a maximum thrust force of 300 MN, which corresponds to the combination of the 

minimum viscosity η = 10 MPa.d with the minimum strength and stiffness (upper end of bar 2).  

It must be considered that the determined value of 300 MN corresponds to the worst possible 

combination of all material parameters, which is also assumed to prevail along the entire length 

and over the entire cross-section of the tunnel (due to the assumptions of homogeneous ground 

and rotational symmetry, respectively; cf. Section 2.3). In reality, such a combination is very 

unlikely and could only occur over narrow weak zones interspersed between zones of more or 

less competent rock with superior stiffness and strength properties. The presence of competent 

zones is a well-established characteristic of the geological formations in Sedrun North (cf. Mezger 

et al., 2013), and has a favourable influence with respect to shield jamming: it reduces ground 

deformations in the weaker zones due to the shear stresses mobilised at their interfaces and the 

resulting longitudinal arching effect of the ground (so-called “wall-effect”). The value of 300 MN 

is thus a clearly pessimistic estimate, and lower values would be more realistic. 

However, based upon the preceding discussion regarding feasible thrust force values in single 

shield TBMs, even an installed thrust of 300 MN appears to be a viable prospect with current 

technological developments. An increase of 75 MN with respect to the 225 MN that was 

materialised 15 years ago is not extreme and can probably be accommodated with a suitable TBM 

design. In conclusion, from today’s perspective, a TBM drive prospect appears feasible overall.  

2.6.2.3 Accuracy evaluation of semi-discrete and continuous simulations and design 
nomograms 

In the following, the adequacy of the proposed semi-discrete, continuous time-dependent and 

time-independent models, and of the design nomograms of Ramoni and Anagnostou (2010b) is 

assessed with reference to the results of the fully discrete model. The comparison is based on the 

respective predicted ranges of thrust force shown in Figure 2.15, considering the mechanical 

parameters and viscosity of the ground as variable within their expected ranges.  

The semi-discrete model (green bar) captures very accurately the range of the fully discrete one 

(4th black bar), predicting an almost identical maximum value and a slightly lower minimum value 

(which is anyway irrelevant from a feasibility assessment viewpoint). Therefore, it allows for the 

same conclusions to be drawn in practical engineering terms also within the context of the 

feasibility assessment discussed previously.  

Conversely, the continuous time-dependent model (red bar) systematically underestimates the 

predictions of the fully discrete one (4th black bar). While the underestimation of the low-end of 

the range is subcritical, the underestimation of the high-end is misleading for feasibility 

assessment and decision-making. Specifically, the 240 MN maximum value is sufficiently high 
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to raise an alert, but otherwise points towards a thoroughly feasible TBM drive, especially when 

the favourable influence of the wall-effect is considered.  

The same applies to the continuous time-independent model (blue bar), which predicts an even 

lower required thrust force of 220 MN that is thoroughly feasible even without considering the 

wall-effect influence. The fact that the time-independent model prediction is lower than that of 

time-dependent simulations is attributed to the paradox discussed in Section 2.4 and shown in 

Figure 2.6, which manifests itself within the expected range of viscosity η = 10 – 100 MPa.d.  

The design nomograms (light blue bars) of Ramoni and Anagnostou (2010b), which were 

established on the basis of the time-independent continuous simulations, predict the same 

maximum value, as expected. The only difference is that the nomograms embed the conservative 

assumptions of very high and very low stiffnesses for the shield and lining, respectively, and 

hence they systematically overestimate the low end of the range predicted by continuous 

time-independent simulations that consider the actual stiffnesses.  

2.7 Conclusions 

This chapter presented an investigation into the effect of the time-dependency of squeezing on 

shield jamming and lining overstressing, along with a comparative evaluation of different 

approaches for simulating TBM advance and considering excavation standstills in transient 

numerical computations. The simplest possible MC-Perzyna constitutive model was adopted, 

which considers time-dependency solely in the plastic regime via a single viscosity parameter η, 

and allows the magnitude of the viscosity in tunnelling boundary value problems to be directly 

quantified and the results to be qualitatively interpreted in a simple manner (Section 2.2). The key 

contributions of the present chapter are summarised hereafter. 

First, the common notion that creep is thoroughly favourable for shield jamming during advance 

has been disputed. Within a certain viscosity range, a counter-intuitive behaviour occurs, where 

the thrust force increases with increasing viscosity, due to the interplay of two counter-acting 

effects (Section 2.4): (i) viscosity delays the closure of the annular gap, thus reducing the contact 

area between shield and ground, while, (ii), it also limits plastic deformations, thus limiting stress 

relief in the ground ahead of the tunnel face and increasing the pressure transferred to the shield 

after every excavation increment. Beyond this range, the thrust force starts decreasing with 

increasing viscosity, since contact between shield and ground happens sufficiently far from the 

tunnel face for the effect of face stiffening to have an influence. The aforementioned paradox also 

appears in standstills and at steady-state conditions, where the thrust force required also increases 

due to the manifestation of additional viscoplastic deformations over time. This increase makes 

creep thoroughly unfavourable during standstills, even in the range of viscosities where its 

influence may be favourable during advance. 

Second, creep has been shown to be thoroughly unfavourable for the steady-state lining loads far 

behind the face (Section 2.4). Viscosity reduces the plastic deformations in the vicinity of the 

face, and hence greater plastic deformations develop over time, which are constrained by the 

lining, thus increasing the pressure acting upon it.  
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Third, a semi-discrete approach has been proposed to simulate the TBM advance, which can be 

idealised as stop-and-go phases alternating with regular standstills for maintenance works 

(Section 2.5). This smears only the short standstills during the stop-and-go phase, but otherwise 

explicitly simulates the regular ordinary standstills. The proposed approach approximates the 

required thrust force to within 10% if a maintenance standstill is not considered (or is very small 

in proportion to the stop-and-go phase) and within 20% otherwise, provided that the values of the 

normalised net advance rate η vN /E/R lie outside the range 1 – 10. Therefore, it provides the 

same basis for decision-making as the “exact” discrete model in practical tunnel engineering 

situations, and outperforms the fully continuous simulations usually considered in the literature 

(Section 2.6).  
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3 An estimation equation for the TBM thrust 
force in creeping rock2 

Abstract 

Shield jamming due to insufficient thrust force poses a critical hazard in mechanized tunnelling 

through squeezing ground. The time-dependency of squeezing due to creep can substantially alter 

the thrust force requirements, and the use of existing design tools that neglect it might therefore 

be misleading for the feasibility assessment of mechanized tunnelling or the design of the TBM. 

This chapter develops an equation for estimating the required thrust force in creeping rock under 

squeezing conditions during ongoing TBM advance, as well as during construction standstills. 

The method uses and extends the applicability of existing design nomograms through design 

equations established via multiparametric nonlinear regression, considering the results of 12,300 

transient numerical simulations that cover a wide range of in-situ stresses and ground, TBM, and 

creep parameters relevant in tunnelling practice. The proposed method approximates the 

numerical results with sufficient accuracy to provide a reliable basis for decision-making during 

design and a valuable tool for fast assessments of the shield jamming risk. Its versatility and 

suitability in practical situations are demonstrated via two application examples from the Fréjus 

safety gallery and the Gotthard base tunnel. 

  

                                                      
2  This chapter has been published with the following reference: Leone, T., Nordas, A.N. & Anagnostou, G. 

(2023). An estimation equation for the TBM thrust force in creeping rock. Computers and Geotechnics, 165, 
105802, doi: 10.1016/j.compgeo.2023.105802. The contributions of each author are given in Appendix F. The 
postprint version is considered for the present chapter. 
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3.1 Introduction 

Shield jamming occurs when the installed thrust force of the TBM is insufficient to overcome the 

shield skin friction generated by the rock pressure, which develops over time due to TBM advance 

(Ramoni & Anagnostou, 2010a), creep (Debernardi, 2008, Corbetta, 1990, Fritz, 1981, 

Zienkiewicz et al., 1975) or excess pore pressure dissipation and consolidation in the case of 

saturated ground (e.g. Graziani and Ribacchi, 2001; Ramoni and Anagnostou, 2011b). The effects 

of creep on shield loading, the subject of this and the previous chapter, have been increasingly 

studied in the last 15 years. A recent review can be found in Section 2.2 of the previous chapter. 

An estimation of the required thrust force and a quick assessment of the risk of shield jamming 

can be performed using existing design aids, such as the nomograms developed by Ramoni and 

Anagnostou (2010b), which cover a very wide range of in-situ stresses, ground and TBM 

parameters relevant in tunnelling practice. Since these nomograms were developed for the case 

of time-independent rock behaviour, their applicability is uncertain in the case of creep: Figure 

3.1 compares the predictions of the design nomograms (ordinate axis) with those of transient 

numerical simulations considering creep (abscissa axis), for 12,300 computational cases covering 

the entire viscosity range relevant in tunnelling practice and the range of ground and TBM 

parameters considered in the design nomograms, as given in Table 3.1 (the computational model 

and relevant assumptions are discussed in Section 3.2). It is apparent that disregarding creep may 

substantially overestimate the rock pressure that develops upon the shield, and thus also the 

required thrust force, in the vast majority of cases (points above 1:1 line), being adequate only in 

cases where the effect of creep is negligible (points close to the 1:1 line), while in a few cases 

disregarding creep can even lead to an underestimation of the rock pressure (points below 1:1 

line). The latter, although seemingly paradoxical, is attributed to the interplay of two 

counteracting effects of creep, which have been examined in detail in Section 2.4.4 in the previous 

chapter: on the one hand creep limits the ground convergences around the shield, which reduces 

the rock pressure acting upon it, but on the other hand it leads to less stress relief of the ground 

ahead of the tunnel face, which results in increased load transferring to the shield.  

Table 3.1.  Parameter range considered for metamodel development 

 Ground     
 Poisson’s ratio ν [-] 0.25  
 Angle of internal friction ϕ [°] 15, 20, 25, 30, 35  
 Dilatancy angle ψ [°] max(ϕ-20°,1°)  
 Normalised overcut EΔR/R/σ0 [-] 1, 2, 3, 4, 5  
 Normalised strength fc/σ0 [-] 0.05, 0.1, 0.2, 0.3, 0.4, 0.5  

 TBM & lining    
 

 Normalised advance rate vS η/E/R [-] 10-5 : 103 (a)  
 Normalised standstill time tE/η [-] 0 - ∞ (b)  
 Normalised shield stiffness Ks R/E [-] 10  
 Normalised shield length L/R [-] 2  
 Normalised lining stiffness Kl R/E [-] 0.5  

(a) 82 equally-spaced values with increment 0.1 in logarithmic scale 
(b) 9 equally-spaced values in logarithmic scale between advance and steady-state 



An estimation equation for the TBM thrust force in creeping rock 45 

 
Figure 3.1. Normalised rock pressure average over the shield: predictions without considering creep 

(after Ramoni and Anagnostou, 2010b) vs. results of TBM advance numerical simulations 

considering creep (12,300 data points) 

Considering the above and building upon the previous works (Ramoni and Anagnostou 2010b, 

Chapter 2), a design equation for the average rock pressure σ developing upon the shield during 

advance and standstills in the presence of creep (hereafter referred to as “rock pressure” or simply 

“pressure”) is presented in this chapter. The equation uses the design nomograms of Ramoni and 

Anagnostou (2010b) and is formulated considering the typical time development of the rock 

pressure shown with solid lines in Figure 3.2. (The dashed lines show the approximation based 

on the proposed design equation and will be discussed later.) A distinction is made as to whether 

shield – ground contact already occurs during advance (case I) or only during a standstill, after a 

certain time tc (case II). In both cases, the rock pressure  

  0t t     , (3.1) 

where σt=0 denotes its value during advance, while Δσ denotes its increase during a standstill and 

can be expressed as follows: 
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where Δσt=∞ is the maximum possible increase, holding in cases where steady-state conditions are 

reached during the standstill, and the function g describes the time evolution of rock pressure. 

Eqs. 3.1 and 3.2 consider cases I and II of Figure 3.2 via tc = 0 and σt=0 = 0, respectively. 
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Figure 3.2. Typical rock pressure development during a standstill according to transient numerical 

simulations (solid lines) and metamodel approximations (dashed lines): shield-ground 

contact during advance (I), later contact (II) (EΔR/R/σ0 = 2, fc/σ0 = 0.05, ϕ = 25°, 

η vS /E/R= 0.251 (I), η vS /E/R = 1000 (II); other parameters: Table 3.1) 

The components on the r.h.s. of Eqs. 3.1 and 3.2 are expressed as functions of the significant 

problem parameters and time via multiparametric nonlinear regression, based on the results of the 

12,300 transient numerical simulations that cover the practically relevant parameter range (Table 

3.1), considering 9 time-instances between advance and steady state for each simulation (110,700 

data points in total). The proposed method constitutes a so-called “metamodel”, that is a model 

with a unique formulation capable of reproducing the behaviour of multiple numerical models 

with distinct formulations. The metamodel approximates the thrust force during advance, during 

a standstill of arbitrary duration, and at steady-state conditions, with sufficient accuracy to assist 

decision-making in practical tunnel design. For shield jamming assessments in creeping rock, it 

therefore constitutes a valuable tool which is considerably faster than, and eliminates the need 

for, sophisticated transient numerical simulations. 

This chapter starts with an outline of the computational assumptions adopted in the parametric 

investigations in Section 3.2. Subsequently, Sections 3.3, 3.4 and 3.5 respectively present the 

metamodel formulation for approximating the rock pressure during advance (σt=0), its maximum 

increment at steady-state conditions (Δσt=∞), and the contact time tc and time function g required 

for the estimation of Δσ(t) at any arbitrary time. Section 3.6 discusses the metamodel limitations 

and presents a quantitative assessment of its accuracy. Finally, Section 3.7 explains the 

metamodel use step-by-step and assesses its performance via two application examples, the Fréjus 

safety gallery and the Gotthard base tunnel. 
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3.2 Computational assumptions and significant parameters 

3.2.1 Computational model 

An axisymmetric Finite Element (FE) model has been developed in Abaqus® (Dassault Systèmes, 

2018), which simulates the mechanised excavation and lining installation sequence step-by-step, 

as well as the transient processes during a subsequent standstill (Fig. 3.3). For a detailed 

description of all computational assumptions, the reader is referred to Section 2.3 in the previous 

chapter. The semi-discrete simulation approach discussed in Section 3.1 is adopted, where the 

sequence of stop-and-go cycles during TBM advance is simulated continuously considering a 

smeared advance rate vS, whereas the subsequent standstill is simulated explicitly by a transient 

analysis in which the TBM is static (Section 2.5 of the previous chapter).  

The numerical model takes into account the different installation points of the shield and the lining 

(immediately behind the face and at the end of the shield, respectively) as well as their different 

contact conditions (annular gap around the shield; see Ramoni and Anagnostou 2010b). The 

shield and lining are taken as linearly elastic, while the soil is assumed to obey a linearly elastic 

and viscoplastic constitutive model with a Mohr-Coulomb yield condition and a non-associated 

viscoplastic flow rule. The constitutive model considers deviatoric rheological behaviour based 

upon Perzyna’s (1966) theory and is defined via six parameters: the five common elasticity and 

plasticity parameters (Young’s modulus E, Poisson’s ratio v, cohesion c, angle of internal friction 

ϕ and angle of dilation ψ), and the viscosity η that controls the time-dependency of plastic 

deformations due to creep (Section 2.2 of the previous chapter). The validation of the step-by-

step computation is performed for the case of zero viscosity in Appendix C.3. 

 
Figure 3.3. Schematic representation of the problem and of the axisymmetric computational model 

Advance direction

Lining Shield

backfilling annular gap

Tunnel axis
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Any numerical analysis of the parametric study starts with a simulation of the TBM advance for 

a certain tunnel stretch, the length of which is defined such that the rock pressure attains a constant 

value, and continues with the standstill stage until reaching steady state. The analysis provides 

the longitudinal distribution of the rock pressure during advance and at any time instance during 

the standstill, which subsequently enables its average value over the shield (σ) to be determined 

via integration, and the required thrust force Fr to be calculated as follows:  

 2r bF R L F     (during boring), (3.3) 

 2r stF R L    (restart after a standstill), (3.4) 

where μ and μst respectively denote the sliding and the static shield skin friction coefficients, Fb 

denotes the thrust force required for boring, and R and L denote the tunnel radius and shield length, 

respectively. 

3.2.2 Model limitations 

Due to the practical imponderables associated with identifying the most appropriate constitutive 

model and determining the rock mass parameters, the simplest and most widely used elastoplastic 

model in tunnelling (isotropic, linear-elastic, perfectly plastic material with Mohr-Coulomb yield 

criterion) was chosen in combination with the simplest possible formulation of viscoplasticity 

(the one-parameter Perzyna model). The appropriateness of this model must, of course, be 

assessed on a case-by-case basis. 

The calculation model assumes that the rock can be considered homogeneous and isotropic at the 

scale of the tunnel cross-section, but in reality squeezing rock formations can consist of alternating 

weaker and harder layers.  

If the layers are thin in relation to the tunnel diameter, a homogeneous model can still be 

considered, but in combination with transverse isotropy. The layer-related anisotropy would 

generally lead to an uneven distribution of rock deformations over the tunnel circumference, 

which cannot be captured by an isotropic model. The latter can nevertheless be used in certain 

cases to obtain reasonable estimates, provided that it is appropriately calibrated and considers 

equivalent isotropic parameters (Mezger and Anagnostou, 2019). 

In the case of large-scale heterogeneity of the geological formation, the homogenisation described 

above is not possible. Considering a homogeneous material with the parameters of the weaker 

component of the actual formation would generally overestimate convergences and rock 

pressures, as the adjacent competent layers have a stabilising effect (Mezger et al. 2013, Mezger 

and Anagnostou 2019). The degree of conservatism of the homogeneous model can be assessed 

using Nordas et al. (2023a). 

In this chapter, time-dependence is considered due to creep (related to the rheological-mechanical 

behaviour of the soil), but not due to consolidation (related to hydromechanical coupling). The 
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model is not applicable to low-permeability water bearing rocks where the time-dependence of 

the response to tunnelling is due to excess pore pressure dissipation and consolidation. In cases 

where consolidation plays a role, the shield-ground interaction should be investigated based on 

coupled hydromechanical simulations (see, e.g., Ramoni and Anagnostou 2011b). 

3.2.3 Significant parameters 

The rock pressure normalised with respect to the in-situ stress σ0 depends in general on the 

following dimensionless parameters (Chapter 2):  
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where ΔR is the annular gap (overcut) around the shield, fc is the uniaxial compressive strength 

of the ground, Ks and Kl are the radial shield and lining stiffnesses, respectively, and t is the 

standstill duration. The parametric investigations consider only the case of a single-shield TBM 

with L/R = 2, which is common for typical cross-sections of traffic tunnels, and embed the 

assumptions adopted in the design nomograms of Ramoni and Anagnostou (2010b), specifically: 

Ks R/E = 10 and Kl R/E = 0.5, which lead overall to conservative predictions, v = 0.25, and 

ψ = max{ϕ – 20°;1}. Considering the above, Eq. 3.5 simplifies as follows: 
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For brevity, the following notation is henceforth adopted for the dimensionless parameters: 

ΔR* = E ΔR / (σ0 R), fc
* = fc / σ0, vS

* = vS η / (ER), t* = t E / η. The parameter values considered are 

given in Table 3.1, where the dimensionless ground and TBM parameters (ΔR*, fc
*, ϕ) are selected 

analogously to the design nomograms, while the dimensionless advance rate (vS
*) covers the 

practically relevant range for tunnelling boundary value problems established in Chapter 2. The 

combination of the parameter values in Table 3.1 results in a total of 12,300 computational cases, 

with 9 time-instances considered in each case for the thrust force evaluation during standstills 

(110,700 data points in total).  
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3.3 Rock pressure during advance σt=0 

The rock pressure developing during advance (σt=0) depends solely on ΔR*, fc
*, ϕ and vS

* (cf. Eq. 

3.6 for t = 0). The solid line in Figure 3.4 shows the typical variation of σ*
t=0 (= σt=0 /σ0) with the 

advance rate vS
* for a given ΔR*, fc

* and ϕ, as determined by transient numerical simulations. 

For a very slow advance or in the absence of creep (vS
* → 0), the entire plastic deformations occur 

practically simultaneously with the advance of the tunnel heading and the normalised rock 

pressure σ/σ0 corresponds to the value determined from the design nomograms. (Note that σ/σ0 is 

identical with the normalised required thrust force given in the ordinates of the design 

nomograms.) With increasing vS or η, a smaller portion of plastic deformations occurs during 

advance and a larger portion develops progressively over time (viscoplastic deformations), and 

hence the rock pressure during advance tends to decrease. However, within a specific range of vS
* 

- values, the rock pressure increases locally, in some cases exceeding the value for η → 0, due to 

the paradox discussed in Section 3.1. Beyond this local peak, the rock pressure decreases 

monotonically, dropping to zero in the case of a very fast advance or a high viscosity (high vS
* - 

values), where ground convergences do not exceed the overcut ΔR and no shield – ground contact 

occurs.  

The numerically determined distribution (solid line in Fig. 3.4) can be approximated using the 

following exponential function that neglects the small peak in the range of the paradox (dashed 

line in Fig. 3.4):  

 
*v* *

0 0, 0
sB

t t e  
   , (3.7) 

where σ*
t=0, η=0 denotes the value determined from the design nomograms of Ramoni and 

Anagnostou (2010b) that do not consider creep (η = 0), while the coefficient B depends solely on 

ΔR*, ϕ and fc
*. Multiparametric regression of the 12,300 data points obtained from the numerical 

simulations during advance (cf. Table 3.1) and minor manipulations lead to the following 

functional form for B: 
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Figure 3.5 compares the rock pressure predictions of transient numerical simulations with those 

of the metamodel (Eqs. 3.7, 3.8). The metamodel achieves a coefficient of determination 

R2 = 0.97. 
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Figure 3.4. Typical relationship between the advance rate and the rock pressure during advance: transient 

numerical simulations (solid line), metamodel approximations (dashed line) (EΔR/R/σ0 = 1, 

fc/σ0 = 0.05, ϕ = 25°; other parameters: Table 3.1) 

 
Figure 3.5. Rock pressure during advance: metamodel vs. numerical predictions (12,300 simulations; 

parameters: Table 3.1) 
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3.4 Increase in rock pressure during standstills that reach steady state 

One can readily verify that the maximum possible increase in the rock pressure during a standstill 

(i.e. the increase Δσt=∞ up to steady state; Δσt=∞ = σt=∞ - σt=0) depends only on ΔR*, fc
*, ϕ, vS

* (cf. 

Eq. 3.6 for t = 0 and t → ∞, respectively). The solid line in Figure 3.6 shows the typical variation 

of the normalised increase Δσ*
t=∞ (= Δσt=∞ /σ0) with vS

* for given ΔR*, fc
* and ϕ, as determined by 

transient numerical simulations.  

The observed behaviour can be explained analogously to Section 3.3. For very slow advance or 

in the absence of creep (vS
* → 0) Δσt=∞ = 0, since the entire plastic deformations occur almost 

simultaneously with the advance and rock pressure remains constant and equal to σt=0 over time. 

With increasing vS or η, a larger portion of viscoplastic deformations takes place over time and 

hence Δσt=∞ increases. The observed local peak in the pressure over advance rate line is associated 

with the paradox (Section 3.1). For very fast advance or high viscosity (high values of vS
*), where 

the response is purely elastic during advance and all plastic deformations occur over time, the 

distribution tends asymptotically to a limit value, which will be denoted as Δσt=∞, vs=∞ hereafter.  

The numerically determined distribution (solid line in Fig. 3.6) can be approximated as follows 

(dashed line in Fig. 3.6): 
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, (3.9) 

where Δσ*
t=∞, vs=∞ = Δσt=∞, vs=∞ /σ0, C1 and C2 depend only on ΔR*, ϕ and fc

*. Multiparametric 

regression of the 12,300 data points obtained from the numerical simulations at steady-state 

conditions (cf. Table 3.1), and minor manipulations, yield the following functional forms: 

 * * * * * * * * *
, max 1 0.02 0.005 0.03 0.002 0.5 0.005 ; 0

st v c c c cf R f R f R R f                 

, (3.10) 
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C e

              , (3.11) 

 * * * * * *
2 0.8 0.005 0.2 0.01 2 0.04c cC R R f R f R            . (3.12) 

Due to the approximate nature of Eq. 3.10, it is possible that negative values are obtained for 

Δσt=∞ in Eq. 3.9 in borderline cases of very small Δσ*
t=∞,vs=∞ (i.e. practically purely elastic ground 

behaviour between advance and steady state). Eq. 3.9 is expressed in a conditional form to 

circumvent such instances. 

Figure 3.7 compares the Δσt=∞ predictions of the transient numerical simulations and of the 

metamodel (Eqs. 3.9 – 3.12). The metamodel achieves an R2 = 0.95. 
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Figure 3.6. Typical relationship between the advance rate and the increase in rock pressure during a 

standstill that reaches steady state: transient numerical simulations (solid line), metamodel 

approximations (dashed line) (EΔR/R/σ0 = 2, fc/σ0 = 0.05, ϕ = 20°; other parameters: 

Table 3.1) 

 
Figure 3.7. Increase in rock pressure during a standstill that reaches steady state: metamodel vs. 

numerical predictions (12,300 simulations; parameters: Table 3.1) 
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3.5 Increase in rock pressure during standstills of given duration Δσ(t) 

The increase Δσ(t) in pressure over time is determined by the time function g (cf. Eq. 3.2, Fig. 

3.2), which can be approximately taken as follows (dashed lines in Fig. 3.2): 

 
    * *

max 1 ;0cA t t
g t e

  
, (3.13) 

where the normalised contact time tc
* and the coefficient A depend on ΔR*, fc

*, ϕ and vs
*. The 

following expressions for A and tc
* are obtained from multiparametric regression of the 110,700 

data points resulting from the 12,300 numerical simulations, where 9 time-instances are 

considered in each (cf. Table 3.1): 
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where 
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and 

  *0.3
4 max 1.2; 0RD e   . (3.19) 

Analogously to Section 3.4, the conditional forms in Eqs. 3.14, 3.15 and 3.19 are introduced to 

eliminate cases of negative values resulting from the approximate nature of the mathematical 

expressions, so as to ensure consistency with the physical problem. 
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3.6 Quantitative assessment of metamodel accuracy  

Based upon the results presented in Section 3.3 to 3.5, the rock pressure at any time instance t can 

be determined after Eqs. 3.1 and 3.2, by evaluating σt=0 using Eqs. 3.7 and 3.8 in Section 3.3, 

Δσt=∞ using Eqs. 3.9-3.12 in Section 3.4, and g using Eqs. 3.13-3.19 in Section 3.5. 

Figure 3.8 compares the rock pressure predictions of the transient numerical simulations (abscissa 

axis) with those of the full metamodel for all 110,700 data points (9 time-instances, including 

advance and steady-state, for each of the 12,300 computational cases; cf. Table 3.1). The 

metamodel attains an R2 = 0.96. Evidently there is some scatter of the data points around the 1:1 

line, which means that any given metamodel prediction corresponds to a range of numerical 

predictions. Notwithstanding this, the high coefficient of determination achieved indicates that 

the vast majority of data points fall very close to the 1:1 line and the instances of scattered data 

points are substantially fewer in comparison and far less probable. It must be noted, however, that 

the accuracy of the metamodel is noticeably inferior in the range of very low normalised rock 

pressures between 0 – 0.1, and hence its applicability is limited, or even uncertain, in such cases.  

Besides the inherently approximate nature of the metamodel formulation, its prediction accuracy 

in a specific case may be influenced by the underlying assumptions, comprising mainly: (i) the 

assumed fixed ratio of the shield length to the tunnel radius L/R = 2 (cf. Section 3.2); (ii) the 

conservative assumptions for the normalised radial stiffnesses of the shield and lining adopted 

also in the design nomograms (KsR/E = 10, KlR/E = 0.5;), which overestimate the rock pressure; 

and (iii) the adopted semi-discrete simulation approach, which underestimates the rock pressure 

of discrete simulations by less than 10% during this phase and 20% during a full excavation cycle, 

however in the latter case it produces a much larger error for values of η vN /Ε/R between 1 and 

10, where vN
 is the net advance rate during TBM strokes (cf. Section 2.5 of the previous chapter).  

Notwithstanding the above, the purpose of the proposed metamodel is not to evaluate the thrust 

force with the maximum possible accuracy (this would necessitate detailed case-by-case 

analyses), but rather to rapidly provide a first reliable basis for decision-making in design and 

construction. The application examples presented in the next section have been selected to 

showcase the aforementioned limitations, but also the metamodel’s value and usefulness for fast 

and reliable assessments of shield jamming in creeping rock, as an alternative to performing costly 

and time-consuming transient numerical simulations. 
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Figure 3.8. Rock pressure during standstills: metamodel vs. numerical predictions (110,700 data points 

= 9 time-instances x 12,300 simulations; parameters: Table 3.1) 

3.7 Application examples 

In the previous chapter, the effect of the creep-induced time-dependency of squeezing on shield 

loading and the required thrust force was demonstrated via two application examples: the analysis 

of the TBM drive through the Fréjus safety gallery, and the feasibility assessment of a TBM drive 

through the conventionally excavated Sedrun North critical zone of the Gotthard base tunnel. In 

both examples, fully discrete transient numerical simulations were conducted to determine the 

thrust force evolution along the tunnel during two full days of TBM operation, which were 

assumed to consist of 16-hour long stop-and-go phases and an 8-hour long maintenance standstill.  

In this section, the results of these application examples will be used as benchmarks to assess the 

performance of the metamodel presented in Sections 3.3-3.5 and its suitability for systematic 

employment as a design aid in practical situations. For a detailed description of the projects and 

a discussion on the adopted assumptions and parameters, the reader is referred to Sections 2.6.1 

and 2.6.2 of the previous chapter. The parameters relevant in the present context are given in 

Table 2.3 of the previous chapter, while the use of the metamodel is explained step-by-step in 

Table 3.2, which provides an exemplary computation for selected parameter sets of both 

examples.  
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Table 3.2. Exemplary metamodel computations for the application examples 

Input parameters   Fréjus safety gallery Gotthard Base tunnel 

In-situ stress σ0 [MPa] 40 20 

Young’s modulus E [MPa] 4700 1000 

Angle of internal friction ϕ [°] 35 27 

Dilatancy angle ψ [°] 15 5 

Uniaxial compressive strength fc [MPa] 3.8 1.3 

Viscosity η [MPa.d] 1700 3400 10 100 

Nominal boring radius R [m] 4.73 5 

Shield length L [m] 11.2 10 

Overcut ΔR [mm] 60 200 

Coefficient of sliding friction µ [-] 0.3 0.1 

Coefficient of static friction µst [-] 0.4 0.15 

Thrust force for boring Fb [MN] 17 17 

Smeared advance rate vS [m/d] 45 33 

Standstill duration t [h] 8 8 

Dimensionless parameters     

Normalised overcut  ΔR* [-] 1.490 2.0 

Normalised uniaxial strength  fc
* [-] 0.095 0.065 

Normalised advance rate  vS
* [-] 3.441 6.882 0.066 0.660 

Normalised standstill time  t* [-] 0.922 0.461 33.333 3.333 

Computation for TBM advance     

Normalised pressure for η=0  σ*
t=0, η=0 [-]    0.245 (a)    0.203(b) 

Coefficient (Eq. 3.8) B [-] 1.227  2.139 

Normalised pressure (Eq. 3.7) σ*
t=0 [-] 0.004 0 0.176 0.049 

Thrust force (max. of Eqs. 3.3 and 3.4)  Fr [MN] 33 17 166 48 

Possible metamodel error       

Normalised pressure range(c)  [-] 0-0.015 0-0.015 0.12-0.21 0-0.075 

Thrust force range  

(max. of Eqs. 3.3 and 3.4)  

 [MN] 17-80 17-80 113-198 17-71 

Absolute difference  [MN] -16 / 
+63 

-0 / +63 -53 / +32 -31 / +23 
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Table 3.2. (Continued) 

Computation for standstill  

Norm. pres. inc. for t = ∞, vs = ∞  

(Eq. 3.10) 

Δσ*
t=∞,vs=∞ [-] 0.087  0.233 

Coefficient (Eq. 3.11)  C1 [-] 0.081 0.072 

Coefficient (Eq. 3.12)  C2 [-] 0.933 0.925 

Norm. pressure inc. for t = ∞  

(Eq. 3.9) 

Δσ*
t=∞ [-] 0.085 0.086 0.123 0.211 

Coefficient (Eq. 3.16) D1 [-] 0.225 0.186 

Coefficient (Eq. 3.17)  D2 [-] 14.803 5.092 

Coefficient (Eq. 3.18)  D3 [-] 0.035 0.023 

Coefficient (Eq. 3.19)  D4 [-] 0.364 0.622 

Coefficient (Eq. 3.14)  A [-] 0.390 0.390 0.114 0.304 

Normalised time to contact (Eq. 3.15)  t*
c [-] 0.433 0.649 0 0 

Time function (Eq. 3.13)  g [-] 0.174 - 0.978 0.637 

Normalised pressure increment  

(Eq. 3.2) 

Δσ* [-] 0.015 0 0.120 0.134 

Normalised pressure (Eq. 3.1) σ* [-] 0.019 0 0.296 0.183 

Thrust force  

(max. of Eqs. 3.3 and 3.4) 

Fr [MN] 101 17 279 172 

Possible metamodel error     

Normalised pressure range(d)  [-] 0-0.1 0-0.081 0.18-0.38 0.12-0.23 

Thrust force range  

(max. of Eqs. 3.3 and 3.4) 

 [MN] 17-533 17-431 170-358 113-217 

Absolute difference  [MN] -84/+432 -0 / +414 -109 / +79 -59 / +45 

(a) After Ramoni and Anagnostou (2010b), Fig. 9, nomogram for ϕ = 35º; interpolation for fc/σ0 = 0.095 and (ΔR/R)(E/σ0) = 1.49 
between the curves for fc/σ0 = 0.05 and 0.1 

(b) After Ramoni and Anagnostou (2010b), Fig. 9, interpolation for ϕ = 27º between the diagrams for ϕ = 25° and 30°; interpolation 
for fc/σ0 = 0.065 and (ΔR/R)(E/σ0) = 2.0 between the curves for fc/σ0 = 0.05 and 0.1 

(c) Numerically determined σ*
t=0 - range (abscissae of Fig. 3.5) corresponding to the σ*

t=0 - value after metamodel Eq. 3.7 
(d) Numerically determined σ*

 - range (abscissae of Fig. 3.8) corresponding to the σ*
 - value after metamodel Eq. 3.1 

3.7.1 Fréjus safety gallery 

Figure 3.9 shows the time-face location diagram (bottom) considering stop-and-go TBM 

operation (e.g. AB) and standstills (e.g. BC), as well as the required thrust force along the tunnel 

(top) determined by discrete simulations that consider the actual problem parameters in Table 2.3 

of the previous chapter (black line) and the metamodel (red lines). The results correspond to the 

parameter set with the lowest Young’s modulus of 4,700 MPa and the lowest viscosity of 1,700 

MPa.d, in combination with the smallest overcut of 60 mm (see Table 2.3 of the previous chapter); 

for all other combinations of either Young’s modulus with the corresponding extreme viscosity 

values and any of the overcuts, both the discrete simulations and the metamodel predict no contact 

between shield and ground, and thus a constant thrust force equal to the boring force (17 MN). 

The predictions of the design nomograms for the two overcuts are also given in the same figure 

for comparison. 

Fully discrete numerical creep simulations predict a maximum thrust force of 41 MN, which is 

fairly close to the maximum value of 30 MN recorded in reality. On the other hand, disregarding 

creep predicts excessively high values of 760 and 1300 MN for overcuts of 110 and 60 mm, 
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respectively. This results from neglecting the effect of creep which is considerable here. 

Notwithstanding the general value of the design nomograms, which constitute the only reasonable 

method in most cases due to the absence of data regarding the actual time-dependent behaviour 

of the ground, in this specific case their application would be highly misleading in terms of thrust 

requirements.  

The metamodel, Ih considers creep in a simplified way, also overestimates the thrust force in this 

specific case. The metamodel predicts a thrust force of 101 MN (solid red line), which is higher 

by factor of about 3 than the force predicted by discrete numerical simulations and the actual 

thrust force, with a very wide range of possible values between 17 – 533 MN (dashed red lines; 

cf. Table 3.2). The reasons for the poor quality of the metamodel predictions are explained below. 

First and foremost, the metamodel accuracy is inferior in the range of very low normalised rock 

pressures 0 – 0.1 (Section 3.6) and exhibits a considerable scatter around the value 0.019 

predicted in this case (Table 3.2). The broad range of absolute thrust force values of 17 – 533 MN 

results from this scatter, as well as from their high sensitivity to small variations in the normalised 

rock pressure for the specific problem parameters; indicatively, an increase of the normalised 

pressure in the third decimal point from 0.019 to 0.02 results in an absolute thrust force increase 

by 5 MN, which amounts to 12.5% of the value predicted by discrete simulations.  

Secondly, the metamodel has been developed using the semi-discrete simulation approach. This 

underestimates the discrete simulation predictions by more than 20% when considering a full 

excavation cycle (ABC in Fig. 3.9) if the values of the normalised net advance rate η vN /Ε R fall 

within the range 1 – 10, as for the case under consideration where η vN /Ε R = 7.2 (cf. Table 2.3 of 

the previous chapter). For the assumed specifications of the excavation cycle (Table 2.3 of the 

previous chapter) the error amounts to ca. 30%, as estimated from Figure 2.13b, considering that 

the ground parameters adopted here are within the range of parameter values considered there. 

Finally, the dimensionless values of the shield and lining stiffness corresponding to the actual 

problem parameters are Ks R/E = 0.71 and Kl R/E = 0.63 (Table 2.3 of the previous chapter), 

whereas the metamodel assumes a very stiff shield with Ks R/E = 10 and a soft lining with 

Kl R/E = 0.5 (Table 3.1). While the actual lining stiffness is close to the assumed one, the actual 

shield stiffness is 14 times lower, and hence the metamodel may substantially overestimate the 

thrust force predicted by discrete simulations (cf. Section 3.6 and Fig. 5 in Ramoni and 

Anagnostou, 2010b). It is mentioned here indicatively, that for the parameters in Table 2.3 of the 

previous chapter with a 60 mm overcut, this overestimation amounts to 40% in the absence of 

creep (1300 MN determined from design nomograms that assume Ks R/E = 10 and Kl R/E = 0.5 

vs. 920 MN determined from time-independent computations that consider the actual 

Ks R/E = 0.71 and Kl R/E = 0.63; see blue lines in Fig. 2.14 of the previous chapter). 

Considering that both the design nomograms and the metamodel are inapplicable in this case, a 

closer examination of the problem based upon transient numerical simulations is the only viable 

option, as presented in Section 2.6.1 of the previous chapter.  
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Figure 3.9. Fréjus safety gallery: Thrust force evolution predicted by discrete simulations of two full 

excavation cycles (black line), metamodel (red solid line) and time-independent design 

nomograms (blue lines) after Ramoni and Anagnostou (2010b) (parameters: Table 2.3 of the 

previous chapter) 
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3.7.2 Gotthard Base tunnel 

Section 2.6.2 of the previous chapter demonstrated that the prospect of a TBM drive through the 

Sedrun North critical section of the Gotthard Base tunnel appears feasible overall with the current 

state of TBM technology and current knowledge of the ground conditions. The feasibility 

assessment was based on the expected range of thrust force values, which was determined from 

fully discrete transient numerical simulations that considered the uncertainties associated both 

with the mechanical parameters and the viscosity of the ground (Table 2.3 of the previous 

chapter). Using the results of the discrete simulations as a benchmark, Section 2.6.2 of the 

previous chapter additionally demonstrated that semi-discrete simulations accurately approximate 

the expected thrust force range, thus providing a reliable basis for decision-making and feasibility 

assessments.  

Based upon these results, the present application example assesses the adequacy and accuracy of 

the proposed metamodel via a comparison of its predicted thrust force range with that of fully 

discrete and semi-discrete simulations. Unlike the case of the Fréjus safety gallery examined in 

the previous example, the metamodel is applicable in the present case, since: (i) its normalised 

rock pressure predictions for the problem parameters (Table 2.3 of the previous chapter) are far 

away from the critical range of small values 0 – 0.1 where the accuracy of the metamodel 

deteriorates; (ii) the normalised net advance rate vN
* lies outside the range 1 – 10 for all parameter 

combinations (Table 2.3 of the previous chapter), and hence the error of the semi-discrete 

simulations over a full excavation cycle is less than 20%; and (iii) the assumed shield and lining 

stiffnesses will still lead to an overestimation of the thrust force, but this effect is counteracted by 

the underestimation resulting from the semi-discrete simulation approach.  

Figure 3.10 shows the ranges determined from the discrete (black bar) and semi-discrete (green 

bar) simulations, the metamodel (red bar), and the design nomograms (blue bar) for comparison. 

It is apparent that the metamodel approximates the discrete simulation range very accurately, 

providing predictions that are only slightly on the safe side (maximum thrust force 320 MN vs. 

300 MN). The overestimation is attributed to the aspects discussed above and can be seen in both 

the high and low ends of the discrete range, as opposed to the semi-discrete simulations which 

predict a broader range of values overall. When disregarding time-dependency, a much narrower 

range is predicted, which underestimates the maximum value considerably but still provides a 

reasonable indication of the anticipated thrust force magnitude for feasibility assessments. 

Because of the less pronounced creep in this case, the predictions of the design nomograms are 

much more accurate than in the case of the Fréjus safety gallery discussed previously. 

Conclusively, the metamodel provides the same basis for decision-making as the fully discrete 

simulations and is adequately accurate for the assessment of shield jamming and the feasibility of 

mechanised tunnelling, which highlights its value as a design aid that can eliminate the need for 

transient numerical simulations.  
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Figure 3.10. Gotthard base tunnel: Predicted thrust force ranges (parameters: Table 2.3 of the previous 

chapter) 

3.8 Conclusions 

The present chapter proposed an equation (metamodel) for estimating the thrust force required to 

overcome shield skin friction when a ground exhibits creep. The equation uses and extends the 

applicability of the design nomograms of Ramoni and Anagnostou (2010b). It was developed via 

multiparametric regression, using the results of 12,300 simulations of TBM advance and the 

transient processes during subsequent standstills (total of 110,700 data points, corresponding to 9 

time-instances per simulation), which cover a wide range of in-situ stresses and the ground, TBM, 

and creep parameters relevant in tunnel engineering practice (cf. Sections 3.2 – 3.5).  

Besides its inherently approximate nature, the proposed metamodel embeds a number of 

limitations (Section 3.2.2 and 3.6), and it may be inapplicable in cases of very low normalised 

rock pressure values (Section 3.6). The example of the Fréjus safety gallery illustrated the 

limitations of the metamodel, while its application on the Gotthard Base tunnel showed that it can 

provide an equivalent basis for decision-making to fully discrete, transient numerical simulations 

(Section 3.7).  

Provided that data regarding the time-dependent ground behaviour are available, the metamodel 

constitutes a valuable design aid for a fast assessment of shield jamming and the feasibility of 

mechanised tunnelling with reasonable accuracy in engineering terms, thus eliminating the need 

for transient numerical simulations, whilst offering greater accuracy than the design nomograms 

of Ramoni and Anagnostou (2010b). In the absence of such data, the design nomograms, which 

do not consider creep, remain the only reasonable and practicable approach for assessing the 

required thrust force.  
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4 Creep versus consolidation in tunnelling 
through squeezing ground – Part A: Basic time-
effects3 

Abstract 

Although squeezing ground may undergo rapid convergences following tunnel excavation, its 

behaviour is often markedly time-dependent due to creep or consolidation. The effects of creep 

and consolidation on shield tunnelling are comparatively evaluated in the present and next 

chapter, with the aim of demonstrating their qualitative similarities and distinctive features. The 

present chapter investigates the basic time effects, placing focus on the time development of 

ground deformations and the complex interaction between ground, tunnel boring machine (TBM) 

and tunnel support during excavation and during construction standstills. The presented numerical 

simulations indicate several qualitative similarities between the two mechanisms of time 

dependency, in respect of the time-development of ground deformations, the counter-intuitive 

behaviour of increasing shield loading with increasing rate of advance under certain conditions, 

as well as the thoroughly adverse effect of the additional time-dependent deformations taking 

place during construction standstills on the shield loading. However, they also underscore two 

prominent differences resulting from the fundamentally different nature of creep (a purely 

mechanical rheological process) and consolidation (a coupled hydromechanical process): First, 

the consistently more extensive plastic yielding in consolidating ground, which is partially 

associated with the seepage forces exerted by the pore water on the solid rock constituents. 

Second, the role of seepage forces as a potential destabilising agent particularly for the tunnel 

face, which does not happen in the case of creep and may be critical for shield and cutterhead 

jamming. Building upon these investigations, the next chapter compares creep and consolidation 

with respect to the transferability of experiences about the required thrust force to tunnels of 

different diameter or to adjacent tunnels. 

3 This chapter has been published with the following reference: Leone, T., Nordas, A.N. & Anagnostou, G. 
(2024). Creep versus consolidation in tunnelling through squeezing ground—Part A: Basic Time Effects. Rock 
Mechanics and Rock Engineering. doi: 10.1007/s00603-023-03720-6. The contributions of each author are 
given in Appendix F. The postprint version is considered for the present chapter. 
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4.1 Introduction 

Squeezing, the phenomenon of relevant rock deformations or pressures in tunnelling, may occur 

rapidly or develop slowly, over a period of days, weeks, or even months depending on the nature 

of the ground (Kovári and Staus 1996; Barla 2001; Anagnostou and Kovári 2005). The time-

dependency of squeezing can be caused by the rheological properties of the ground (creep), by 

stress redistributions associated with transient seepage flow in the case of low-permeability, 

saturated ground (consolidation), or both. Physicochemical processes (such as disintegration of 

serpentine rock, rock dissolution in karstic formations, crystal-growth in anhydritic rocks) may, 

too, result in time-dependent deformations, but affect tunnel construction – the subject of this 

chapter – rather rarely (Anagnostou and Kovári 2005, Anagnostou 2007). 

Creep is associated with rheological processes, which are of a purely mechanical nature and thus 

in general independent of the presence of pore water. Creep has been shown to be more 

pronounced when the ground is overstressed, particularly when approaching failure state, hence 

it is especially evident under squeezing conditions (Fritz 1981, Anagnostou and Kovári 2005; 

Anagnostou 2007).  

Consolidation is relevant in water-bearing ground of low permeability and is associated with the 

transient seepage flow triggered by the tunnel excavation. Seepage flow enables the progressive 

dissipation of the excavation-induced excess pore pressures in the vicinity of the tunnel, thus 

inducing variations in the effective stresses and ground deformations. These processes occur more 

or less rapidly depending on the ground permeability and continue until a steady state is reached. 

Pore pressure has been known to intensify squeezing phenomena (Kovári and Staus 1996; Steiner 

1996) and its effect may be decisive in deep tunnels, e.g. the Gotthard Base railway tunnel in 

Switzerland (Vogelhuber 2007), and subaqueous tunnels, e.g. the Lake Mead Intake No. 3 Tunnel 

in the USA (Anagnostou et al. 2010, 2018, Anagnostou and Zingg 2013) or the planned Gibraltar 

Strait Tunnel connecting Spain and Morocco (Pliego 2005; Lombardi et al. 2009; Anagnostou 

2014). 

In tunnelling practice, it is not always directly distinguishable whether the source of time-

dependency of the ground behaviour is creep, consolidation, or the superposition of both. This is 

partially due to the different perception concerning the presence and influence of the pore water 

depending on the nature of the rock: in zones of fractured rock with increased permeability, the 

pore water presence can be identified directly, whereas in zones of low-permeability rock the pore 

water may be “invisible”, as the water ingress is very limited, often in spite of the high prevailing 

pore pressure gradients (Anagnostou 2016).  

An early identification of the actual source of time-dependency is valuable for the tunnel design, 

due to the fundamentally different nature of rheological processes (purely mechanical) and 

consolidation processes (coupled hydromechanical): It is particularly important in the context of 

laboratory testing during the project planning phase, in respect of selecting suitable processes and 

equipment for extracting, preserving, and testing the rock samples. In addition, it may be crucial 

for the choice of mitigation measures and the assessment of their effectiveness. For example, 
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advance drainage is irrelevant in the case of creep, but has proven to be particularly effective in 

numerous tunnelling projects where consolidation processes posed a concern, e.g. the Lake Mead 

Intake No. 3 Tunnel in the USA (Anagnostou and Zingg, 2013) and the Vereina railway tunnel in 

Switzerland (Steiner, 1996). Advance drainage relieves the pore pressures and allows the ground 

to consolidate, thereby increasing its undrained shear strength and leading to reduced short-term 

convergences in the vicinity of the tunnel heading (Anagnostou, 2009a), while it also eliminates 

the high pore pressure gradients during the early stages of consolidation, in turn additionally 

limiting convergences in the long term (Anagnostou, 2009b); furthermore, it is beneficial for the 

stability of both the tunnel face and also grouting cylinders in fault zones (Anagnostou and Zingg 

2013). 

Taking the above into consideration, the question arises of what the fundamental differences in 

the phenomenological ground behaviour are, and whether these could help distinguish creep from 

consolidation in practical situations. Although several existing works have separately examined 

the effects of creep (inter alia Sterpi and Gioda 2009; Hasanpour et al. 2015; Swannell et al. 

2016; De la Fuente et al. 2020; Chapter 2) or consolidation in tunnelling (inter alia Graziani and 

Ribacchi 2001; Anagnostou 2007; Vogelhuber 2007; Ramoni and Anagnostou 2011b), this 

question has not been addressed in the literature thus far. With the aim of bridging this knowledge 

gap, this chapter evaluates comparatively some fundamental aspects of creep and consolidation 

in tunnelling, based upon transient numerical simulations. Emphasis is placed on the time 

development of ground deformations and the problems of shield or cutterhead jamming in 

mechanised tunnelling. To enable an easier qualitative interpretation of the fundamental aspects 

discussed, consideration is given to the simplified rotationally symmetric boundary value problem 

of a deep, cylindrical, and uniformly supported tunnel of radius R0, crossing homogeneous and 

isotropic rock; the rock is subjected to a uniform and isotropic in-situ stress field (σ0) and, in the 

case of consolidation, to a uniform and isotropic in-situ pore pressure field (p0) as well, with 

values equal to the ones prevailing at the elevation of the tunnel axis. 

This chapter starts by presenting the computational assumptions adopted in the numerical 

simulations (Section 4.2). Subsequently, to gain an insight into creep and consolidation, the 

simple plane-strain problem of a tunnel cross-section far behind the advancing face is examined 

first, with focus on the time-development of its radial displacement (u) upon excavation in the 

absence of a tunnel support (Section 4.3). This problem enables a simple demonstration of a 

fundamental difference between the two mechanisms of time-dependency, that is the consistently 

greater extent of ground plastification in the case of consolidation, which is partially associated 

with the effect of seepage forces.  

Subsequently, the more complex and practically relevant problem of ground, TBM and tunnel 

support interaction in mechanised tunnelling is examined, with focus on the shield loading that 

develops during the advance of the TBM and during construction standstills (Section 4.4). It is 

shown that, despite the fundamentally different nature of the two mechanisms, the shield loading 

is ultimately governed by the same counter-acting effects of the delayed deformation development 

compared to the case of rapid squeezing: the ground behind the face deforms less, which is 
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favourable for shield loading, but the ground ahead of the face it experiences less plastic yielding 

and stress relief, which is unfavourable for shield loading; this interaction is also shown to 

produce a similar counter-intuitive effect of the advance rate on shield loading in both 

mechanisms under certain conditions. Furthermore, Section 4.4 discusses the similar adverse 

influence that continuing ground deformations during standstills, highlighting the uncertainties of 

time-independent models for jamming assessment.  

Finally, Section 4.5 takes a closer look into the effect of the seepage forces, one important 

distinguishing feature between creep and consolidation, and investigates their role as a 

destabilising agent under certain conditions, which may cause excessive radial convergences of 

the cross-section or excessive extrusion and failure of the face.  

Apart from the fundamental similarities and differences examined in the present chapter, the next 

chapter investigates potential differences between creep and consolidation with respect to the 

practical tunnel engineering question of experience transfereability: Can experience from 

tunnelling on the required thrust be used to assess the required thrust force in a tunnel with a 

different diameter or in an adjacent tunnel with the same diameter? How does the tunnel diameter 

affect the risk of shield jamming? Does the construction of a tunnel have an impact on the shield 

loading in a neighbouring tunnel built later? 
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4.2 Computational assumptions 

Numerical models have been formulated in Abaqus® (Dassault Systèmes, 2018) for a 12 m 

diameter cylindrical tunnel (R0 = 6 m) to simulate the problems of a tunnel cross-section under 

plane strain conditions and an advancing tunnel heading (Fig. 4.1). The model specifications are 

discussed hereafter and summarised in Table 4.1, along with the material parameters adopted in 

the numerical simulations. 

4.2.1 Assumptions common to creep and consolidation analyses 

In the transient mechanical analyses considering creep, a traction equal to the in-situ stress σ0 
prevailing at the depth of the tunnel is prescribed at the far-field boundary of the computational 
domain, 400 m (ca. 67R0) away from the tunnel axis. A linear elastic-viscous perfectly plastic 
constitutive model is adopted for the rock, with a Mohr-Coulomb yield condition and a non-
associated viscoplastic flow rule according to Perzyna’s theory (Perzyna, 1966). This is suitable 
for modelling rheological processes in squeezing ground, where the dominant portion of time-
dependent deformations is plastic. The model formulation encompasses 5 mechanical parameters, 
namely Young’s Modulus E, Poisson’s ratio v, uniaxial compressive strength fc, angle of internal 
friction φ, and angle of dilation ψ, as well as a single rheological parameter, the viscosity η, which 
determines the rate of viscoplastic deformation development due to creep. The model has been 
implemented in Abaqus® (Dassault Systèmes, 2018) as a user-defined material (UMAT) 
subroutine; details on its formulation and numerical implementation can be found in Appendix 
A, whereas the subroutine is given in Appenix B. 

In the coupled hydromechanical consolidation analyses, the uniform traction σ0 is also prescribed 
at the far-field boundary, while a uniform pore pressure, equal to the in-situ pore pressure p0 
prevailing at the depth of the tunnel, is prescribed at a distance from the tunnel axis equal to the 
water table level; this has been shown to be an adequate simplification for rotationally symmetric 
analyses (Ramoni and Anagnostou, 2011b). On account of the potential development of negative 
pore pressures upon unloading under undrained conditions (see, e.g., Vogelhuber, 2007, Graziani 
& Ribacchi 2001), a mixed hydraulic boundary condition is prescribed at the tunnel boundary, 
which alternates between: an atmospheric pressure (Dirichlet) condition p = 0 when seepage flow 
takes place from the ground to the tunnel, i.e. dq/dr >0; and a no-flow (Neuman) condition (q = 0) 
when seepage flow tends to take place from the tunnel to the ground in the presence of negative 
pore pressures, i.e. dq/dr <0 (cf. Ramoni & Anagnostou 2011b). This ensures seepage flow only 
from the ground towards the opening and not vice versa.  

The rock is modelled as a two-phase porous medium with unit Biot’s coefficient, according to 
Terzaghi’s principle of effective stresses. Seepage flow is modelled based on Darcy’s law, 
considering a constant permeability k. An isotropic, linear elastic-perfectly plastic constitutive 
model with a MC yield criterion and a non-associated flow rule is adopted, with five mechanical 
parameters (E, v, fc, φ, ψ). The solid grains and pore water are assumed incompressible in relation 
to the rock, which is reasonable for weak deformable ground; under this assumption, the condition 
of constant water content becomes equivalent to that of constant volume during the instantaneous 
undrained ground response to tunnelling.  
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4.2.2 Model of tunnel cross-section far behind the advancing face 

For a tunnel cross-section far behind the face, plane strain conditions can be assumed. The plane 

strain model (Fig. 4.1a) simulates the ground response to excavation via an instantaneous 

unloading of the tunnel boundary from the in-situ stress σ0 to zero support pressure (σR = 0). The 

tunnel boundary subsequently remains unsupported throughout the transient analysis and the 

evolution of its radial displacement over time is monitored.  

Due to rotational symmetry, the problem can be analysed as 1D, considering a single strip in the 

r – x plane of the computational domain with fixed and impermeable edges (flux q = 0). The strip 

is discretised with a structured finite element (FE) mesh of 4-noded, linear, quadrilateral, 

axisymmetric elements, encompassing 240 elements along the radial direction r, with 

exponentially variable size between 0.02R0 at the tunnel boundary and 3.7R0 at the upper far field 

boundary, and 1 element along the out-of-plane x-axis. 

4.2.3 Model of advancing tunnel heading 

The model of the advancing tunnel heading simulates the transient processes during ongoing 

mechanised excavation and lining installation, as well as during a subsequent TBM standstill of 

arbitrary duration. Besides the trivial assumptions underlying rotational symmetry, the latter 

presupposes also a negligible TBM weight, and thus uniform tunnel support and overcut around 

the shield, as well as uniform backfilling around the segmental lining. The excavation process, 

which in reality consists of intervals of continuous TBM propulsion alternating with standstills 

for lining erection, is simulated as continuous with an average advance rate v. The consideration 

of an average rate for the stop-and-go advance has been shown to be a sufficiently accurate 

simplification in most cases (Chapter 2). The step-by-step method is adopted (see, e.g., Franzius 

and Potts, 2005), where at each numerical excavation step part of the ground is removed ahead of 

the face (round length s = 1 m; Fig. 4.1b) and an equal part of lining is installed immediately 

behind the shield.  

The tunnel face is considered unsupported, which is reasonable considering that open shield 

TBMs are employed in most practical cases of mechanised tunnelling through squeezing rocks. 

The shield of length L is modelled with non-linear radial springs, which consider no loading (zero 

stiffness) for convergences below the radial overcut ΔR, and a linear elastic stiffness Ks for the 

portion of convergences that exceeds ΔR. The lining is modelled with elastic radial springs of 

stiffness Kl, assuming it is in direct contact with the ground immediately upon installation due to 

backfilling. The ground unloading behind the shield tail and its reloading over the lining are 

considered via the specification of distinct installation points for the shield and the lining; details 

can be found in Ramoni and Anagnostou (2010b) and Chapter 2. The left and bottom model 

boundaries are considered impermeable (q = 0), while the in-situ pore pressure p0 is prescribed at 

the right model boundary, over a distance equal to the far-field radius of the seepage flow domain 

Rp (equal to the water table level; cf. Section 4.2.1) 
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The computational domain is discretised with a structured mesh of 11532 four-noded, linear, 

quadrilateral, axisymmetric finite elements (FEs). The element size in the radial direction varies 

exponentially from 0.02R0 at the tunnel boundary to 3.7R0 and 0.18R0 at the upper and lower 

model boundaries, respectively. The element size along the tunnel axis is constant and equal to 

the round length s = 1 m. Introducing a single FE within each round length eliminates the typical 

saw-shaped distribution of the radial rock pressure over the shield and lining observed in step-by-

step simulations (Cantieni and Anagnostou, 2009). The selected round length is sufficiently small 

to ensure enhanced prediction accuracy (Franzius and Potts, 2005). An excavation length of 10R0 

(60 excavation steps) is simulated. 

The model enables determining the longitudinal profile of the rock pressure σR (x) acting upon the 

shield at any time instance and, subsequently, its average value ͞σR via integration over the shield 

length L. The simulated excavation length of 10R0 is sufficiently long for ͞σR to become constant, 

and the standstill is initiated thereafter.  

Figure 4.1. Computational models for the plane strain problem (a) and for the axisymmetric problem (b) 
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Table 4.1. Parameters adopted in the numerical simulations 

(a) Considered only in Sections 4.3 and 4.4 
(b) Considered only in Section 4.5  

 
  

Ground   
Young’s Modulus, E [GPa] 1 
Poisson’s ratio, v [-] 0.25 
Uniaxial compressive strength, fc [MPa] 2 (a), 0.3 (b), 0.5 (b)

 

Angle of internal friction, ϕ [°] 25 
Dilatancy angle, ψ [°] 5 
Depth of cover, H [m] 400 
In-situ stress at tunnel axis, σ0 [MPa] 10 
Water table level above tunnel axis, Hw [m] 100, 400 
In-situ pore pressure at tunnel axis, p0 [MPa] 1, 4 
Viscosity η [MPa.d] [10-5 – 106] (a)

 

Permeability k [m/s] [10-2 – 10-16] (a),10-9 (b) 

TBM   

Boring radius, R0 [m] 6 
Radial overcut, ΔR [m] 0.05 
Longitudinal gap due to cutterhead retraction, Δx [m] 0.2 (b) 
Shield length, L [m] 12 
Young’s modulus of steel Es [GPa] 210 
Shield thickness ds [cm] 15 
Radial shield stiffness, Ks [MPa/m] 875 
Static cutterhead skin friction coefficient, μst [-] 0.15 (b) 
Static cutterhead friction coefficient, μst,c [-] 0.15, 0.45 (b) 
Advance rate, v [m/d] 30 

Lining   
Young’s modulus of concrete Ec [GPa] 30 
Lining thickness dl [m] 0.75 
Radial lining stiffness Kl [MPa/m] 625 

Model   
Round length, s [m] 1 
Far-field radius of the computational domain, Rσ [m] 400 
Far-field radius of seepage flow domain, Rp [m] 100, 400 
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4.3 Time-dependent contraction of a tunnel cross-section far behind the face  

The radial displacement of the unsupported tunnel boundary u depends in general on all 

independent problem parameters, i.e. in-situ stress σ0, tunnel radius R0, material constants, time t 

and, in the case of creep, additionally on the viscosity η: 

 0 0, , , , , , , ,cu f R E f t     . (4.1)

In the case of consolidation, the permeability k, the in-situ pore pressure p0, the unit weight of the 

pore water γw and the size (far-field radius) of the seepage flow domain Rp considered in the 

numerical model (Table 4.1) appear additionally in the parameter list: 

 0 0 0, , , , , , , , , , ,c w pu f R E f t k p R     . (4.2)

Following dimensional analysis, Eqs. 4.1 and 4.2 can be respectively written as 
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Figure 4.2 shows the normalised radial displacement u/R0 as a function of the normalised time t*, 

which is defined as tE/η in the case of creep (black line) and tkE/(γwR0
2) in the case of 

consolidation (dashed and solid red lines for two values of the in-situ pore pressure 

p0 = 1 and 4 MPa, respectively). Very low values of t* correspond to the conditions during rapid 

excavation, where the instantaneous ground response can be considered; the latter is purely elastic 

in the case of creep and undrained in the case of consolidation. Very high values of t* correspond 

to steady-state conditions, where all viscoplastic deformations have developed in the case of creep 

and all excavation-induced excess pore pressures have dissipated in the case of consolidation 

(drained conditions).  
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Figure 4.2. Evolution of radial displacement normalised by the tunnel radius over time in the plane strain 

problem (η = 1000 MPa.d, k = 10-9 m/s, other parameters: Table 4.1) 

One can readily verify that the time-development of displacements is qualitatively similar in both 
cases: the ground displacement increases at a decreasing rate and ultimately converges 
asymptotically to a maximum value at steady-state conditions. It can be directly inferred that, 
with appropriate scaling between the viscosity η and the permeability k and selection of the 
material parameters, the curves nearly overlap. This demonstrates the difficulty of distinguishing 
creep from consolidation, as well as of back-analysing ground parameters from – or even simply 
interpreting – the observed time-dependent deformations. 

All strength and stiffness parameters being equal, the instantaneous and steady-state 
displacements are consistently higher in the case of consolidation, even more so in the case of the 
higher pore pressure p0 = 4 MPa, due to the more extensive ground plastification (see values of 
the normalised plastic radius ρ/R0 in Fig. 4.2). The latter is observed both in the short term, where 
the ground response is undrained elastoplastic in the case of consolidation but purely elastic in 
the case of creep, and at steady state, where the ground response is elastoplastic in both cases, but 
in the case of consolidation there is the additional, external loading by the seepage forces. Their 
steady-state magnitude depends solely on the hydraulic boundary conditions and their effect is 
therefore higher in the case of higher pore pressure p0 = 4 MPa, causing more extensive 
plastification and leading to substantially increased displacements of the tunnel boundary.  

As the magnitude of the seepage forces does not depend on characteristics of the ground and can 
be – depending on the in-situ pore pressure p0 – arbitrarily high, it may happen – depending on p0 
and ground strength – that equilibrium in the vicinity of the tunnel boundary is impossible and 
excessive cavity contraction or even complete cavity closure occurs. In this sense, seepage is a 
potential destabilising agent for the tunnel cross-section and the tunnel face. This constitutes a 
distinguishing feature between creep and consolidation, which is examined in more detail in 
Section 4.5. 
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4.4 Shield loading during TBM advance and standstills 

The average rock pressure acting upon the shield ͞σR depends in general on all independent 

problem parameters, i.e. the in-situ stress σ0, the tunnel radius R0, the material constants of the 

ground E, ν, fc, ϕ, ψ, the TBM parameters Ks, Kl, L, ΔR, the advance rate v, and the standstill time 

t. Analogously to the problem of the tunnel cross-section, in the case of creep it depends

additionally on the viscosity η, i.e.

 0 0, , , , , , , , , , , v, ,R c s lf R E f R L K K t       , (4.5)

and in the case of consolidation on the permeability k, the in-situ pore pressure p0, the unit weight 

of the pore water γw, and the size of the seepage flow domain Rp: 

 0 0 0, , , , , , , , , , , v , , , , ,c s l w pR R E f R L K K t k p Rf       . (4.6)

Following dimensional analysis, and considering the inverse proportionality between Young’s 

modulus E and displacements in elastoplastic ground (Anagnostou and Kovári, 1993; Ramoni and 

Anagnostou, 2010b), the normalised average pressure over the shield ͞σR /σ0 can be expressed as  
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in the case of creep, whereas in the case of consolidation the corresponding expression reads as 

follows: 
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4.4.1 Shield loading during TBM advance 

Figure 4.3 shows the plastic strain contours in the vicinity of the advancing tunnel face (Figs. 4.3a 

and 4.3b), along with the longitudinal distributions of displacements (Figs. 4.3c and 4.3d), 

convergences (Figs. 4.3e and 4.3f), and radial stresses (Figs. 4.3g and 4.3h) in the case of creep 

(black lines) and consolidation (dashed and solid red lines for two values of the in-situ pore 

pressure p0 = 1 and 4 MPa, respectively), for two limit cases of rapid and slow excavation (l.h.s. 

and r.h.s. diagrams). The latter are considered via the normalised advance rates v* = (v/ R0) η/E 

and v* = (v/ R0) γw R0
2/(kE) in Eqs. 4.7 and 4.8, which express how fast one tunnel radius is 

excavated in relation to the rate that the time-dependent deformations develop. The slow and fast 

excavation cases are directly analogous to those of a very high and a very low normalised time t*, 

respectively, in the case of the tunnel cross-section problem examined in Section 4.3: during rapid 

excavation the ground response is purely elastic in the case of creep and undrained elastoplastic 

in the case of consolidation; during slow excavation there is sufficient time for steady-state 

conditions to develop simultaneously with the advance of the face, where all viscoplastic 

deformations have taken place in the case of creep and drained conditions prevail in the case of 

consolidation, following the complete dissipation of the excavation-induced excess pore 

pressures.  
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Similar to the problem of the tunnel cross-section examined previously, the plastic strains (Figs. 

4.3a and 4.3b) and the displacements (Figs. 4.3c and 4.3d) are higher in the case of consolidation 

than in the case of creep, both during rapid and slow excavation. However, this is not necessarily 

reflected as a higher rock pressure on the shield (see stress for x > 0 in Figs. 4.3g and 4.3h), 

because the mechanisms underlying the rock-shield interaction are far more complex: The 

pressure that ultimately develops on the shield is determined by the interplay between two 

counteracting effects of rock plastification: more plastic yielding on the one hand leads to 

increased ground convergences around the shield, and thus increased contact area and hence 

tentatively increased shield loading, but on the other hand it causes more stress relief ahead of the 

face, which tentatively results in less load transfer to the shield. The differences in the rock 

pressure between creep and consolidation for the cases of rapid and slow excavation, which are 

more pronounced in the higher-pore-pressure case (red solid lines in Fig. 4.3), can be interpreted 

based on this interaction. Both for fast and slow excavation, stress-relief ahead of the face is more 

pronounced in the consolidation case than in the creep case (compare red and black solid lines for 

x < 0 in Fig. 4.3g and 4.3h), which should tentatively result in a lower shield loading. This is 

indeed the case for slow excavation (compare red and black solid lines for x > 0 in Fig. 4.3h), but 

for fast excavation it appears that the unfavourable effect of a larger contact area outweighs the 

favourable effect of more pronounced stress relief and leads to a higher shield loading in the case 

of consolidation (compare red and black solid lines for x < 0 in Fig. 4.3g). 
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Figure 4.3. Contour-lines of plastic strain (a,b); longitudinal displacement profiles (c,d); longitudinal 

convergence profiles (e,f); longitudinal distributions of radial stress at r = R0 over shield and 

lining as well as ahead of the face (g,h) during fast and slow excavation (slow excavation: 

η = 2 10-3 MPa.d, k = 10-4 m/s; fast excavation: η = 2 108 MPa.d, k = 10-16 m/s; other 

parameters: Table 4.1) 
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4.4.2 Counter-intuitive effect of advance rate 

The interplay of the two competing effects discussed above also produces a counter-intuitive 

result regarding the effect of advance rate on shield loading. Figure 4.4 shows the average shield 

pressure ͞σR as a function of the normalised advance rate v* for creep (black lines) and 

consolidation (red lines). One would expect the conditions to become increasingly favourable 

with faster excavation, i.e. σ͞R to decrease monotonically with increasing v*, due to the delay in 

the development of plastic deformations; however, within a certain range of v*-values, ͞σR 

increases with v* and is higher compared to its value for v* → 0, when deformations develop 

rapidly. This seemingly paradoxical behaviour is observed both in the case of creep and 

consolidation, with the two distributions being qualitatively identical.  

Chapter 2 reported and examined in detail this counter-intuitive behaviour in the case of creep. It 

showed that it is attributed to the delayed plastic deformation development with increasing 

viscosity η (or, equivalently, normalised advance rate v* in this case), which leads to smaller 

contact area between shield and ground, but also limits the stress relief of the ground ahead of the 

face, thereby having a stiffening effect. The paradox appears in the range of v* where the 

superimposed effect of contact area and ground stiffening is the most unfavourable.  

Ramoni and Anagnostou (2011b) originally reported and examined the same paradox for the case 

of consolidation, explaining it on the basis of the slower development of plastic deformations in 

the case of lower permeability k, an effect directly analogous to that of a higher viscosity η in the 

case of creep. In the case of consolidation, however, there exists the additional effect of the 

negative pore pressures (suction) that may develop upon ground unloading under certain 

conditions. These have a stabilising effect, as they increase the effective stresses and thus the 

shearing resistance of the rock, thereby leading to reduced deformations and plastification. The 

paradox appears in the range of v* where the most unfavourable situation arises, with pore 

pressures being negative in the vicinity of the face, thus causing stiffening ahead of it, and 

simultaneously positive over the shield, thus resulting in larger deformations and contact. 
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Figure 4.4. Average rock pressure developing on the shield (normalised by the in-situ stress) as a 

function of the normalised advance rate v* (p0 = 4 MPa; other parameters: Table 4.1) 

4.4.3 Shield loading during a standstill 

Within the range of v* where the paradox discussed previously appears, the conditions are also 

more unfavourable during a subsequent standstill, where the TBM shield remains static and the 

ground deforms and exerts additional pressure on it over time. This is evident from the dashed 

lines in Figure 4.4, which show the shield loading for the limit case of a sufficiently long standstill 

that allows steady-state conditions to develop. The rock pressure variation is qualitatively similar 

for both creep and consolidation, but its increase is in general more pronounced in the latter case, 

since seepage flow progressively starts taking place during the standstill and seepage forces 

induce more extensive ground plastification. (Expectedly, this increase will be less pronounced 

in the case of the lower pore pressure p0 = 1 MPa, which is not shown in Figure 4.4). 

The above becomes more clearer, when examining the development of the average rock pressure 

( ͞σR ) during the standstill, which is shown in Figure 4.5 for the case of creep (black lines) and 

consolidation (red lines), for the characteristic values of the normalised advance rate 

v*corresponding to the 6 points A1 – A3 and B1 – B3 annotated on Figure 4.4. The rock pressure 

development is qualitatively similar for the two mechanisms: for a low v* (dotted lines; points A1, 

B1 in Fig. 4.4), the behaviour is almost time-independent and steady state is reached practically 

already during excavation, while for a high v* (dashed lines; points A3, B3 in Fig. 4.4) the 

behaviour is pronouncedly time-dependent, with the rock pressure progressively increasing and 

ultimately reaching a maximum value after a very long time. The maximum value is similar to 

the one in the low v* case for creep, but higher in the case of consolidation. A qualitatively similar 

behaviour can be observed for the intermediate v* corresponding to the range of the paradox (solid 

lines; points A2, B2 in Fig. 4.4), where both the instantaneous and steady-state rock pressure 
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exceed those of the time-independent model, where deformations develop rapidly, indicating that 

this case is the most critical from a practical engineering viewpoint. 

Conclusively, it is evident that standstills are thoroughly unfavourable in both cases, and 

ultimately lead to a higher rock pressure for v* in the range of the paradox, compared to the one 

that would develop in the case of time-independent ground behaviour (v* → 0). Therefore, models 

that disregard time-dependency of the ground behaviour and assume that plastic deformations 

develop instantaneously are in no way conservative: they may overestimate the shield loading 

during excavation, but they considerably underestimate it during standstills – even during short 

standstills – and this occurs regardless of the mechanism underlying the time-dependency of 

ground behaviour.  

 
Figure 4.5. Increase in the normalised average rock pressure developing on the shield during a standstill 

(p0 = 4 MPa; other parameters: Table 4.1) 
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4.5 On the destabilising effect of the seepage forces 

Permeability governs the rate of squeezing in consolidation, analogously to viscosity, which 

governs the rate of creep. But in the case of consolidation an additional parameter has to be 

considered – the in-situ pore pressure (or its gradient, the seepage force), which does not exist in 

the case of creep and – as an external loading – inherently results in fundamental differences in 

the ground behaviour.  

The detrimental effect of seepage flow can best be explained by considering the conditions at the 

end of the consolidation process. In homogeneous ground the steady-state pore pressure field and 

thus the magnitude of the seepage forces depend solely on the hydraulic boundary conditions, that 

is – in the present case – on the in-situ pore pressure. To fulfil equilibrium, the seepage forces 

must be resisted by the stresses in the ground; however, the maximum resistance that the ground 

can provide depends on its mechanical characteristics and is limited by its strength. So, for 

example, in the plane of the tunnel cross-section the seepage force fs acting upon an infinitesimal 

rock element at an unsupported excavation boundary (Fig. 4.6a) can be kept in equilibrium only 

by the tangential stresses σ't (arching), which however are limited by the uniaxial compressive 

strength fc of the ground. At an extruding tunnel face the curvature radius is negative and 

equilibrium is possible only via catenary action, which presupposes that the ground can sustain 

tensile stresses ft (Fig. 4.6b). Considering the above, under certain conditions the magnitude of 

seepage forces may be sufficiently high to make impossible equilibrium in the vicinity of the 

tunnel, thereby causing excessive convergences of the tunnel cross-section or extrusion and 

instability of the tunnel face.  

These effects relevant in consolidation must be distinguished from familiar instability 

phenomena, e.g. those that occur in rocks exhibiting strain softening that are relevant both in creep 

(tertiary creep; Sterpi and Gioda 2009, which has not been implemented in the present creep 

constitutive model, cf. Appendix A) and consolidation, since they are induced by an external agent 

completely unrelated to the mechanical properties of the ground; therefore, they may also occur 

in the absence of softening, in perfectly plastic rocks examined in the present chapter.  

This role of seepage forces as a potential destabilising agent has been reported by Egger et al. 

(1982) and some basic considerations were also later examined by Anagnostou (2006). The 

destabilising effect of seepage force on the tunnel boundary and the tunnel face is examined 

separately in the following subsections, with reference to the problems of the tunnel cross-section 

under plane strain conditions and the tunnel heading examined in the previous sections of this 

chapter. 
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Figure 4.6. Qualitative interpretation of the destabilizing effect of seepage forces at the unsupported 

tunnel boundary: (a) development of excessive compressive tangential stress in the plane of 

the tunnel cross-section; (b) development of tensile tangential stress at the tunnel face  

4.5.1 Tunnel cross-section far behind the face 

The rotationally symmetric, plain strain problem of an unsupported tunnel cross-section will be 

considered (Fig. 4.6a). Taking account of the steady-state radial pore pressure distribution, the 

condition of radial equilibrium at the tunnel boundary reads as follows (Anagnostou and Kovári 

2003; Anagnostou 2009b): 
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where r is the radial coordinate, σ'r the radial effective stress, R the tunnel radius in the deformed 

configuration, fc the uniaxial compressive strength of the ground, and Rp the far-field radius of the 

seepage flow domain.  

In Eq. 4.9, the first r.h.s. term denotes the resistance provided by the ground during yielding, 

whereas the second term results from the seepage flow. As the pore pressure p0 can take any value 

(depending only on the elevation of the water table, regardless of the strength of the ground), the 

r.h.s. term of Eq. 4.9 may become negative if the tunnel is located sufficiently deep under the 

water table. In this case, the effective radial stress cannot increase with the radius and therefore 

cannot reach a state of equilibrium with the far-field stress σ0, which according to Egger et al. 

(1982) means that the opening would be unstable. This points to a qualitative difference to the 

ground behaviour in the case of creep, where a stable stress field always exists in the absence of 

softening.  
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This difference is, however, only apparent, because the instability would manifest itself by 

increasing convergences, which would result in an increasing curvature of the tunnel boundary, 

and equilibrium can always be reached if the curvature becomes sufficiently big. The maximum 

radius R' that allows for equilibrium to be achieved can be determined from Eq. 4.9 by equating 

its r.h.s. term to zero, which leads to the following expression: 
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For the strength and the in-situ pore pressures considered in Section 4.3 and 4.4 (fc = 2 MPa, 

p0 = 1 – 4 MPa), the maximum radius R' >> R0 = 6 m, which means that equilibrium is possible 

even when disregarding the favourable effect of the increasing curvature due to cavity contraction. 

In the sequel, a much lower strength will be considered (fc = 0.3 MPa) in order to illustrate 

quantitatively the behaviour discussed above. For this strength and the higher in-situ pore pressure 

considered (p0 = 4 MPa), the maximum radius R' ≈ 0, which means that the equilibrium condition 

cannot be satisfied, if formulated in the undeformed configuration. This is true even for the lower 

in-situ pore pressure (p0 = 1 MPa), where the maximum radius R' = 3.56 m (< R0 = 6 m). 

However, considering the deformed configuration, that is performing a geometrically non-linear, 

large-strain analysis (see, e.g., Vrakas and Anagnostou, 2015), allows finding equilibrium, even 

if the latter is achieved at elevated convergences or almost complete closure of the opening. This 

is illustrated by the numerical results of Figure 4.7, which shows the time-development of the 

tunnel radius R for the two considered values of the in-situ pore pressure. 

In conclusion, the instability postulated by Egger et al. (1982) cannot actually occur and there is 

no difference between creep and consolidation in respect of equilibrium or lack thereof in the case 

of a circular opening. The reason is of a geometric nature: at the onset of instability the curvature 

increases and this stabilises the system, so that an equilibrium can always be found, even if this 

may happen at big convergences which, in practical terms, may fail to satisfy serviceability 

criteria.  

However, this finding about the effect of the curvature and its change during cavity contraction 

points to a fundamental difference between the behaviour of the tunnel cross section and the 

behaviour of the tunnel face: the geometry of the cross-section becomes increasingly more 

favourable during cavity contraction, whereas the geometry of the face becomes more and more 

unfavourable during extrusion, as it becomes convex (Fig. 4.6b). The behaviour of the tunnel face 

during extrusion is examined in the next section. 
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Figure 4.7. Contraction of a tunnel cross-section far behind the face over time in the case of low strength 

(fc = 0.3 MPa; other parameters: Table 4.1) 

4.5.2 Tunnel face 

The seepage forces have an unfavourable effect also on the tunnel face (Egger et al. 1982), causing 

it to undergo excessive extrusions, as shown in Figure 4.6b. However, the curvature of the 

extruded face has an opposite sense to that of the tunnel cross-section, thus necessitating the 

ground to develop a catenary action with sufficiently high tensile stresses in order to resist seepage 

forces. As the tensile strength ft of geomaterials is very limited in general, equilibrium can only 

be achieved by a reversal of the curvature (see dashed line in Fig. 4.6b), which presupposes the 

detachment of the extruded part, as well as of some part of it ahead of the face. In this sense, the 

face extrusion due to seepage forces can be classified as an instability, contrary to the contraction 

of the cross-section examined previously.  

The extrusion of the face is numerically investigated in the sequel over the course of a sufficiently 

long TBM standstill to reach steady state conditions, based upon geometrically non-linear, large 

strain analyses with the model of the advancing tunnel heading introduced earlier in Section 4.2.3. 

The parameters given in Table 4.1 are adopted and two values of in-situ pore pressure p0, 

1 and 4 MPa, are considered.

As the model assumes no face support (open shield TBM), it enables examining the system 

behaviour during unhindered extrusion of the tunnel face. This case, however, constitutes a purely 

theoretical consideration, since in practice the ground establishes contact with the TBM 

cutterhead after a certain amount of deformation, upon which further extrusion is constrained, and 

thus an axial pressure starts developing over the cutterhead front surface. The face-cutterhead 

interaction is considered in the model by introducing nonlinear springs with zero stiffness for 
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extrusion values that do not exceed the longitudinal gap between face and cutterhead, and a very 

high stiffness for the portion of extrusion that exceeds this gap (the cutterhead is considered as 

practically rigid in relation to the ground). The maximum longitudinal gap that is technically 

feasible in practice by retraction of the cutterhead amounts to nearly 90 cm, as applied, e.g., in a 

double shield TBM with boring radius of 9.5 m employed in the Guadarrama tunnel (Rostami 

2008). However, in most practical situations the retraction is limited to 10-20 cm, to maintain a 

safety reserve during the TBM operation in the case of unforeseen changes in the ground 

conditions in later stages of the advance, as well as to avoid the risk of fractured rock inflow 

behind the rear end of the cutterhead that may cause mechanical damage (Burger, 2023). Taking 

this into consideration, a longitudinal gap of 20 cm is considered in the model. 

From a practical viewpoint, the combined effect of the extrusion and instability of the tunnel face 

and the contraction of the tunnel cross-section under seepage forces may be particularly critical 

in respect of the thrust force and the torque of the cutterhead required in order for the TBM to 

restart advance after a standstill. The model provides the displacement of the tunnel face, the 

average radial rock pressure ͞σR that develops over the shield length L (cf. Section 4.2.3), as well 

as the axial pressure σx that develops on the cutterhead front surface. Considering that the 

relatively small force required for boring is included in the axial force exerted by the ground upon 

the cutterhead, the required thrust force can be evaluated in general as 
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where the first term corresponds to the frictional force exerted over the shield skin, μst being the 

static friction coefficient between shield and rock, and the second term corresponds to the axial 

force exerted on the cutterhead. The friction coefficient μst is set to a relatively low value of 0.15, 

considering lubrication of the shield extrados (Ramoni and Anagnostou 2011a). The required 

torques can be evaluated as: 
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where μst,c is the static friction coefficient between the protruding tools of the cutterhead and the 

rock. The existing literature concerning this coefficient (for a summary see Bamford and 

Yaghoubi 2017), indicates values between 0.1 and 0.7, with an average of the maximum values 

equal to ca. 0.45. The variability is attributed to the rock quality, with softer rocks being associated 

with higher friction coefficients in general, due to the higher penetration of the cutterhead tools. 

Considering the above, the simulations are performed for two values of μst,c: a relatively low value 

of 0.15 (equal to the shield skin friction coefficient) and the average of the maximum values 

reported in the literature of 0.45. 

The cases of unhindered and hindered extrusion are discussed hereafter with reference to Figures 

4.8 and 4.9, considering the two values of the in-situ pore pressure p0, 1 and 4 MPa. Figure 4.8a 

shows the rock pressure distribution over the shield at the beginning of the standstill (equal to the 
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pressure acting during excavation) and at steady state. Figure 4.8b shows the radial distribution 

of the axial displacement of the face at two time-instances before and at the time instance when 

it establishes first contact with the cutterhead. Figure 4.8c shows radial distributions of the axial 

pressure acting on the cutterhead shortly upon contact, at an intermediate time instance, and at 

steady state. Figure 4.9 shows the axial displacement at the centre of the tunnel face, the required 

thrust force and the required torque (considered only for hindered extrusion) as functions of the 

standstill duration. Shield jamming and cutterhead blocking are assessed considering relatively 

high values for the installed torque of 30 MNm (Ramoni and Anagnostou 2010b), and for the 

installed thrust force of 300 MN. The latter, although higher than values usually reported in the 

literature, is feasible with the current developments in TBM technology, particularly considering 

that an installed thrust of 225 MN was materialised 15 years ago in the 10 m-diameter Pajares 

tunnel in Spain (Ramoni and Anagnostou 2010b). 

Examining first the results for p0 = 4 MPa, in the theoretical case of unhindered extrusion the 

time-development of the face axial displacement (Fig. 4.9a) is qualitatively similar to that of the 

radial displacement of an unsupported cross-section examined previously (Fig. 4.7); however, as 

the curvature of the extruding face has a destabilising influence, the extrusion reaches extremely 

high values that exceed the tunnel diameter of 12 m (even when considering geometric 

nonlinearity in the stress analysis). This excessive extrusion induces extensive plastification of 

the ground ahead of the tunnel face and contraction of the tunnel cross-section and, in turn, the 

pressure that develops on the shield increases due to longitudinal arching of the ground above it. 

This increase is more pronounced closer to the face, where the extruded ground is less stiff and 

more plastified (Fig. 4.8a). The skin friction to be overcome at restart thereby increases 

monotonically with the standstill duration, and the required thrust force exceeds the relatively 

high installed value of 300 MN after ca. 33 days (Point P8 in Fig. 4.9b).  

In the practically relevant case of hindered extrusion for p0 = 4 MPa, contact between the face 

and the cutterhead is established after tc = ca. 3 days and the extrusion subsequently stops (Point 

P2 in Fig. 4.9a). In the model, relevant for the assessment of the 20 cm gap closure is the axial 

displacement of the face that occurs solely during the standstill, that is beyond the instantaneous 

displacement during advance of 15 cm; this is because in reality the latter would have been 

previously excavated by the cutterhead, however the model cannot capture this as it does not 

simulate the cutting process in detail. The axial displacement prior to contact is highest at a point 

ca. 5 m above the centre of the face, and contact is established first at a point ca. 1 m below that 

(Fig. 4.8b). This intuitively appears as implausible, as one would expect first contact to occur at 

the centre; however, it is attributed to the pore pressure distribution, specifically the development 

of higher in magnitude negative pore pressures (suction) at the centre of the face than further 

above, which have a stiffening effect and limit its displacement slightly. This does not occur for 

p0 = 1 MPa, where the initial distribution of axial displacements is qualitatively similar, but the 

effect of suction is eliminated prior to contact, and hence this occurs first at the centre (Fig. 4.8b, 

cf. Appendix D). The point of first contact expectedly influences also the respective axial pressure 

distributions and their development over time (Fig. 4.8c).  
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The skin friction to be overcome at restart increases monotonically with the standstill duration 

prior to cutterhead-face contact, following the same line as in the case of unhindered extrusion, 

due to the continuing contraction of the cross-section and the resulting increased load transfer to 

the shield. Upon contact, the cutterhead starts preventing further face extrusion and contraction 

of the core, and thus also further load transfer to the shield, hence the shield load (and 

consequently the skin friction at restart) remains practically constant and almost all axial loading 

is resisted by the cutterhead (Point P6 in Fig. 4.9b); this has also been demonstrated by Ramoni 

and Anagnostou (2011b). The cutterhead torque also increases monotonically upon contact (Fig. 

4.9c). The total required thrust force exceeds the relatively high installed values of 300 MN after 

ca. 4 days, 8 times faster than in the case of unhindered extrusion (cf. Points P7 an P8 in Fig. 4.9b). 

The torque exceeds the installed value of 30 MNm practically simultaneously for the lower 

cutterhead friction coefficient μst,c = 0.15 and earlier for the higher μst,c = 0.45 (Points P7 in Fig. 

4.9b and P11, P12 in Fig. 4.9c, respectively). 

As seepage forces are higher for p0 = 4 MPa than for p0 = 1 MPa, in the latter case the extrusion 

is less pronounced and develops slower (Fig. 4.9a), hence its effects in respect of the rock pressure 

developing on the shield (Fig. 4.8a) and cutterhead (Fig. 4.8c) – and, in turn, the required thrust 

force (Fig. 4.9b) and torque (Fig. 4.9c) – are less pronounced in comparison. For unhindered 

extrusion the installed thrust force is exceeded after ca. 111 days (cf. Point P5 in Fig. 4.9b). For 

hindered extrusion it is exceeded after ca. 11 days, 10 times faster (cf. Points P4 and P5 in Fig. 

4.9b), while the installed torque is exceeded after ca. 20 days for the lower cutterhead friction 

coefficient μst,c = 0.15 and much earlier, after about 8 days for the higher μst,c = 0.45 (Points P9, 

P10 in Fig. 4.9c).  

The results indicate that cutterhead blocking is overall more critical than insufficient thrust. The 

only exception is the case of the lower cutterhead friction coefficient μst,c = 0.15 and  p0 = 1 MPa, 

however this is due the very low friction coefficient, which is rather unlikely for weak rocks prone 

to squeezing. 

Conclusively, these results underscore the practical significance of the seepage forces, which may 

result in significant loading of the cutterhead and have severe implications in respect of the design 

of the TBM, or even the feasibility assessment of a TBM drive in consolidating ground, an effect 

which does not exist in the case of creep.  
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Figure 4.8. (a) Longitudinal distribution of the radial loading of the shield; (b) radial distribution of the 

axial displacement of the face; (c) radial distribution of the axial loading of the cutterhead at 

different time instance after first contact (fc = 0.5 MPa; parameters: Table 4.1) 
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Figure 4.9. (a) Time-development of face extrusion, (b) frictional force on the shield skin and axial force 

on the cutterhead front and (c) torque during standstill (fc = 0.5 MPa; other parameters: Table 

4.1) 
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4.6 Conclusions 

This chapter investigated similarities and differences between the time-dependent effects of creep 

and consolidation in mechanised shield tunnelling through squeezing ground; however, focusing 

more on the fundamental aspects, i.e. on the mechanisms underlying the evolution of rock 

deformations and the complex interaction between rock, TBM and tunnel support during 

excavation and during construction standstills. 

The presented investigations highlighted several qualitative similarities between the two 

mechanisms of time-dependency of the ground behaviour, in respect of: (i), the time-development 

of the unsupported tunnel boundary displacement between tunnel excavation and steady state 

conditions; (ii), the dependency of shield loading during excavation on the advance rate of the 

TBM, which also indicates a similar counter-intuitive behaviour of increasing shield loading with 

faster advance under certain conditions (Ramoni and Anagnostou 2011b; Chapter 2); and, (iii), 

the increase in the rock pressure on the static shield during construction standstills, due to the 

manifestation of additional ground deformations over time.  

Despite these qualitative similarities, the present chapter underscored two prominent differences 

resulting from the fundamentally different nature of the purely mechanical rheological creep 

processes and the coupled hydromechanical consolidation processes. 

The first difference can be attributed to the consistently more pronounced plastification in 

consolidating compared to creeping ground. In the short term, this is due to the ground partially 

yielding immediately upon excavation under undrained conditions, but remaining practically 

elastic in the case of creep, where all plastic deformations are time-dependent and manifest 

themselves later over time; in the long term, it is due to the additional, external effect of the 

seepage forces on the solid rock constituents under drained conditions. This chapter demonstrated 

that, despite the more extensive ground plastification in the case of consolidation leading to higher 

deformations, this is not necessarily reflected as a higher rock pressure on the shield. Although 

higher deformations behind the advancing tunnel face are indeed unfavourable and increase the 

ground-shield contact area and thus the shield loading, the greater plastification ahead of the face 

induces more ground relaxation and stress relief, and has an opposing, favourable influence on 

the shield loading. Therefore, depending on the advance rate, the interaction of these effects may 

lead to a higher or lower shield pressure in consolidating than in creeping ground during TBM 

advance, as well as to a more or less pronounced increase of this pressure during a subsequent 

standstill of certain duration. 

The second difference can be traced to the seepage forces exerted by the pore water on the solid 

rock constituents in the case of consolidation. As the magnitude of these forces is completely 

unrelated to the mechanical ground characteristics and depends only on the hydraulic boundary 

conditions, while the resistance provided by the ground is limited by its strength, equilibrium may 

be impossible in the vicinity of the tunnel for a sufficiently high pore pressure. This results in 

excessive convergences of the tunnel cross-section or extrusion of the tunnel face, which, 

however, are fundamentally different: in the former case the cavity contraction increases its 
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curvature and stabilises the system, hence equilibrium is always found, even at very high 

convergences, whereas in the latter case the convex curvature of the extruded face destabilises 

the system and equilibrium can never be found. This chapter demonstrated that these phenomena, 

which are relevant also in the case of perfectly plastic rocks considered, are particularly critical 

in respect of shield jamming and cutterhead blocking in consolidating ground and must be duly 

considered in the design of the TBM and the feasibility assessment of the TBM drive.  

Returning to the question posed in the introduction, despite the existence of the above 

fundamental differences, these do not allow for a distinction of creep from consolidation based 

upon the observed or observable ground behaviour in practice. Even if the more extensive 

plastification could be observed, it would not enable definitive conclusions to be drawn, as there 

is no reference value or systematic way of quantifying this, particularly when there is significant 

uncertainty surrounding the strength and stiffness parameters of the ground. Concerning the 

instability, there is no way of distinguishing this based on the observed behaviour, whether this is 

due to seepage forces, other reasons, e.g. softening, which is also relevant in creeping ground 

(tertiary creep; Sterpi and Gioda 2009), or a combination of these aspects. In this sense, the only 

viable way of distinction is the advance exploration of the hydrogeological conditions of the 

project site and appropriate laboratory tests to determine the rheological properties as well as the 

degree of saturation and permeability of the ground.
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5 Creep versus consolidation in tunnelling 
through squeezing ground  Part B: 
Transferability of Experience 4 

Abstract 

This chapter investigates potential differences between creep and consolidation in mechanised 

tunnelling through squeezing ground, placing focus on the practical question of using experiences 

gained from existing tunnels about the required thrust force as a reference for tunnels of different 

diameter or adjacent tunnels. The investigations focus on two aspects. First, the effect of the 

tunnel diameter on the risk of shield jamming is examined. The chapter demonstrates that larger 

diameter tunnels are more favourable in poor quality ground, while the opposite holds in better 

quality ground, as well as in the case of pronouncedly time-dependent ground behaviour due to 

consolidation or creep. Second, the effect of a tunnel on the required thrust force in a neighbouring 

tunnel built later is examined. The chapter shows that this interaction effect is particularly 

important in water-bearing ground of low permeability, where the drainage action of the first 

tunnel induces pore pressure relief and ground consolidation in an extensive area, leading to a 

remarkable reduction of the thrust force in the second tunnel. Conversely, in the case of creep the 

interaction is negligible even under extremely squeezing conditions, due to the fundamentally 

different nature of the purely mechanical rheological processes from coupled hydromechanical 

processes. The presented investigations into the transferability of experiences are valuable for 

tunnelling practice, in cases of twin tunnels as well as in situations where a smaller diameter 

tunnel is constructed prior to the main tunnel (e.g. a pilot tunnel for exploration, advance drainage 

or ground improvement), or also the opposite (e.g., upgrade of a road tunnel by later construction 

of a safety tunnel with a smaller diameter). 

4 This chapter has been accepted on 31.01.24 for publication with the following reference: Nordas, A.N., Leone, 
T., Anagnostou, G. (2024). Creep versus consolidation in tunnelling through squeezing ground  Part B: 
Transferability of Experience. Rock Mechanics and Rock Engineering (accepted for publication). The 
contributions of each author are given in Appendix F. The postprint version is considered for the present 
chapter. 
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5.1 Introduction 

In the previous chapter, fundamental similarities and differences between creep and consolidation 

in mechanised tunnelling through squeezing ground have been examined, placing focus on the 

evolution of rock deformations and stresses, as well as – associated with the latter – the required 

thrust force and the risk of shield jamming. In this chapter, the comparison between creep and 

consolidation is extended by investigating whether experiences gained from previous tunnels 

about the required thrust force can be transferred to tunnels of different diameter or to adjacent 

tunnels of the same diameter built under the same geotechnical conditions (rock properties, pore 

pressure, overburden, etc.). The investigations into experience transferability are valuable in 

practical situations where a smaller diameter pilot tunnel is constructed prior to the main tunnel 

for exploration, advance drainage or ground improvement, or also the opposite (e.g., upgrading 

of a road tunnel by later construction of a safety tunnel with a smaller diameter), as well as in 

cases of sequentially excavated twin tunnels.  

Within this backdrop, this chapter addresses two key aspects: (i), the effect of the tunnel diameter 

on the risk of shield jamming (“scale effect”) and, (ii), the effect of a tunnel on the required thrust 

force in an adjacent, later excavated tunnel (“interaction”). There is a significant volume of 

literature on creep and consolidation in tunnelling in general, as well as specifically on the 

problem of shield jamming in mechanised tunnelling through squeezing ground (see Chapter 4 

and Chapter 2 for recent reviews); however, the aforementioned interaction effect has not been 

studied so far, while the scale effect has only been investigated by Ramoni and Anagnostou 

(2011b) for the case of consolidation. Therefore, there is sufficient scope for a systematic 

investigation of both aspects in the present work. 

5.1.1 Scale effect 

Besides the practical question posed above, the investigation into the scale effect is also motivated 

by a theoretical consideration – the well-known finding of consolidation theory that consolidation 

time increases with the 2nd power of the drainage path length, e.g., the thickness of a low 

permeability layer. Based on this, squeezing would develop slower in a larger diameter tunnel, as 

the drainage paths around it are longer in relation to a tunnel of smaller diameter, and this should 

also affect the rock pressure acting on the advancing shield and thus the force required to 

overcome shield skin friction and the risk of shield jamming. As this scale effect is related to the 

specific process of transient seepage flow and excess pore pressure dissipation, it is expected that 

there may be significant differences in scale effects between consolidation and creep – the other 

principal mechanism of time dependency of squeezing.  

Although the aforementioned theoretical considerations are valid concerning the rate of 

development of squeezing deformations, the effect of the tunnel diameter on the risk of shield 

jamming is much more complex to assess, due to three reasons. First, depending on the tunnel 

diameter there are different technical limitations for certain parameters of the tunnel boring 

machine (TBM), including the overcut, shield length, shield and lining stiffnesses and maximum 

installable thrust force, which also have mutually competing effects on the rock pressure that 
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develops on the shield. Second, the tunnel diameter also poses limitations on certain operational 

parameters, specifically the TBM advance rate and the duration of construction standstills, which 

must also be considered in cases of time-dependent ground behaviour due to creep or 

consolidation. Third, a larger cross-section is associated with a higher potential of encountering 

adverse conditions (e.g., weak zones, water inflows etc.; Kovári 1979; Schneider 2002); however, 

as squeezing ground is often weak even at the small scale of a specimen, the differences in the 

ground properties between different diameter tunnels is of secondary importance in relation to the 

above.  

Considering all limitations discussed above, Ramoni and Anagnostou’s investigations (2011b) 

showed that a smaller diameter is consistently less prone to shield jamming than a larger one in 

the case of consolidation, alas the differences between them decrease in weaker ground. Based on 

these findings, two questions arise: is it possible that a larger diameter is more favourable than a 

smaller one in weaker ground? is the scale effect the same in the case of creep? These questions 

are addressed in Section 5.2, which examines the effect of the tunnel diameter both on the rock 

deformations and on the risk of shield jamming during advance or after a standstill of the TBM, 

based on exemplary, transient numerical simulations that incorporate the limitations discussed 

above. 

5.1.2 Interaction 

Tunnelling through heavily squeezing ground can cause stress-redistribution and deformations in 

an extended area, in turn affecting other existing or planned underground structures. In the case 

of a twin tunnel, the excavation of the 1st tube may affect the stress field at the location of the 2nd 

tube and thus the construction and support of the latter significantly, and vice versa – the 

construction of the 2nd tube may have a relevant effect on the lining of the 1st tube. Τhe interaction 

effects may be more or less pronounced depending on the construction method. It is expected to 

be more pronounced in the case of conventional tunnelling with a yielding support, and less 

pronounced in the case of a construction method that limits ground deformations by foreseeing a 

stiff support close to the tunnel face (resistance principle). Shield tunnelling is closer to the second 

case, as the available space is very limited due to the construction equipment, with ground 

deformations therefore being small in general.  

A special situation arises in the case of saturated, water-bearing ground, where the drainage action 

of a tunnel results in a pore pressure relief over a very extended area (Arn, 1989). In the case of a 

twin tunnel, pore pressure relief due to the 1st tube has a favourable influence on the subsequently 

excavated 2nd tube, which is analogous to that of advance drainage (Anagnostou and Zingg, 2013): 

it results in higher effective stresses, hence in a higher undrained shear strength of the ground and, 

finally, in lower short-term deformations during excavation. This experience was often made in 

tunnelling practice. Prominent examples are the Simplon railway tunnel and the Gotthard 

motorway tunnel in Switzerland (Lombardi 1976, Steiner 1996, Anagnostou 2009a); in the latter 

case, noteworthy is the influence of consolidation up to ca. 10 diameters around the first tunnel, 

which was also much smaller than the second. 
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On the one hand, due to the aforementioned large-scale pore pressure relief and consolidation in 

the case of low-permeability water-bearing ground and, on the other hand, due to the limited 

excavation-induced stress-redistribution in the case of shield tunnelling through creeping but not 

water-bearing ground, it is expected that time-dependent interaction effects will be more 

pronounced in the case of consolidation than in the case of creep. Section 5.3 investigates this 

hypothesis considering the problem of shield jamming in a twin tunnel, and shows that the 

required thrust force in the 2nd tube is significantly lower than in the 1st tube in the case of 

consolidation, even for large spacings of the two tunnels, whereas in the case of creep the 1st tube 

has a negligible effect on the construction of the 2nd tube. 

Other potentially important interactions, such as the effect of the 1st tube on the lining of the 2nd 

tube and vice versa, are beyond the scope of this chapter, which focuses solely on 

differences/similarities between creep and consolidation with respect to TBM-ground interaction. 

5.2 Scale effect 

To obtain a basic insight into the effect of the tunnel diameter, our investigations start with a 

simple plane-strain problem, that of the time development of tunnel convergences in a cross-

section far behind the face (Section 5.2.1), and continue with the core subject of this chapter, i.e. 

the scale effect with respect to the risk of shield jamming (Section 5.2.2).  

5.2.1 Time-dependent contraction of a deep tunnel 

5.2.1.1 Homogeneous ground 

The problem can be analysed based on the classic, rotationally symmetric, plane-strain model of 

a deep, cylindrical and uniformly supported tunnel located deep below the ground surface and the 

water table. The radial displacement of the tunnel boundary uR can then be expressed as a function 

of the significant problem parameters as 
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in the case of consolidation (Chapter 4). In these equations, R is the tunnel radius, Rp is the far-

field radius of the seepage flow domain considered in the numerical model – taken to be equal to 

the depth of the tunnel under the water table (Ramoni and Anagnostou, 2011b) – σ0 and p0 are 

respectively the in-situ stress and pore pressure at the depth of the tunnel axis, γw is the unit weight 

of the pore water and t the time that has elapsed upon excavation. The rock is assumed to obey a 

linear elastic and perfectly plastic constitutive model with a Mohr Coulomb yield condition and 
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a non-associated plastic flow rule, defined by five parameters: the Young’s Modulus, E, the 

Poisson’s ratio, v, the uniaxial compressive strength, fc, the angle of internal friction, ϕ, and the 

angle of dilation, ψ. The rheological ground behaviour due to creep is modelled as purely 

viscoplastic based on Perzyna’s overstress theory (Perzyna, 1966), according to which the rate of 

viscoplastic deformations is governed solely by the ground viscosity η. Seepage flow in water-

bearing ground is modelled according to Darcy’s law, considering a constant ground permeability 

k. 

The expression of the dimensionless time parameter in Equation (5.2) is identical to that in 

Terzaghi’s 1D consolidation theory (Terzaghi, 1925), the only difference being that the drainage 

path length is replaced by the tunnel radius R, which is the characteristic length in the present 

problem. Based on this expression, one can directly infer that the time required to attain a given 

percentage of the displacement increment during the consolidation process, e.g. 95% (denoted as 

t95 henceforth), is proportional to R2 for given ground parameters, initial stress and pore pressure. 

Such a dependency does not exist in the case of creep, as R does not appear in the r.h.s. parameter 

list of Equation (5.1). In practical terms, this means that, e.g., if the tunnel diameter was four times 

larger, then the displacements would develop at the same rate in the case of creep, but 16 times 

slower in the case of consolidation. The same delay in the displacement evolution would be 

observed in the smaller diameter tunnel if the permeability of the ground was lower by a factor of 

16. 

The above quadratic dependency holds as long as the tunnel lies deep under the water table 

(Rp >> R), which fixes the influence of the penultimate term in Equation (5.2) and renders R the 

only relevant geometric parameter. However, problems also exist that are characterised by more 

than one significant geometric parameters. This is, for example, the case of tunnelling in a low-

permeability layer (aquitard) embedded between two aquifers (Fig. 5.1a). The aquitard thickness 

induces an additional, non-trivial scale effect, which is examined in the next subsection. 
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Figure. 5.1 Plane-strain scale problem: (a) geotechnical situation for tunnelling through a horizontal 

aquitard and, (b), simplified rotationally symmetric computational model 

5.2.1.2 Confined aquitard 

In the case of an aquitard confined between permeable layers, the in-situ pore pressure p0 

practically acts at the layer interfaces and the hydraulic head difference between aquifer and 

tunnel is dissipated practically only within the aquitard, along a drainage path whose length 

corresponds to half the aquitard thickness (d/2 in Fig. 5.1a). This constraint may give rise to a 

secondary, non-trivial scale effect, which becomes relevant when the ratio of the aquitard 

thickness to the tunnel diameter d/D is small, as this generates two competing effects: on the one 

hand the drainage path becomes shorter, which accelerates the consolidation process, but on the 

other hand the hydraulic gradients and thus the seepage forces are higher, which induces more 

extensive ground plastification and thereby decelerates the consolidation process.  

The scale effects related to the tunnel diameter and the size of the seepage flow domain are 

demonstrated on the example of a deep geological repository for radioactive waste, which is 

planned to be constructed in Switzerland over the next years. Circular drifts of diameter D = 3.5 m 

will be used for the disposal of high-level waste (Nordas et al., 2023c), while low/intermediate-
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level waste will be stored in caverns with four times larger average diameter D = 14 m (Morosoli 

et al., 2023). The repository will be embedded at a maximum depth of 900 m, within a practically 

horizontal, ca. 100 m-thick layer of Opalinus Clay, a claystone with several favourable properties 

for waste containment, mainly its extremely low permeability. The Opalinus Clay layer is 

interspersed between substantially more permeable layers of marls, hence the in-situ pore pressure 

p0 = 9 MPa can be considered to act at its boundaries. The problem layout is shown in Figure 5.1a. 

For simplicity, variations in the geodetic height are ignored and the low/intermediate-level waste 

caverns are idealised as circular, which enable analysing the problem under the assumption of 

rotational symmetry using the plane strain model shown in Figure 5.1b. Apart from the ground 

heterogeneity, the model specifications are identical to those discussed in the previous chapter, 

and are given in Table 5.1. Parametric numerical simulations are conducted considering variable 

distance of the tunnel axis from the drainage boundary (Rp in Eq. 5.2) of 30 – 60 m, which in this 

case represents the half-thickness d/2 of the Opalinus Clay layer wherein seepage flow occurs. 

The equivalent isotropic material constants for the Opalinus Clay given in Table 5.1 are based on 

the anisotropic parameters determined from experimental results by Nordas et al. (2023b), and 

consider low, intermediate, and high values of the uniaxial compressive strength fc = 7, 9 and 

17 MPa, respectively, to account for the strength anisotropy and brittle softening that the Opalinus 

clay has been shown to exhibit.  

Table 5.1 Parameters adopted in the numerical investigations into the problem of tunnelling through a 

horizontal aquitard (Section 5.2) 

Ground 
Young’s Modulus, E [GPa] 8
Poisson’s ratio, υ [-] 0.25
Uniaxial compressive strength, fc [MPa] var.
Angle of internal friction, ϕ [°] 30
Dilatancy angle, ψ [°] 3
Depth of cover, H [m] 900
In-situ stress at tunnel axis, σ0 [MPa] 22.5
Water table above tunnel axis, Hw [m] 900
Permeability, k [m/s] 10-13

Model 
Far-field radius of the computational domain, Rσ [m] 600
Far-field radius of the seepage flow domain, Rp [m] var.
Tunnel diameter, D [m] 3.50 or 14
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Figure 5.2 shows the ratio t95 (D = 14 m) /t95
 (D = 3.5 m) between caverns and drifts (Fig. 5.2a), 

along with the corresponding plastic radii ρ (Fig. 5.2b) and normalised displacements u/R (Fig. 

5.2c) at steady-state conditions (i.e., upon completion of the consolidation process), as functions 

of the distance of the tunnel axis from the drainage boundary d/2, for the three values of fc. 

Considering first the lowest fc (7 MPa), one can observe that in the case of an aquitard thickness 

d of 120 m, only the basic scale effect is relevant: consolidation in the caverns takes place at a 

rate that is lower than in the drifts by a factor of 16, according to the ratio of the squares of their 

diameters, i.e. t95 (D = 14 m) /t95
 (D = 3.5 m) = (14 / 3.5)2 (Fig. 5.2a). The non-trivial scale effect 

starts to immediately become relevant for smaller d-values, where the ratio of t95 can be seen to 

increase rapidly and monotonically towards very high values (Fig. 5.2a). 

The monotonic increase indicates that in the case of the caverns (D = 14 m), where d/D (or, 

equivalently, Rp/R in Eq. 5.2) is smaller, the acceleration of the consolidation process due to the 

shorter drainage path is negligible compared to the deceleration imposed by the more extensive 

ground plastification due to the higher seepage forces. The dominant effect of plastification 

becomes evident by the increase in the steady-state radius of the plastic zone (Fig. 5.2b) and 

normalised displacement (Fig. 5.2c) for the caverns; for a lower aquitard thickness d of 60 m, the 

plastic zone even approaches the boundary of the seepage flow domain, indicating an almost 

complete plastification of the Opalinus Clay layer. Conversely, for the drifts (D = 3.5 m) where 

d/D is higher, both the plastic radii and displacement remain constant. The non-trivial scale effect 

is qualitatively similar but less pronounced for fc = 9 MPa and can be seen to vanish completely 

with for fc = 17 MPa, which indicates that it is only relevant in weaker ground. 

For the actual thickness of the Opalinus Clay layer of ca. 100 m at the repository sites, 

consolidation around the caverns is expected to take place 16 – 20 times slower than around the 

drifts; it can thus be considered to obey the quadratic rule of consolidation theory that holds for 

deep tunnels in homogeneous ground, with some small deviations. The key take-away from these 

results, however, is that in confined aquitards the consolidation rate may deviate dramatically 

from the quadratic rule of consolidation theory – and, this is even more so the case for lower 

aquitard thickness and weaker ground – indicating that ground deformations may continue to 

develop for a very long time after excavation. This may prove critical in respect of serviceability 

requirements or the structural safety of the final lining, as rock pressures will continue developing 

on it long after its installation.
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Figure. 5.2 Scale effect in the problem of tunnelling through a horizontal aquitard (Fig. 5.1) associated 

with the hydromechanical coupling: (a) ratio of the consolidation time t95 in a diameter 14 m 

tunnel to the consolidation time t95 in a diameter 3.5 m tunnel, (b), steady-state radius of the 

plastic zone  and, (c), normalised steady-state displacement u/R of the tunnel boundary as 

functions of the distance of the aquifer from the tunnel axis d/2 (parameters: Table 5.1) 
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5.2.2 Risk of shield jamming 

The effect of the tunnel diameter on the risk of shield jamming will be investigated only for 

homogeneous ground, considering the rotationally symmetric, plane-strain model of a cylindrical 

and uniformly supported tunnel located deep below the ground surface and the water table. In this 

case, the average rock pressure that develops on the shield ͞σR can be expressed as a function of 

the significant problem parameters as  
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in the case of consolidation, where L is the shield length, ΔR the radial overcut around the shield, 

Ks and Kl the radial stiffnesses of the shield and lining, respectively, v the average advance rate 

of the TBM during regular operation, and t the standstill duration (Chapter 4). 

Due to technical limitations, the TBM parameters (overcut ΔR, shield length L and shield and 

lining stiffnesses Ks and Kl) that can be materialised in practice vary within a specific range 

independently of the tunnel diameter, while the advance rate v decreases with increasing diameter. 

Consequently, the nondimensional parameters EΔR/(σ0R), L/R, KsR/E, KlR/E, (vη)/(ER) and 

(v γw R2)/(kE) in general cannot take the same values for different diameter tunnels, which gives 

rise to a scale effect with respect to the risk of shield jamming (Ramoni and Anagnostou, 2011b). 

The strength and stiffness of the ground may also tentatively decrease with increasing 

representative volume, and thus tunnel diameter; however, as squeezing ground is often weak 

even at the small scale of a specimen, the differences with respect to ground parameters in the 

large scale, between two tunnels of different diameter, are secondary in relation to the above and 

will be neglected. 

Assessing the scale effect qualitatively is cumbersome even in the case of time-independent 

ground behaviour, since many TBM parameters have mutually competing effects on the rock 

pressure. Note, for example, that with increasing tunnel diameter both the normalised shield 

length L/R and the normalised overcut ΔR/R decrease (Ramoni and Anagnostou, 2010b), however 

the former is favourable concerning the risk of shield jamming, while the latter is unfavourable 

(see also Ramoni and Anagnostou, 2011b). The problem becomes even more complex in the case 

of time-dependent ground behaviour due to creep or consolidation, where the additional influence 

of the advance rate v and the standstill duration t must be considered. Therefore, resorting to 

numerical simulations is necessitated.  

The section starts with some basic theoretical considerations concerning the influence of the 

advance rate v and the standstill duration t on the rock pressure in Sections 5.2.2.1 and 5.2.2.2, 

based upon simplified and realistic assumptions, respectively (the influence of the other TBM 
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parameters is discussed in Ramoni and Anagnostou, 2010b). Subsequently, it proceeds with 

investigating numerically the scale effect, based on exemplary computations with realistic 

specifications for all parameters; first, for the case of time-independent ground behaviour (Section 

5.2.2.3), where relevant is only the influence of the TBM parameters, and then for the case of 

time-dependent behaviour due to creep or consolidation, considering the operational stages during 

TBM advance (Section 5.2.2.4) and restart after a standstill (Section 5.2.2.5). 

5.2.2.1 Simplified theoretical analysis 

The influence of the last two parameters in Eqs. (5.3) and (5.4) on the rock pressure is analysed 

considering an idealised situation where all other ground and TBM parameters are fixed 

regardless of R.  

First, the conditions during restart after a standstill are examined. The rock pressure in this case 

depends not only on the standstill duration (last term) but also the advance rate (penultimate term), 

as rock pressure may already develop during the advance phase (Chapter 2). To isolate the 

influence of the last term, a case where the excavation occurs rapidly (v η or v/k → ∞) is assumed, 

where the penultimate term is infinite regardless of R. In this case the last term is identical to the 

time parameter in the plane strain problem (last term in Eqs. 5.1, 5.2), hence the time development 

of the rock pressure will be analogous to that of tunnel contraction in Section 5.2.1.1: in the case 

of creep the pressure develops at a rate that is independent of R, while in the case of consolidation 

the pressure develops at a rate inversely proportional to R2, and thus slower in a larger diameter 

tunnel (effect equivalent to lower permeability).  

Next, the conditions during advance are examined. The rock pressure in this case depends only 

on the penultimate term (last term is irrelevant). In the case of creep R appears in the denominator, 

which means that for a given v the advance will occur slower in a larger diameter tunnel 

(equivalent effect to lower viscosity), and hence a higher rock pressure will develop (alternatively, 

to achieve a given rock pressure the advance rate must be higher in the larger diameter tunnel). 

In the case of consolidation, R appears in the numerator and the effect is exactly the opposite.  

At this point it is important to note that, in order to compare the rock pressure in different diameter 

tunnels, v alone is not the most suitable measure of the rate of advance. Specifically, when the 

shield reaches any given tunnel cross-section, it remains exposed to pressure at that section for as 

long as it is required for its entire length L to pass through it; therefore, the shield pressure 

ultimately depends on the time required for the TBM to advance by one shield length, that is L/v 

( = (L/R) / (v/R)), which is only a function of v/R since L/R is considered as being fixed. The ratio 

v/R, which expresses how fast the TBM excavates the length of one radius R, is thus a more 

suitable measure to compare the rate of advance in different diameter tunnels – a fixed v/R means 

that the TBM takes the same time to advance by one shield length L regardless of R. For a given 

v/R, in the case of creep the normalised advance rate (v/R).(η/Ε) is constant, which means that the 

pressure develops at the same rate regardless of R; in the case of consolidation the normalised 

advance rate can be expressed as (v/R) (γw R2)/(kE) and is proportional to R2, which means that 
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the pressure develops at a rate inversely proportional to R2, and thus slower in a larger diameter 

tunnel. The effect of the tunnel diameter is thus the same here as in the case of the standstill 

examined previously. 

Conclusively, both during advance and for restart after a standstill of the TBM, in the case of 

creep there will be no scale effect for tunnels excavated at the same rate v/R, while in the case of 

consolidation the well-known dependency of consolidation time on the square of the characteristic 

length – here R – holds. 

5.2.2.2 Theoretical analysis under realistic assumptions concerning the advance rate 

The assumption adopted in the preceding section that v/R can be the same for the two tunnels (i.e. 

v is proportional to R) is purely theoretical, since in practice it is well-known that the larger the 

boring diameter the slower the TBM advances, i.e. v decreases with increasing R. In fact, v can 

be assumed inversely proportional to R, as in Ramoni and Anagnostou (2011b), which then makes 

v/R inversely proportional to R2. This is explained hereafter. 

The operations during mechanised excavation with a TBM can be idealised as a “stop-and-go” 

process, where intervals of continuous TBM propulsion (ΔT1) over the length of one prefabricated 

segmental lining ring (LT) regularly alternate with intervals where the TBM remains at standstill 

(ΔT2) for the installation of the corresponding ring. The net advance rate of the TBM during the 

continuous propulsion intervals can be expressed as vN = LT /ΔT1, while the average advance rate 

over the entire “stop-and-go” process adopted in the present chapter (Eqs. 5.3, 5.4) can be 

expressed as v = LT/(ΔT1 + ΔT2) (Chapter 2). The net advance rate is defined as vN = ROP*RPM, 

where ROP is the rate of penetration and RPM the number of rotations of the TBM cutterhead per 

minute (or, more generally, per unit time). It is reasonable to assume that ROP is the same for 

tunnels under identical ground conditions (strictly speaking, this is valid as long as the installed 

thrust force is higher in the larger TBM, as is common in practice). It is also reasonable to assume 

that RPM is inversely proportional to R, considering that an upper limit of 150-200 m/min is 

imposed on the linear velocity of the gauge cutters to avoid overheating, irrespective of the TBM 

diameter (Rispoli et al., 2020; Hamburger and Weber, 1992). Under these assumptions, vN can be 

considered inversely proportional to R. Assuming that the prefabricated lining rings have the same 

length LT irrespective of R, ΔT1 can be considered proportional to R. Based on this, it is also 

reasonable to consider ΔT2 to be proportional to R (cf., among others, Tahernia & Rostami, 2021; 

Farokh, 2013, 2020), which then makes v inversely proportional to R, as is vN. 

Under the realistic assumption of inverse proportionality between v and R, the situation differs 

from the simplified one discussed in Section 5.2.2.1: in the case of creep the normalised advance 

rate (v/R).(η/Ε) becomes inversely proportional to R2, which means that the pressure develops 

faster in a larger tunnel (effect equivalent to lower viscosity); in the case of consolidation the 

normalised advance rate (v/R) (γw R2)/(kE) becomes independent of R, hence the shield pressure 

develops at the same rate in both tunnels (the favourable effect of a faster advance in the case of 

a smaller diameter tunnel outweighs the unfavourable effect of faster developing convergences). 
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The assumption concerning the advance rate does not influence the conditions during a standstill 

preceded by a rapid advance (v η or v/k → ∞), and the conclusions of Section 5.2.2.1 for this case 

remain valid. Even so, considering that the tunnel diameter influences each stage differently, the 

scale effect becomes cumbersome to assess qualitatively for general cases of a standstill preceded 

by an excavation at a normal advance rate, hence a numerical investigation is necessitated. This 

is conducted in Sections 5.2.2.4 and 5.2.2.5, based on an example that considers practically 

relevant parameters; before this, however, the case of time-independent ground behaviour is 

examined in Section 5.2.2.3, which offers a better understanding of the influence of the TBM 

parameters isolated from that of the advance rate and standstill time. 

5.2.2.3 Time-independent ground behaviour 

The theoretical analysis of the previous sections assumed that the first 8 dimensionless parameters 

on the r.h.s. of Equations (5.3) and (5.4) do not depend on the tunnel radius, when in fact these in 

general cannot take the same values for a large and a small tunnel, thereby introducing a scale-

effect even without time-dependent ground behaviour.  

The scale effect related to the TBM parameters is assessed herein by comparing two tunnels with 

diameters of 12 m and 4 m excavated under identical ground conditions, disregarding creep and 

consolidation (the scale effect in the case of time-dependent ground behaviour will be analysed 

in the next two sections). For the numerical simulations, the computational model of the 

advancing tunnel heading introduced in Section 4.2 of Chapter 4 is employed. The assumed 

parameter values are given in Table 5.2. The common overcut ΔR = 5 cm and shield length L = 

10 m adopted for both tunnels are realistic, considering that the corresponding normalised values 

(ΔR/R, L/R) (= (2.5%, 5) and (0.8%, 1.7) for D = 4 m and 12 m, respectively) are typical (cf. Fig. 6 

in Ramoni and Anagnostou, 2010b). The thicknesses ds of the shield and dl of the lining are 

assumed proportional to the radius R, which is reasonable and makes the normalised radial 

stiffnesses KsR/E = (Es/E) ds/R and KlR/E = (El/E) dl/R identical for the two tunnels, and dependent 

only on the Young’s moduli Es, Ec and E of steel, concrete and the ground, respectively.  

When evaluating potential scale-effects with respect to the risk of shield jamming, it is not 

sufficient to consider only the shield loading or the required thrust force Fr (which depend on the 

parameters in Eqs. 5.3 and 5.4), but also the installed or installable thrust force Fi. The latter 

increases with the tunnel diameter, which also introduces a scale-effect to be considered. The 

comparison between the two tunnels is thus based on the ratio Fr /Fi, which expresses the 

percentage of the Fi utilised by Fr and will be hereafter referred to as thrust utilisation factor 

(TUF). The required thrust force Fr is computed as μ 2πR L µ ͞σR, where μ denotes the static 

friction coefficient; this expression holds for the conditions during TBM restart, which is the 

relevant operational stage in most cases (see Ramoni and Anagnostou, 2010b). The installed TBM 

thrust force is assumed to increase proportionally to the cross-section area, and thus to R2, 

according to the expression Fi = 5 R2 MN/m2, which provides values in the high end of the range 

of technical data collected from various TBMs (cf. Fig. 7 in Ramoni and Anagnostou 2010b; Ates 

et al. 2014).  
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Table 5.2 Parameters adopted in the numerical investigations into the effect of tunnel diameter on 

thrust force utilisation (Section 5.2) 

 
  

Ground   
Young’s Modulus, E [GPa] 1 
Poisson’s ratio, v [-] 0.25 
Uniaxial compressive strength, fc [MPa] var. 
Angle of internal friction, ϕ [°] 25 
Dilatancy angle, ψ [°] 5 
Depth of cover, H [m] 400 
In-situ stress at tunnel axis, σ0 [MPa] 10 
Water table level above tunnel axis, Hw [m] 100 
Permeability, k [m/s] var. 
Viscosity, η [MPa.d] var. 

TBM 
  

Boring Diameter, D [m] 4 or 12 
Radial overcut, ΔR [cm] 5 
Shield length, L [m] 10 
Radial shield stiffness, Ks [MPa/m] 875 (D = 12m) 

2625 (D = 4m) 
Shield thickness, ds [m] 0.15 (D = 12m) 

0.05 (D = 4m) 
Young’s modulus of steel, Es [GPa] 210 
Average Advance rate, v [m/d] 30 (D = 12m) 

90 (D = 4m) 
Shield skin friction coefficient, μ [-] 0.15 

Lining 
  

Young’s modulus of concrete, Ec [GPa] 30 
Lining thickness, dl [cm] 0.75 (D = 12m) 

0.25 (D = 4m) 
Radial lining stiffness, Kl [MPa/m] 625 (D = 12m) 

1875 (D = 4m) 

Model 
  

Round length, s [m] 0.5 
Far-field radius of the computational domain, Rσ [m] 400 
Far-field radius of the seepage flow domain, Rp [m] 100 
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Figure 5.3 shows the thrust utilisation factors of the two tunnels as functions of the rock quality, 

expressed by its uniaxial compressive strength fc. The intuitive perception that the smaller 

diameter tunnel is less vulnerable than the larger diameter tunnel is unconditionally true for other 

potential hazards (e.g., an instability of the tunnel face) but not for the risk of shield jamming, 

where it is true only in better quality ground (fc > 3.2 MPa in the example of Fig. 5.3). The opposite 

holds in weaker ground and, interestingly enough, this has been shown to be generally true for 

any two tunnels with different radii, by means of a more extensive parametric study considering 

a wide range of practically relevant in-situ stresses, boring radii, ground and TBM parameters 

(Appendix E). For the parameters adopted herein, the TUF in the larger diameter tunnel is less 

sensitive to variations of rock quality (expressed by fc) than in the smaller diameter tunnel, and 

also consistently lower than unity, indicating that its excavation is feasible irrespective of the 

ground conditions, whereas the small tunnel excavation is only feasible in better quality ground 

with fc > ca. 2.7 MPa.  

The TUFs are equal for fc = ca. 3.2 MPa, which means that the competing effects of the TBM 

parameters outweigh one other. This situation is thus suitable for investigating the scale effect 

that results purely from the time-dependency of the ground behaviour due to creep or 

consolidation in the next sections. 

Figure 5.3. Scale effect in the absence of time-dependency (no creep, no consolidation): Thrust force 

required to overcome shield skin friction, normalised by the installed thrust force (“thrust 

utilization factor”, TUF), as a function of the uniaxial compressive strength of the ground fc 

for a 12 m diameter tunnel and for a 4 m diameter tunnel (parameters: Table 5.2) 
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5.2.2.4 Time-dependent ground behaviour – TBM advance 

The scale effect during TBM advance in the case of creep and consolidation is examined under 

the same assumptions as in the previous section (Table 5.2), setting fc = 3.2 MPa to eliminate the 

influence of the TBM parameters. Based upon Section 5.2.2.2, advance rates of 90 and 30 m/day 

(average values during the stop-and-go operation) are considered for the 4 m and for the 12 m 

diameter tunnel, respectively. 

Figure 5.4 shows the thrust utilisation factor as a function of the viscosity (creep case, red lines) 

and of the permeability (consolidation case, blue lines) for the smaller diameter (solid lines) and 

for the larger diameter (dashed lines). With the exception of high viscosities or low permeabilities, 

a scale effect clearly exists with respect to the risk of shield jamming (expressed by the TUF) both 

in creep and consolidation: an increase in diameter results in a higher utilisation of the thrust force 

(the red dashed line is above the red solid line and the blue dashed line is above the blue solid 

line), which means that due to the time-dependency, the situation is more favourable for the 

smaller diameter. This is consistent with the results of the last section shown in Figure 5.4: time-

dependency delays squeezing, the rock responds to tunnel excavation as if it were of a higher 

quality, and the last section showed that an increase in rock quality renders a smaller diameter 

more favourable. 

 
Figure 5.4. Scale effect in the case of time-dependent ground behaviour: Thrust force required to 

overcome shield skin friction during TBM advance, normalised by the installed thrust force 

(“thrust utilisation factor”, TUF), as a function of the viscosity η in the case of creep and of 

the permeability k in the case of consolidation (fc = 3.2 MPa; other parameters: Table 5.2) 
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The scale effect is negligible if the viscosity is sufficiently high or the permeability sufficiently 

low. In this case the convergences around the advancing shield area are nonetheless small 

regardless of the tunnel diameter, as the rock behaviour is practically elastic (creep case) or 

undrained (consolidation case).  

The vertical distance of the two red lines reflects the scale effect in the case of creep. As it is 

slightly bigger than the vertical distance of the two blue lines, the scale effect is slightly more 

pronounced in the case of creep than in the case of consolidation.  

In the example of Figure 5.4, TUF < 1 over the entire viscosity and permeability ranges, which 

means that the thrust force would be sufficient also for the larger diameter tunnel, both in the case 

of creep and in the case of consolidation. Nevertheless, the assumed values of the installed thrust 

forces (Fi = 5 R2 MN/m2) are very high for rock TBMs (20 MN for a 4 m diameter tunnel and 

180 MN for a 12 m diameter tunnel). With a moderate assumption (e.g. Fi = 3 R2 MN/m2, which 

gives 12 and 108 MN for the 4 m and 12 m diameter tunnels, respectively), the larger TBM might 

experience jamming, while the smaller TBM would still be safe; this would happen in the range 

of η = ca. 10–100 MPa.d and k = 10-8 – 10-9 m/s. 

The scale effect can be demonstrated also in another way. Assume that the 4 m diameter tunnel 

was constructed first (a pilot tunnel) and that the force actually applied was equal to 20% of the 

installed one (TUF = 0.2). Assuming that the strength and stiffness parameters of the rock are 

known and correspond to the ones underlying Figure 5.4, the observed (rather low) required thrust 

force could be explained on the basis of the convergence delay due to creep or to consolidation 

(points A in Fig. 5.4). What could one expect for the main, larger diameter tunnel? In order for 

the thrust utilisation factor to remain the same, the viscosity η would have to be higher by a factor 

of about 50 in the case of creep (red point B vs. red point A), while in the case of consolidation 

the permeability k would have to be lower by a factor of about 20 (blue point B vs. blue point A). 

Alternatively, for the given η and k (as in points A), the advance rate in the main tunnel would 

have to be about 50 (creep) or 20 (consolidation) times higher than assumed (note the 

dimensionless expressions in Eqs. 5.3 and 5.4), which is of course impossible. These theoretical 

results provide another view of the scale effect in the case of creep and consolidation. 
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5.2.2.5 Time-dependent ground behaviour – Standstill 

The same conclusions can essentially be drawn for the thrust force needed for restart after a 

standstill. Figure 5.5 shows the TUF as a function of the standstill duration. The computations 

have been performed considering the same parameters as before (Table 5.2), as well as a high 

viscosity (η = 10,000 MPa.d) and low permeability (k = 10-10 m/s), which ensure that the 

behaviour during advance is elastic (in the case of creep) or undrained (in the case of 

consolidation) and hence relevant shield loading develops only during the standstill (cf. TUFs in 

Fig. 5.4 for η = 10,000 MPa.d and k = 10-10 m/s). This enables examining the isolated influence 

of the standstill duration t. 

The distances between the dashed and solid lines in Figure 5.5 clearly indicate the existence of a 

scale effect with respect to the TUF. The width of the band that is defined by the two red lines 

reflects the effect of tunnel radius in the case of creep. As this band is wider than the band that is 

defined by the two blue lines (consolidation), one may say that the scale-effect is more 

pronounced in the case of creep. 

 
Figure 5.5. Scale effect in the case of time-dependent ground behaviour: Thrust force required for TBM 

restart after a standstill, normalised by the installed thrust force (“thrust utilisation factor”, 

TUF), as a function of the standstill duration t (fc = 3.2 MPa; η = 104 MPa.d, k = 10-10 m/s; 

other parameters: Table 5.2) 
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5.3 Interaction 

The hypothesis that interaction is significant in the case of consolidation but negligible in the case 

of creep (Section 5.1) is tested herein, considering the problem of shield jamming in a twin tunnel 

(Fig. 5.6) and comparing the thrust forces required to overcome shield skin friction during 

construction of its two tubes (Tunnels 1, 2). The construction of Tunnel 2 is assumed to take place 

long after the completion of Tunnel 1, such that steady state conditions have been re-established 

when it passes through any cross-section A-A (Fig. 5.6). The adopted parameters are given in 

Table 5.3. 

To validate the hypothesis made, it is sufficient to consider and compare only two limit cases: the 

case of minimum interaction in consolidation vs. the case of maximum interaction in creep. 

In the case of consolidation, the effect of Tunnel 1 on Tunnel 2 is first due to the stress 

redistribution associated with the deformations of the ground ahead of the advancing face and 

around the TBM shield, and, second, the long-term large-scale pore pressure relief and increase 

in the undrained shear strength (Section 5.1). This effect is minimum when the excavation-

induced deformations are as small as possible, which is the case when the ground permeability is 

very low and its response to excavation is practically undrained. 

In the case of creep, the effect of Tunnel 1 on Tunnel 2 is solely due to the aforementioned stress 

redistribution, as rheological processes are of purely mechanical nature. This effect is maximum 

if the deformations of the ground ahead of the advancing face and around the shield of Tunnel 1 

are as large as possible, which is the case when the advance is very slow and all viscoplastic 

deformations due to creep occur practically simultaneously with the progress of the excavation 

(practically time-independent response with instantaneous manifestation of squeezing). 

Figure 5.6. Interaction problem: (geotechnical situation during the advance of the second tunnel, long 

after construction of the first tunnel (plan view x-y) 
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Table 5.3. Parameters adopted in the numerical analyses for the interaction problem (Section 5.3) 

(a) For the case of creep, one additional computation was performed assuming H = 1600 m, σ0 = 40 MPa and 
ΔR = 15 cm 

Based on the above, consideration is given in the sequel to the cases of a water-bearing ground of 

extremely low permeability that exhibits an undrained response during shield advance 

(“consolidation case”), and an extremely slow excavation through a non-water-bearing ground 

(“creep case”).  

Instead of resorting to more complex, 3D, transient numerical simulations, the problem will be 

analysed in a simplified manner using sequentially two models: (i) an axisymmetric model of the 

advancing tunnel heading, which simulates the TBM advance and lining installation step-by-step 

(Fig. 4.1b of the previous chapter and computational assumptions discussed in Section 4.2.3 of 

the previous chapter) and, (ii), a plane-strain, twin tunnel model of a cross-section A-A (cf. Fig. 

5.6) far behind the face of both tubes (Fig. 5.7). To facilitate the connection of the input and output 

parameters of the models, adequate and well-founded assumptions are adopted. Both models have 

been developed in Abaqus® (Dassault Systèmes, 2018). 

The consolidation case will be examined first. Initially, the short-term shield-lining-ground 

interaction in Tunnel 1 will be analysed, and the thrust force required to overcome shield skin 

friction will be determined, using the axisymmetric model (Fig. 4.1b of the previous chapter) This 

model will be used for the calculation of the required thrust force in Tunnel 2 as well, although it 

will consider different initial conditions that reflect the stress-redistribution, pore pressure relief 

and ground consolidation induced by Tunnel 1. The alteration of the initial stress and pore 

Ground   
Young’s Modulus, E [GPa] 1 
Poisson’s ratio, v [-] 0.25 
Uniaxial compressive strength, fc [MPa] 2 
Angle of internal friction, ϕ [°] 25 
Dilatancy angle, ψ [°] 5 
Depth of cover, H [m] 400(a) 
In-situ stress at tunnel axis, σ0 [MPa] 10(a) 
Water table level above tunnel axis, Hw [m] 400 
Viscosity, η [MPa.d] 10-5 
Permeability, k [m/s] 10-11 

TBM 
  

Boring Diameter, D [m] 12 
Radial overcut, ΔR [cm] 5(a) 
Shield length, L [m] 12 
Radial shield stiffness, Ks [MPa/m] 875 
Shield thickness, ds [m] 0.15 
Young’s modulus of steel Es [GPa] 210 
Average advance rate, v [m/d] 30 
Shield skin friction coefficient, μ [-] 0.15 

Lining 
  

Young’s modulus of concrete, Ec [GPa] 30 
Lining thickness dl [cm] 0.75 
Radial lining stiffness, Kl [MPa/m] 625 

Model 
  

Round length, s [m] 1.0 
Far-field radius of the computational domain, Rσ [m] 400 
Far- field radius of the seepage flow domain, Rp [m] 400 
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pressure fields will be quantified using the plane-strain model (Fig. 5.7). The latter will be used 

also to show that it is adequate to consider uniform and isotropic initial stress and pore pressure 

fields for simulating the construction of Tunnel 2, thereby verifying also the adequacy of the 

axisymmetric model (Fig. 4.1b of the previous chapter) for this purpose. Based on these analyses, 

it will be shown that the required thrust force in Tunnel 2 is significantly lower than in Tunnel 1, 

even if the tunnel spacing is as large as ten diameters. 

The analysis for the creep case essentially follows the same approach and will show that the 

interaction is negligible for tunnel spacings for which it is substantial in the consolidation case. 

This is because the construction of Tunnel 1 has a negligible effect on the stresses in the location 

of Tunnel 2, which will be shown to be true even under extreme squeezing conditions and even 

considering an unusually large annular gap around the shield. 

Figure 5.7. Interaction problem: plane-strain model (cross section A-A of Fig. 5.6) in the computational 

stage that simulates the excavation of the first tunnel 
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5.3.1 Results for the consolidation case 

Figure 5.8 shows the longitudinal distribution of the rock pressure that develops in the short-term 

upon the shield and the lining of Tunnel 1, along with the corresponding equilibrium point of the 

rock (2.3 MPa, 0.10 m), as determined using the axisymmetric model (Fig. 4.1b of the previous 

chapter).  

The excavation of Tunnel 1 is also simulated as an undrained plane-strain problem using the plane 

strain model (Fig. 5.7), by instantaneously reducing the tractions along the Tunnel 1 boundary 

from the in-situ values. Figure 5.9 shows the numerically computed change in diameter 

horizontally and vertically (ΔDh,v) as a function of the deconfinement factor λ (Panet, 1995), along 

with the equilibrium point resulting from the axisymmetric analysis of Figure 5.8 (2.3 MPa, 

0.10 m; point A in Fig. 5.9). The small deviation of the actual equilibrium point from the plane 

strain curve is due to the different stress paths (Cantieni and Anagnostou 2009). As it is impossible 

to exactly reproduce both the displacement and the rock pressure with the plane strain model, a 

simplified assumption has to be made to determine the conditions prevailing in the short-term, 

immediately after excavation of Tunnel 1, considering unloading either down to point B1 or to 

point B2. Here, point B2 is considered. 

 
Figure 5.8. Interaction problem, consolidation case: Radial rock pressure distribution along the shield 

and lining of Tunnel 1 during rapid excavation (σ0 = 10 MPa, p0 = 4 MPa, other parameters: 

Table 5.3) 
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Starting from the state at point B2, beam elements representing the Tunnel 1 lining are activated 

in the plane-strain model, the boundary is completely unloaded, and a transient consolidation 

analysis is performed to determine the steady state prevailing long after the construction of Tunnel 

1 and before construction of Tunnel 2. Figure 5.10 shows the pore pressure, effective stress, and 

total stress distributions along the horizontal y-axis, which allow drawing the following 

conclusions: The drainage action of Tunnel 1 is evident in an extended zone; the pore pressure 

relief is significant, even at long distances from Tunnel 1 (note the decrease to 50% at a distance 

of 50 m). The total stresses decrease in general only slightly, except for the immediate vicinity of 

Tunnel 1 where the ground yields plastically (left of point P in Fig. 5.10). Due to the combination 

of the above, the effective stresses increase, which – as explained in the Introduction of the present 

chapter – is expected to have a favourable effect, since it increases the undrained shear strength. 

The stress-fields are neither uniform nor hydrostatic, which raises the question of whether an 

axisymmetric model (Fig. 4.1b of the previous chapter) is adequate for simulating the Tunnel 2 

excavation.  

Figure 5.9. Interaction problem, consolidation case: Relationship between change in diameter ΔDh,v and 

deconfinement factor λ, resulting from the simulation of the Tunnel 1 excavation as a plane-

strain, undrained cavity unloading problem (σ0 = 10 MPa, p0 = 4 MPa, other parameters: 

Table 5.3) 



Chapter 5 114

 
Figure 5.10. Interaction problem, consolidation case: Stress- and pore pressure distribution along the y-

axis, long after construction of Tunnel 1 (steady state) but before construction of Tunnel 2, 

resulting from the Tunnel 1 simulation as a plane-strain problem (σ0 = 10 MPa, p0 = 4 MPa, 

other parameters: Table 5.3) 

In order to check the applicability of such a model, an additional computational step with the 

plane strain model (Fig. 5.7) is performed: starting from the state of Fig. 5.10, the excavation of 

Tunnel 2 is simulated as an undrained cavity unloading problem. The black lines in Figure 5.11a 

show the numerically computed change in diameter horizontally and vertically (ΔDh,v) as a 

function of the deconfinement factor λ for a tunnel spacing of e = 2.5D. The two lines almost 

coincide, which shows that the response nearly obeys rotational symmetry in spite of the non-

uniformity and anisotropy of the stress field prevailing before the Tunnel 2 excavation. The red 

line is the ground response curve (GRC; computed after Anagnostou and Kovári 1993) in the case 

of uniform and isotropic initial pore pressure and stress fields with magnitude equal to that 

prevailing at the centre of Tunnel 2 just before its excavation. The high level of concordance with 

the numerical response curves justifies the use of the axisymmetric model of Figure 4.1b of the 

previous chapter (with the same initial values as the red curve) to determine the thrust force for 

Tunnel 2. (Of course, the adequacy of this simplification would be questionable for smaller 

spacings between the tunnels, where the differences among the aforementioned curves increase; 

Fig. 5.11b.) 
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The use of the axisymmetric model (Fig. 4.1b of the previous chapter), with the initial conditions 

described above, provides the rock pressure distribution along the shield and finally the thrust 

force required to overcome shield skin friction. Figure 5.12 shows the rock pressure distribution 

in Tunnel 1 (according to Fig. 5.8) as well as in Tunnel 2 for various spacings e. The comparison 

of the rock pressure in the two tunnels reflects the very favourable effect of the drainage-induced 

consolidation in the vicinity of Tunnel 2. This is also reflected in the pronouncedly reduced thrust 

force of Tunnel 2 compared to Tunnel 1, as shown in Figure 5.13; it is remarkable that the Tunnel 

2 thrust force is about 50% less even if the spacing of the tunnels is as wide as 5 diameters. 

Figure 5.11. Interaction problem, consolidation case: Relationship between convergence ΔDh,v and 

deconfinement factor λ, resulting from the simulation of the Tunnel 2 excavation as a plane-

strain undrained cavity unloading problem for, (a), e/D = 2.5 or, (b), e/D = 1 (σ0 = 10 MPa, 

p0 = 4 MPa, other parameters: Table 5.3) 
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Figure 5.12. Interaction problem, consolidation case: Radial rock pressure distribution along the shield of 

Tunnel 1 and Tunnel 2 during rapid excavation according to axisymmetric computations with 

homogeneous and isotropic initial stress and pore pressure fields considering for Tunnel 1 

the in-situ stress and pore pressure field and for Tunnel 2 the values prevailing at the center 

of Tunnel 2 according to the results (Fig. 5.10) of the plane-strain analysis of the Tunnel 1 

(parameters: Table 5.3) 

Figure 5.13. Interaction problem, consolidation case: Required thrust force as a function of the distance 

between the tunnels (parameters: Table 5.3) 
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5.3.2 Results for the creep case 

Same as in the consolidation case, the computations start with the axisymmetric analysis of 

Tunnel 1, which provides the longitudinal stress distributions on the shield and lining, as well as 

and the equilibrium point of the rock. This is shown in Figure 5.14 for the reference case 

(σ0 = 10 MPa and ΔR = 0.05 m; black lines), as well as for an extreme squeezing case with large 

overcut (σ0 = 40 MPa and ΔR = 0.15 m; red lines); the latter is considered to demonstrate later 

that the effect of Tunnel 1 on Tunnel 2 is negligible even under such extremely unfavourable 

conditions. 

Figure 5.15 shows, analogously to Figure 5.9, the results of the simulation of the Tunnel 1 

excavation with the plane-strain model (Fig. 5.7), along with the equilibrium points resulting from 

the axisymmetric analysis (points A). The deviations of the equilibrium points from the respective 

plane-strain curves are due to the stress-path dependency of the ground response, as mentioned 

above, and are expectedly greater in this case than in Figure 5.9, due to the more pronounced 

ground plastification. The Tunnel 1 excavation is again simulated considering an unloading of its 

boundary down to point B2 followed by an installation of the lining.  

As the response is effectively time-independent in this case, the stresses at the state corresponding 

to point B2 are also those prevailing prior to excavation of Tunnel 2. Figure 5.16 shows the stress 

distributions along the horizontal y-axis. Again, a significant drop in the stresses can be observed 

only inside the plastic zone, which is limited – even in the extreme squeezing and large overcut 

case – to the close vicinity of Tunnel 1 (left of the points P1 and P2 in Fig. 5.16). As is well-known 

(Kirsch 1898), outside the plastic zone the mean stress remains constant and equal to the in-situ 

stress σ0, while the anisotropy of the stress field decreases with increasing distance from Tunnel 1. 

This non-uniform, anisotropic stress state is the initial state to be considered in the analysis of the 

Tunnel 2 excavation.  

The adequacy of an axisymmetric model (Fig. 4.1b of the previous chapter) for this purpose is 

assessed again by simulating the Tunnel 2 cavity unloading using the plane-strain model 

(Fig. 5.7). Figure 5.17a shows the numerically computed changes in diameter horizontally and 

vertically (ΔDh,v) as a function of the deconfinement factor λ (black lines), as well as the 

analytically determined GRC (red lines); the latter assumes rotational symmetry and considers 

the average stress at the Tunnel 2 centre as initial condition, which is the in-situ stress σ0. The 

numerically computed curves and the GRC almost coincide, which means that the cavity response 

is practically rotationally symmetric in spite of the anisotropy and non-uniformity of the stress 

field. Therefore, the thrust force of Tunnel 2 can be computed with the axisymmetric model (Fig. 

4.1b of the previous chapter); as the initial stress to be considered is equal to the in-situ stress, the 

Tunnel 2 thrust force is equal to that of Tunnel 1. 

In conclusion, the construction of Tunnel 1 does not have a relevant effect on the Tunnel 2 thrust 

force for the considered spacing of e = 2.5 D, and this lack of relevant interaction can be observed 

also in the extreme squeezing and large overcut case (Fig. 5.17b). The difference to the 

consolidation case is remarkable – at a spacing of 2.5 D or even greater, the interaction in the 

consolidation case leads to a reduction of the Tunnel 2 thrust force by 40 – 80% (Fig. 5.13). 
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Figure 5.14. Interaction problem, creep case: Radial rock pressure distribution along the shield and lining 

of Tunnel 1 during extremely slow excavation, allowing steady state to be reached practically 

simultaneously with the advance of the TBM (parameters: Table 5.3) 

Figure 5.15. Interaction problem, creep case: Relationship between convergence ΔDh,v and deconfinement 

factor λ, resulting from the simulation of the Tunnel 1 excavation as a plane-strain, time-

independent cavity unloading problem (parameters: Table 5.3) 
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Figure 5.16. Interaction problem, creep case: Stress distribution along the y-axis, after construction of 

Tunnel 1 but before construction of Tunnel 2, resulting from the Tunnel 1 simulation as a 

plane-strain problem (parameters: Table 5.3) 
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Figure 5.17. Interaction problem, creep case: Relationship between convergence ΔDh,v and deconfinement 

factor λ, resulting from the simulation of the excavation of Tunnel 2 as a plane-strain, 2D or 

1D undrained cavity unloading problem (other parameters: Table 5.3) 
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5.4 Conclusions 

This chapter addressed two practical aspects relevant in tunnel construction related to the effect 

of the tunnel diameter (scale effect) and the interaction between adjacent, sequentially excavated 

tunnels, placing specific focus on the risk of shield jamming. These investigations are valuable in 

relation to the applicability of experiences in situations arising in practice.  

The investigations into the scale effect examined first the time-development of the convergences 

of an unsupported opening, demonstrating that this is independent of the tunnel diameter in the 

case of creep, while in the case of consolidation the convergence rate is inversely proportional to 

the square of the tunnel diameter, which means that convergences develop slower in larger 

tunnels. The latter is directly analogous to the well-known quadratic dependency between 

consolidation time and length of the drainage path in Terzaghi’s 1D consolidation theory, but it 

holds only if there is only one significant geometric parameter, the tunnel diameter. Otherwise, 

e.g. when tunnelling through a confined aquitard, the consolidation rate may be much lower than

indicated by consolidation theory.

Subsequently, the more complex problem of rock, TBM and tunnel support interaction was 

examined, with focus on the risk of shield jamming during advance and during restart after a 

construction standstill. The mechanisms underlying the scale effect in this case have been shown 

to be far more complex than indicated by consolidation theory, due to the different influence of 

and the technical limitations posed on several TBM parameters. The investigations demonstrated 

that a larger diameter is more favourable than a smaller one in poor quality ground with time-

independent behaviour, while the opposite is true in the case of better quality ground, creep or 

consolidation. This scale effect is slightly more pronounced in the case of creep than in the case 

of consolidation. 

The investigations into the tunnel interaction demonstrated vastly different effects in creep and 

consolidation, resulting from the fundamentally different nature of the purely mechanical 

rheological and the coupled hydromechanical consolidation processes.  

In the case of creep, the interaction is governed by the stress redistributions and plastic yielding 

caused by the excavation of the first tunnel. These are limited within a narrow zone, since the 

construction equipement in mechanised tunnelling does not allow for large ground deformations 

to occur. The interaction has therefore been shown to be generally minor, even under extreme 

squeezing conditions and for an unusually large overcut.  

In the case of consolidation, the drainage action of the first tunnel causes pore pressures relief and 

an increase in the effective stresses and undrained shear strength in the surrounding ground; this 

influence is analogous to that of advanced drainage and generates substantially more favourable 

conditions for the second tunnel, while it has also been shown to extend over a much larger zone 

compared to creep. This favourable influence of consolidation results in a dramatically reduced 

thrust force, a remarkable difference in relation to creep.
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6 Conclusions and outlook 

6.1 Conclusions of the present thesis 

The present thesis aims to bridge the following knowledge gaps concerning the effect of creep on 

the interaction between TBM, lining and rock: 

 The conclusions of existing studies in the literature concerning the effect of creep are

mostly limited to specific tunnel projects.

 The assumption of a continuous simulation of the TBM advance may lead to an

underestimation of the required thrust force to overcome shield-ground friction,

important for assessing the risk of shield jamming.

 Fundamental differences in the phenomenological ground behaviour of a creeping and

consolidating ground have not been addressed thus far in literature and could help

distinguish creep from consolidation in practical situations.

 The influence of the tunnel size on the risk of shield jamming.

 The influence of an adjacent tunnel on the risk of shield jamming.

Thus, based on the aforementioned knowledge gaps the present thesis shows that:  

 The effect of creep is not always favourable for shield jamming during advance, as

usually assumed in literature, and is always unfavourable during standstills which is due

to a paradox that has to do with the interplay of two counter-acting effects: on the one

hand creep limits the ground convergences around the shield during excavation, which

reduces the rock pressure acting upon it, but on the other hand it leads to less stress relief

of the ground ahead of the tunnel face, which results in increased load transferring to the

shield. Moreover, it has shown that creep is always unfavourable for the lining, as

viscosity reduces plastic deformations in the vicinity of the tunnel face and hence greater

plastic develop over time, which are constrained by the lining, thus increasing the

pressure acting upon it.

 Simulations which consider a continuous excavation with the gross advance rate are

adequate only where standstills are very short (error smaller than 10% compared to a

simulation which simulates them, e.g. standstills for lining erection during the stop-and-

go shield tunnelling process), but otherwise underestimate the shield loading, even in
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cases of regular inspection and maintenance standstills lasting only a few hours. The 

present thesis presents a novel semi-discrete approach which smears only the standstills 

due to lining installation and has an error in comparison to the simulation of the actual 

TBM excavation – consisting of short regular standstills to install the lining and longer 

maintenance standstills – of maximum 10% if a maintenance standstill is not considered 

and within 20% otherwise, provided that the normalised net advance rate η vN /E/R lie 

outside the range 1 – 10. Moreover, this thesis provides an equation (metamodel) to 

quickly assess the risk of shield jamming in creeping ground which bases on existing 

design nomograms of a time-independent ground and transient numerical simulations 

considering creep. 

 It is not possible to distinguish creep from consolidation in tunnel practice despite of 

some important differences: (i) consistently more extensive plastic yielding in the case of 

consolidation because the ground partially plastified immediately upon excavation under 

undrained conditions, but remaining practically elastic in the case of creep; and (ii) 

destabilising effect of the seepage forces in the case of consolidation, which does not exist 

in the case of creep and may be critical for shield and cutterhead jamming and is in 

addition partially the reason why consistently more plastic yielding occur in the case of 

consolidation compared to creep. (iii) time-development of the displacements in an 

unsupported opening are independent of the tunnel size in creeping ground, but 

proportional to the square of the tunnel radius in consolidating ground; in the latter case, 

however, the consolidation rate may also be much lower in cases where the geological 

setting poses limitations on the size of the seepage flow domain, as this may result in 

increased pore pressure gradients (seepage forces) that induce more extensive 

plastification. Moreover, numerical simulations indicate several qualitative similarities 

between the two mechanisms of time-dependency of the ground behaviour, in respect of: 

(i) the time-development of the unsupported tunnel boundary displacement between 

tunnel excavation and steady state conditions; (ii) the dependency of shield loading 

during excavation on the advance rate of the TBM, which also indicates a similar counter-

intuitive behaviour of increasing shield loading with faster advance under certain 

conditions investigated for creep in the present thesis and for consolidation by Ramoni 

and Anagnostou 2011b; and, (iii) the increase in the rock pressure on the static shield 

during construction standstills, due to the manifestation of additional ground 

deformations over time. 

 A larger tunnel radius is always unfavourable for the risk of shield jamming both during 

excavation and standstill in a creeping and consolidating ground and the effect of size 

being slightly more pronounced in the former case. The present thesis has also shown that 

in the case of time-independent ground behaviour a larger radius is always more 

favourable in weak ground, while the opposite holds in better ground.  

 The effect of an adjacent tunnel on shield jamming is by far more pronounced and 

favourable in the case of consolidating ground which can lead to a remarkable reduction 

in the required thrust force to overcome the risk of shield jamming by 40 – 80%  compared 

to the case without the adjacent tunnel. This because the excavation of the first tunnel 

relives the pore pressures and increases the effective stresses and the shear strength in the 
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surrounding ground, and thus being analogous to advance drainage. On the other hand, 

in the case of creep the interaction is unfavourable for the shield loading, due to the 

plastified zone that occurs because of the stress redistribution. Although, this effect is 

usually minor as the tunnel lays outside the plastified zone as it is usually a narrow zone. 

6.2 Implications on practice 

The present thesis provides implications on tunnel practice, which are discussed hereafter: 

 If time-dependent effects can be attributed to the rheology of the material (creep), then

the developed design aids can give a first indication of a possible risk of shield jamming

thus without the need of performing computational analyses. However, in cases of very

low normalised rock pressure the developed design aids are inapplicable and thus

numerical TBM simulations must be performed. Moreover, in cases in which no field

data is available for determining the viscosity of the ground, results for the whole

viscosity range can be considered and used as a basis for the risk assessment of shield

jamming. As the thesis has shown these results may be higher than one determined

without taking creep into account, due to the counter-intuitive effect seen in Chapter 2.

 The present thesis has shown that it is not possible to distinguish creep from consolidation

in tunnel practice. This implies that the influence of time effects (creep and consolidation)

on the interaction between TBM, lining and rock cannot be excluded before tunnel

construction and if a significant effect of one of the two time-effect can be proven (e.g.

via laboratory test and numerical simulations), then its effect must be taken into account

in the planning phase as well as during construction.

 It has shown that a bigger tunnel size can be favourable in a time-independent ground

under weak ground conditions. However the opposite has been shown in the case of a

time-dependent ground. Thus, this implies that experience gathered alone from a firstly

excavated pilot tunnel are not useful for a secondly excavated bigger diameter tunnel if

these experiences are not coupled with laboratory test and numerical simulations that

quantify the effect of creep or consolidation and advance explorations of the

hydrogeological conditions of the project site.

 It has also shown that the interaction of an adjacent tunnel on the risk of shield jamming

is highly influenced by the mechanism of time dependence. If time dependence is given

by consolidation, its effect is remarkably favourable for the risk of shield jamming

whereas if it is creep it might even be unfavourable if the tunnel is too close to the adjacent

tunnel. Thus, this implies, as the previous implication, that laboratory test and numerical

simulations are indispensable for determining which of the two time effects mainly

govern the ground behaviour coupled with advance exploration of the hydrogeological

conditions of the project site. However, this also means that experience gathered from the

first tunnel is useful for the construction of the adjacent second tunnel.
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6.3 Outlook 

The following questions still remain “open” given for each chapter. 

Chapter 2 has developed a simple constitutive model, which enables considering the effect of 
creep with a single additional parameter, the viscosity. Considering this simple constitutive model 
Chapter 3 provides a simple tool to assess the risk of shield jamming in a creeping ground. This 
tool however assumes that the additional parameter, the viscosity, is calibrated considering field 
data (using another tool developed in Chapter 2). If field data is unavailable, one possibility is to 
consider the full range of viscosities, which has been shown to lead to even higher pressures over 
the shield than in the case of a time-independent ground, due to the counter-intuitive effect 
discussed in Chapter 2. Another possibility is calibration via laboratory test. However, this 
requires that, (i), it is possible to distinguish creep from consolidation, which is difficult in a 
saturated rock with low permeability and, (ii), the laboratory results are transferable to the scale 
of the tunnel cross-section (scale effect). 

Chapter 4 has shown that it is not possible to distinguish creep from consolidation practically. 
Thus, in the case both mechanisms are relevant, the influence of their combined effect on the risk 
of shield jamming is worth investigating, as it has not been studied until now.  

Moreover, Chapter 4 has pointed out a major difference between creeping and consolidating 
ground, the destabilising effect of seepage forces in the latter case, which is particularly relevant 
for the tunnel face and does not exist in the case of creep. However, in the case of creep softening 
effects that destabilise the tunnel face may occur, too, related to tertiary creep behaviour, which 
is characterised by a progressively increasing strain rate. Their influence on the face stability and 
stand-up time of the face are relevant to investigate only if large deformations at the tunnel face 
can develop. In the case of mechanised tunnelling, however, tunnel face deformations are limited 
by the cutterhead. Thus, these softening effects are of secondary importance.  

Except the cited differences (see points above) Chapter 4 has also shown fundamental similarities 
of the two time effects, in particular on the distribution of the shield and lining loads during 
excavation but also during a standstill, as well as showing similar counter-intuitive behaviour. 
Thus, the question arises whether it is possible to describe the influence of consolidation on the 
risk of shield jamming via equivalent creep parameters and thus being able to use the developed 
tool for assessing the risk of shield jamming in a creeping ground given in Chapter 3 also for the 
case of a consolidating ground.  

Chapter 5 investigated the effect of a firstly built tunnel on a parallel tunnel constructed later 
under the same ground conditions in the case of creep and consolidation, placing focus on the 
shield loading and the risk of shield jamming. It remains yet to be assessed how the first tunnel 
affects the lining of the second one and vice versa. 

Moreover, Chapter 5 has only considered the case in which the first tunnel has been completed 
and steady state conditions prevail before excavating the second parallel tunnel. Thus, in more 
general context, interesting are also intermediate cases, where two tunnel are constructed 
simultaneously, or one shortly after the other. Therefore, it might be interesting to consider this 
in the context of further investigations. 
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Appendix A. Constitutive model formulation and 
implementation in Abaqus® 

This Appendix presents the formulation and implementation of the adopted constitutive model as 

a user-defined material subroutine (UMAT) in Abaqus® (Dassault Systèmes, 2018). For the 

general 3D case, the effective stress and strain vectors are denoted as ͠σ = {σxx σyy σzz τxy σyz σzx} 

and ͠ε = {εxx εyy εzz γxy γyz γzx}, respectively, in the material local coordinate system (x,y,z), and as 

σ = {σ1 σ2 σ3 0 0 0} and ε = {ε1 ε2 ε3 0 0 0} in the principal coordinate system, where the ordering 

σ1 ≥ σ2 ≥ σ3 is assumed. The geomechanics sign convention is adopted (compressive 

stresses/strains positive). All quantities are functions of time, and their derivatives with respect to 

time, henceforth referred to as rates or increments, are denoted with an upper dot symbol “ ̇ ”.  

Elastic constitutive relationship 

The linear elastic constitutive relationship is expressed in terms of the stress rate σ  and the elastic

strain rate elε  in the principal coordinate system as 

el elσ D ε  , (A.1) 

where elD  is Hooke’s constant elastic stiffness matrix. 

Yield condition 

The MC yield condition is expressed in the principal stress space as 

 1 1 3 0cf m f    σ , (A.2)

where m is the yield surface slope in the principal stress plane σ1-σ3 and fc the uniaxial compressive 

strength, which are functions of the friction angle ϕ and the cohesion c: 

1 sin

1 sin
m








, (A.3) 
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The yield condition (Eq. A.2) geometrically represents a plane of the pyramidal MC yield surface, 

where the ordering σ1 ≥ σ2 ≥ σ3 holds. Along its lines of intersection with the adjacent planes, the 

following yield condition must be considered additionally in the case of triaxial compression 

σ1 ≥ σ2 =σ3: 

  2 1 2 0cf m f    σ , (A.5) 

and the following in the case of triaxial extension σ1 = σ2 ≥ σ3: 

  3 2 3 0cf m f    σ . (A.6) 

The point of intersection of all three planes (MC yield surface apex), where the stress state is 

purely tensile in cohesive geomaterials, is not considered herein, as it is not relevant for the 

investigated tunnel boundary value problems. 

Consistency condition 

The rate of change of the yield functions is given by the following expression: 

   T
i if n   , (A.7) 

where ni = dfi /dσ is the normal vector to the yield surface fi. In classic plasticity theory the stress 

state upon yielding remains on the yield surface, and hence the rate in Eq. A.7 must be zero to 

ensure that the stress increments σ  are tangent to the surface boundary. In the framework of 

overstress theory (Perzyna, 1966), however, viscoplastic deformations occur for stress states lying 

on or outside the yield surface (fi (σ) ≥ 0), which means that σ  is not strictly tangent but may also 

be oriented outwards from the yield surface, and, in turn, f  in Eq. A.7 is generally non-zero.  

Strain decomposition and viscoplastic flow rule 

The total strain rate can be decomposed into elastic and viscoplastic counterparts: 

 el vp ε ε ε   , (A.8) 

where the elastic counterpart elε  obeys Hooke’s constitutive relationship in Eq. A.1, and the 

viscoplastic counterpart vpε  is obtained from the flow rule. A non-associated flow rule is 

considered, which adopts Koiter’s (1953) generalisation for plastic flow along an edge of the yield 

surface: 
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In the above expression ri = dgi /dσ are the normal vectors to the plastic potential surfaces gi that 

correspond to the yield surfaces fi (Eqs. A.2, A.5, A.6): 

 1 1 3g   σ , (A.10)

 2 1 2g   σ , (A.11)

 3 2 3g   σ , (A.12)

where κ denotes the dilatancy constant: 

1 sin

1 sin








, (A.13)

and vp
i  are the viscoplastic multipliers after Perzyna’s theory, which are considered analogously 

to Zienkiewicz et al. (1975): 

 vp i
i

f



 σ . (A.14)

Using Eq. A.14, Eq. A.7 can be written as follows (Heeres et al., 2002): 

T 0vp
i i  n σ  , (A.15)

which evidently reduces to the consistency equation of classic plasticity theory for η = 0. 

Stress integration 

The MC-Perzyna model was implemented in Abaqus® (Dassault Systèmes, 2018) as a user-

defined material subroutine (UMAT). At a given iteration j+1, the UMAT: (i) receives as input 

the stress state ͠σj of the previous iteration and the updated strain increment Δ ͠εj+1 in the local 

coordinate system; (ii) transforms them into the principal coordinate system as σj and Δεj+1; (iii) 

determines the updated stress state σj+1 and assembles the viscoplastic tangent stiffness matrix Dvp 

= dσ/dε in the principal coordinate system, based upon the constitutive equations presented above; 

and, (iv), returns as output the back-transformed from the principal to the local coordinate 

system ͠σj+1 and vpD . The assembly and return of vpD  ensures quadratic convergence of the 

numerical solution algorithm. The algorithmic treatment of the model formulation equations in a 

discrete form is identical to the one described in Section 4.2 of Heeres et al. (2002); the only 

difference is that the implicit scheme degenerates into an explicit scheme in the present case, due 

to the planar geometry of the MC yield surface, which enables all quantities to be directly 

evaluated at the beginning of the iteration.
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Appendix B. Constitutive model MC-Perzyna 

In this Appendix the code of the constitutive model MC-Perzyna is given. Firstly, an overview of 

the general processes in the subroutine is given via a flowchart in Figure B.1. 

Figure B.1. Flowchart of the general processes in an Abaqus® subroutine (also called UMAT) 
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!The subroutine UMAT is given herein which gives as input the stress and strain 
increment.  
 
      SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD, 
     1 RPL,DDSDDT,DRPLDE,DRPLDT, 
     2 STRAN,DSTRAN,TIME,DTIME,TEMP,DTEMP,PREDEF,DPRED,CMNAME, 
     3 NDI,NSHR,NTENS,NSTATV,PROPS,NPROPS,COORDS,DROT,PNEWDT, 
     4 CELENT,DFGRD0,DFGRD1,NOEL,NPT,LAYER,KSPT,KSTEP,KINC) 
 
!Declaration of arrays needed for the computation 
 
      INCLUDE 'ABA_PARAM.INC' 
 
      CHARACTER*80 CMNAME 
      REAL(8) STRESS(NTENS),STATEV(NSTATV), 
     1 DDSDDE(NTENS,NTENS), 
     2 DDSDDT(NTENS),DRPLDE(NTENS), 
     3 STRAN(NTENS),DSTRAN(NTENS),TIME(2),PREDEF(1),DPRED(1), 
     4 PROPS(NPROPS),COORDS(3),DROT(3,3),DFGRD0(3,3),DFGRD1(3,3) 
 
      REAL(8), PARAMETER :: PI = 3.1415926535897932384626433832795_8 
      REAL(8) EMOD,NU,LAMBDA,MU,COH,PHI,PSI,K_PHI,M_PSI 
      REAL(8) D_STIFF_INV(4,4),D_STIFF(4,4) 
      REAL(8) S_SB(4), STRESSN(3,3), SS(3),LAMBDA_IJ(3,3) 
      REAL(8) F_YIELD(6),GRAD_F_YIELD(3,6),P_PSI(6),GRAD_P_PSI(3,6) 
      REAL(8) S_C(3) 
      REAL(8) T1_MOD(6),T2_MOD(6) 
      INTEGER(4) region, COUNT,ATTIVA_ADESSO 
      INTEGER(4) ATTIVA_ADESSO_PLANE1,ATTIVA_ADESSO_PLANE2,REGG(6) 
      INTEGER(4) OK,COUNT_T, SEGNO_APEX 
      REAL(8) LAMBDA_IJ_T(3,3) 
      REAL(8) STRESSN_PRINC(3,3) 
      REAL(8) STRESSN_0(3,3),STRESSN_1(3,3) 
      REAL(8) SS_0(3),LAMBDA_IJ_0(3,3) 
      REAL(8) DD_EP(4,4),DD_EPC(4,4),T_MAT(4,4),DD_EPC_0(4,4) 
      REAL(8) D_EP_LINE1(4,4) 
      REAL(8) G_STIFF(4,4),AA_4(4,4),AA_4_T(4,4),BETA 
      REAL(8) D_EP_LINE_CORR(4,4) 
      REAL(8) ETA_SUB,DTIME_SUB 
      REAL(8) VAR_1, DELTA_LAMBDA, ALPHA, DD_EP_APEX(4,4) 
       
 
!Initial definition of the material constants 
 
       DELTA_LAMBDA = 0.0_8 
       
      DTIME_SUB=DTIME 
       
      region=0 
      EMOD=PROPS(1) 
      NU=PROPS(2) 
      LAMBDA=NU*EMOD/(1.0_8+NU)/(1.0_8‐2.0_8*NU)  
      MU=EMOD/2.0_8/(1.0_8+NU)  
      COH=PROPS(3)  
      PHI=PROPS(4)*pi/180.0_8 
      PSI=PROPS(5)*pi/180.0_8  
      ETA_SUB=PROPS(6)  
      K_PHI=(1.0_8+SIN(PHI))/(1.0_8‐SIN(PHI)) 
      M_PSI=(1.0_8+SIN(PSI))/(1.0_8‐SIN(PSI)) 
      BETA=30.0_8 
      ALPHA=70.0_8 
      SEGNO_APEX=0 
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      D_STIFF_INV(1,:)=(/1.0_8/EMOD,‐NU/EMOD,‐NU/EMOD,0.0_8/) 
      D_STIFF_INV(2,:)=(/‐NU/EMOD,1.0_8/EMOD,‐NU/EMOD,0.0_8/) 
      D_STIFF_INV(3,:)=(/‐NU/EMOD,‐NU/EMOD,1.0_8/EMOD,0.0_8/) 
      D_STIFF_INV(4,:)=(/0.0_8,0.0_8,0.0_8,2.0_8*(1.0_8+NU)/EMOD/) 
 
      D_STIFF(1,:)=(/LAMBDA+2.0_8*MU,LAMBDA,LAMBDA,0.0_8 /) 
      D_STIFF(2,:)=(/LAMBDA,LAMBDA+2.0_8*MU,LAMBDA,0.0_8 /) 
      D_STIFF(3,:)=(/LAMBDA,LAMBDA,LAMBDA+2.0_8*MU,0.0_8 /) 
      D_STIFF(4,:)=(/ 0.0_8 , 0.0_8 , 0.0_8 , MU /) 
 
      G_STIFF=0.0_8 
 
      G_STIFF(4,4)=EMOD/2.0_8/(1.d0+NU) 
 
!Elastic stress update 
      S_SB=STRESS+MATMUL(D_STIFF,DSTRAN) 
       
!Transform stress from local coordinates to the principal coordinate system 
      STRESSN=0.0_8 
      STRESSN(1,1)=S_SB(1) 
      STRESSN(1,2)=S_SB(4) 
      STRESSN(2,1)=S_SB(4) 
      STRESSN(2,2)=S_SB(2) 
      STRESSN(3,3)=S_SB(3) 
        
       call Jacobi(STRESSN,LAMBDA_IJ_0,1.0e‐012_8,3,STRESSN_PRINC) 
 
       SS_0(1)=STRESSN_PRINC(1,1) 
       SS_0(2)=STRESSN_PRINC(2,2) 
       SS_0(3)=STRESSN_PRINC(3,3) 
 
      CALL PRINT_DIR(SS_0,LAMBDA_IJ_0,SS,LAMBDA_IJ,PROBLEMA) 
 
! Computes the values of the yield condition as well as its derivative and the 
position of the updated elastic stress on the yield surface, i.e. whether the 
stress state lays on the plane, line or apex with the vector REGG 
 
      CALL FAILURE_SURFACE(COH,PHI,K_PHI,SS,F_YIELD,GRAD_F_YIELD) 
       
      CALL FAILURE_SURFACE(0.0_8,PSI,M_PSI,SS,P_PSI,GRAD_P_PSI) 
       
      CALL STRESS_POSITION(K_PHI,M_PSI,COH,F_YIELD,SS,D_STIFF 
     1,D_STIFF_INV,REGG,T1_MOD,T2_MOD) 
      
! Checks whether the position of the stress state lays by error outside the 
plane, lines in which the ordering of stresses is Sig1 >= Sig2 >= Sig3 
      if (REGG(1)>3) THEN  
!      READ(*,*) VAR1 
      SEGNO_APEX=1 
      END IF 
 
! If the SUM of the variable REGG is 0 then the stress is on the elastic surface. 
        IF (SUM(REGG)==0) then 
        F_YIELD(1)=‐1.0_8 
        F_YIELD(2)=‐1.0_8 
        F_YIELD(3)=‐1.0_8 
        F_YIELD(4)=‐1.0_8 
        F_YIELD(5)=‐1.0_8 
        F_YIELD(6)=‐1.0_8 
        end if 
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! Checks whether the stress state is elastic or viscoplastic, if it is elastic 
returns the elastic stress to the UMAT. If it is viscoplastic then computes the 
updated viscoplastic stress. 
 
      IF (MAXVAL(F_YIELD)<=0.0_8) THEN 
      STRESS=S_SB 
      DDSDDE=D_STIFF 
      ELSE 
 
      region=1 
       
! Calculates the coordinate transformation matrix in order to transform the 
stresses from principal coordinates into local coordinates 
      CALL COORD_TRANS_MATRIX(LAMBDA_IJ,SS,S_SB,AA_4) 
 
! Checks the position of the stress with the vector REGG 
 
      ATTIVA_ADESSO=0 
      ATTIVA_ADESSO_PLANE1=0 
      ATTIVA_ADESSO_PLANE2=0 
      COUNT=1 
      OK=1 
       
      IF (SEGNO_APEX==0) THEN 
      DO WHILE (COUNT<7 .AND. OK==1) 
       
      IF (COUNT<6) THEN 
       
      IF (REGG(COUNT)==1) THEN 
      !PLANE 
      OK=0 
      ATTIVA_ADESSO=COUNT 
      COUNT_T=COUNT 
      ELSE IF (REGG(COUNT+1)==3 .AND. REGG(COUNT)==2) THEN 
      OK=0 
      ATTIVA_ADESSO_PLANE1=COUNT 
      ATTIVA_ADESSO_PLANE2=COUNT+1 
      COUNT_T=COUNT 
      END IF 
       
      ELSE 
       
      IF (REGG(6)==1) THEN 
      !PLANE 
      OK=0 
      ATTIVA_ADESSO=COUNT 
      ELSE IF (REGG(1)==3 .AND. REGG(6)==2) THEN 
      OK=0 
      ATTIVA_ADESSO_PLANE1=6 
      ATTIVA_ADESSO_PLANE2=1 
      END IF 
       
      END IF 
       
      COUNT=COUNT+1 
      END DO 
      ELSE 
      ATTIVA_ADESSO=1 
      END IF 
 
! If ATTIVA_ADESSO is equal to zero than the stress state lays on the line, if it 
is different then zero then it lays on the plane. 
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      IF (ATTIVA_ADESSO==0) THEN !LINE 
!     read(*,*) VAR_1 
      CALL RETURN_TO_LINE(ETA_SUB,DTIME_SUB,ATTIVA_ADESSO_PLANE1 
     1,ATTIVA_ADESSO_PLANE2,F_YIELD,SS,GRAD_F_YIELD,GRAD_P_PSI 
     1,D_STIFF,S_C,D_EP_LINE1,DELTA_LAMBDA) 
       
      IF (DOT_PRODUCT(SS‐S_C,SS‐S_C) 
     1>0.0_8)then 
       CALL D_EP_ON_LINE_CORRECTION_FACTOR(SS,S_C 
     1,K_PHI,M_PSI,ATTIVA_ADESSO_PLANE1,ATTIVA_ADESSO_PLANE2,D_STIFF 
     1,D_STIFF_INV,D_EP_LINE_CORR) 
      DD_EP=0.0_8 
      DD_EP(1:3,1:3)=D_EP_LINE1(1:3,1:3)+D_EP_LINE_CORR(1:3,1:3)/BETA 
      DD_EP(4,4)=D_EP_LINE1(4,4) 
      ELSE 
      DD_EP=D_EP_LINE1 
      END IF 
       
      ELSE !PLANE 
       
      CALL RETURN_TO_PLANE(ETA_SUB,DTIME_SUB,ATTIVA_ADESSO,F_YIELD,SS 
     1,GRAD_F_YIELD,GRAD_P_PSI,D_STIFF,S_C,DD_EP,DELTA_LAMBDA) 
       
      IF (SEGNO_APEX==1) THEN !APEX 
      DD_EP_APEX=0.0_8 
      DD_EP_APEX(1:3,1:3)=DD_EP(1:3,1:3)/ALPHA 
      DD_EP_APEX(4:4,4:4)=D_STIFF(4:4,4:4)/ALPHA 
      DD_EP=DD_EP_APEX 
      S_C=2.0_8*COH*SQRT(K_PHI)/(K_PHI‐1.0_8) 
      END IF 
       
      END IF 
       
! Modification matrix needed for the computation of the consistent constitutive 
matrix defined for 2D analysis after Chapter B.2 of Appendix B of Clausen et al. 
(2007) 
 
      CALL TRANSFORMATION_MATRIX(S_C,SS,S_SB,T_MAT) 
 
! Calculation of the consistent constitutive matrix consistent with the Newton‐
Raphson equilibrium iterations see Chapter 3.2 of Clausen (2007). 
 
      DD_EPC=MATMUL(T_MAT,DD_EP) 
      AA_4_T=TRANSPOSE(AA_4) 
      DD_EPC_0=MATMUL(AA_4_T,DD_EPC) 
      DDSDDE=MATMUL(DD_EPC_0,AA_4) 
 
! Transformation of the stress from principal coordinates to local coordinates 
 
      STRESSN=0.0_8 
      STRESSN(1,1)=S_C(1) 
      STRESSN(2,2)=S_C(2) 
      STRESSN(3,3)=S_C(3) 
       
      LAMBDA_IJ_T=TRANSPOSE(LAMBDA_IJ) 
      STRESSN_0=MATMUL(STRESSN,LAMBDA_IJ_T) 
      STRESSN_1=MATMUL(LAMBDA_IJ,STRESSN_0) 
       
      STRESS(1)=STRESSN_1(1,1) 
      STRESS(2)=STRESSN_1(2,2) 
      STRESS(3)=STRESSN_1(3,3) 
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      STRESS(4)=STRESSN_1(1,2) 
 
      END IF 
       
! Transform updated stress into principal stress in order to determine the 
position of stress with respect to the yield condition. 
      STRESSN=0.0_8 
      STRESSN(1,1)=STRESS(1) 
      STRESSN(1,2)=STRESS(4) 
      STRESSN(2,1)=STRESS(4) 
      STRESSN(2,2)=STRESS(2) 
      STRESSN(3,3)=STRESS(3) 
        
       call Jacobi(STRESSN,LAMBDA_IJ_0,1.0e‐012_8,3,STRESSN_PRINC) 
 
       SS_0(1)=STRESSN_PRINC(1,1) 
       SS_0(2)=STRESSN_PRINC(2,2) 
       SS_0(3)=STRESSN_PRINC(3,3) 
 
      CALL PRINT_DIR(SS_0,LAMBDA_IJ_0,SS,LAMBDA_IJ,PROBLEMA) 
 
      if (isnan(STRESS(1))) stop ! STOP IF NAN 
       
      CALL FAILURE_SURFACE(COH,PHI,K_PHI,SS,F_YIELD,GRAD_F_YIELD,F_TENS) 
      STATEV(1) = real(F_YIELD(1),8) !value of the failure surface nr.1 
       
      END SUBROUTINE UMAT 
 
      PURE SUBROUTINE FAILURE_SURFACE(C,PHI,K,S,F,GRAD_F) 
! This subroutine calculates the magnitude of the yield function for a given 
stress. 
 
      IMPLICIT NONE 
      REAL(8), intent(in) :: C,PHI,K 
      REAL(8), intent (in) :: S(3) 
      REAL(8), intent (out) :: F(6),GRAD_F(3,6) 
       
! Magnitude of the yield function  
      F(1)=S(1)*K‐S(3)‐2.0_8*C*cos(PHI)/(1.0_8‐sin(PHI)) 
      F(2)=S(2)*K‐S(3)‐2.0_8*C*cos(PHI)/(1.0_8‐sin(PHI)) 
      F(3)=S(2)*K‐S(1)‐2.0_8*C*cos(PHI)/(1.0_8‐sin(PHI)) 
      F(4)=S(3)*K‐S(1)‐2.0_8*C*cos(PHI)/(1.0_8‐sin(PHI)) 
      F(5)=S(3)*K‐S(2)‐2.0_8*C*cos(PHI)/(1.0_8‐sin(PHI)) 
      F(6)=S(1)*K‐S(2)‐2.0_8*C*cos(PHI)/(1.0_8‐sin(PHI)) 
       
! Computation of the derivatives of the yield function  
      GRAD_F(1,1)=K 
      GRAD_F(2,1)=0.0_8 
      GRAD_F(3,1)=‐1.0_8 
       
      GRAD_F(1,2)=0.0_8 
      GRAD_F(2,2)=K 
      GRAD_F(3,2)=‐1.0_8 
       
      GRAD_F(1,3)=‐1.0_8 
      GRAD_F(2,3)=K 
      GRAD_F(3,3)=0.0_8 
       
      GRAD_F(1,4)=‐1.0_8 
      GRAD_F(2,4)=0.0_8 
      GRAD_F(3,4)=K 
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      GRAD_F(1,5)=0.0_8 
      GRAD_F(2,5)=‐1.0_8 
      GRAD_F(3,5)=K 
       
      GRAD_F(1,6)=K 
      GRAD_F(2,6)=‐1.0_8 
      GRAD_F(3,6)=0.0_8 
       
      END SUBROUTINE FAILURE_SURFACE 
 
 
      PURE SUBROUTINE RETURN_TO_LINE(ETA,DTIME,ATTIVA_ADESSO_PLANE1 
     1,ATTIVA_ADESSO_PLANE2,F,S_PRINC,GRAD_F,GRAD_P,D,S_C,D_EP,DELTA_L) 
! This subroutine calculates the stress return on the line and the elasto‐
viscoplastic constitutive matrix 
 
      IMPLICIT NONE 
      INTEGER(4), intent(in) :: ATTIVA_ADESSO_PLANE1 
     1,ATTIVA_ADESSO_PLANE2 
      REAL(8), intent (in) :: F(6),S_PRINC(3),GRAD_F(3,6),GRAD_P(3,6) 
      REAL(8), intent (in) :: D(4,4),ETA,DTIME 
      REAL(8), intent (out) :: S_C(3),D_EP(4,4),DELTA_L 
 
      REAL(8) D_GRAD_P1(3),D_GRAD_P2(3),GRAD_P_ACTIVE1(3) 
      REAL(8) GRAD_F_ACTIVE1(3),GRAD_P_ACTIVE2(3),GRAD_F_ACTIVE2(3) 
      REAL(8) MU1,MU2,MU3,MU4,DELTA_LAMBDA1,DELTA_LAMBDA2 
      REAL(8) UU,D_GRAD_F1(3),D_GRAD_F2(3),PARTE1(3),PARTE2(3) 
      REAL(8) D_EP0(3,3),D_EP1(3,3) 
      INTEGER(4) II,JJ 
       
      GRAD_F_ACTIVE1=GRAD_F(:,ATTIVA_ADESSO_PLANE1) 
      GRAD_P_ACTIVE1=GRAD_P(:,ATTIVA_ADESSO_PLANE1) 
       
      GRAD_F_ACTIVE2=GRAD_F(:,ATTIVA_ADESSO_PLANE2) 
      GRAD_P_ACTIVE2=GRAD_P(:,ATTIVA_ADESSO_PLANE2) 
       
      D_GRAD_P1=MATMUL(D(1:3,1:3),GRAD_P_ACTIVE1) 
      D_GRAD_P2=MATMUL(D(1:3,1:3),GRAD_P_ACTIVE2) 
       
      D_GRAD_F1=MATMUL(D(1:3,1:3),GRAD_F_ACTIVE1) 
      D_GRAD_F2=MATMUL(D(1:3,1:3),GRAD_F_ACTIVE2) 
       
      MU1=DOT_PRODUCT(GRAD_F_ACTIVE1,D_GRAD_P1) 
      MU2=DOT_PRODUCT(GRAD_F_ACTIVE1,D_GRAD_P2) 
      MU3=DOT_PRODUCT(GRAD_F_ACTIVE2,D_GRAD_P1) 
      MU4=DOT_PRODUCT(GRAD_F_ACTIVE2,D_GRAD_P2) 
       
      DELTA_LAMBDA1=F(ATTIVA_ADESSO_PLANE1)/MU2*(ETA/DTIME+MU4) 
      DELTA_LAMBDA1=DELTA_LAMBDA1‐F(ATTIVA_ADESSO_PLANE2) 
      DELTA_LAMBDA1=DELTA_LAMBDA1 
     1/(‐MU3+(ETA/DTIME+MU1)*(ETA/DTIME+MU4)/MU2) 
       
      DELTA_LAMBDA2=F(ATTIVA_ADESSO_PLANE1) 
      DELTA_LAMBDA2=DELTA_LAMBDA2‐DELTA_LAMBDA1*(ETA/DTIME+MU1) 
      DELTA_LAMBDA2=DELTA_LAMBDA2/MU2 
       
      S_C=S_PRINC‐DELTA_LAMBDA1*D_GRAD_P1‐DELTA_LAMBDA2*D_GRAD_P2 
       
      DELTA_L=DELTA_LAMBDA1+DELTA_LAMBDA2 
       
!!!!!!!D_EP_LINE 
      MU1=MU1+ETA/DTIME 
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      MU4=MU4+ETA/DTIME 
       
      UU=‐MU3*MU2/MU1+MU4 
       
      PARTE1=(D_GRAD_F1*(UU/MU1+MU3*MU2/MU1/MU1)‐D_GRAD_F2*MU2/MU1)/UU 
       
      FORALL(II=1:3,JJ=1:3) D_EP0(II,JJ)=D_GRAD_P1(II)*PARTE1(JJ) 
       
      PARTE2=(D_GRAD_F2‐D_GRAD_F1*MU3/MU1)/UU 
       
      FORALL(II=1:3,JJ=1:3) D_EP1(II,JJ)=D_GRAD_P2(II)*PARTE2(JJ) 
       
      D_EP=0.0_8 
      D_EP(1:3,1:3)=D(1:3,1:3)‐D_EP0‐D_EP1 
      D_EP(4,4)=D(4,4) 
      END SUBROUTINE RETURN_TO_LINE 
 
      PURE SUBROUTINE RETURN_TO_PLANE(ETA,DTIME,ATTIVA_ADESSO,F,S_PRINC 
     1,GRAD_F,GRAD_P,D,S_C,D_EP,DELTA_LAMBDA) 
! This subroutine calculates the stress return on the plane and the elasto‐
viscoplastic stiffness matrix 
 
      IMPLICIT NONE 
      INTEGER(4), intent(in) :: ATTIVA_ADESSO 
      REAL(8), intent (in) :: F(6),S_PRINC(3),GRAD_F(3,6) 
      REAL(8), intent (in) :: GRAD_P(3,6),D(4,4),ETA,DTIME 
      REAL(8),  intent (out) :: S_C(3),D_EP(4,4), DELTA_LAMBDA 
 
      REAL(8) D_GRAD_P(3),DENOM,GRAD_P_ACTIVE(3) 
      REAL(8) GRAD_F_ACTIVE(3),GRAD_F_D(3),NOM_D(3,3),DENOM_D 
      INTEGER(4) II,JJ 
       
      GRAD_F_ACTIVE=GRAD_F(:,ATTIVA_ADESSO) 
      GRAD_P_ACTIVE=GRAD_P(:,ATTIVA_ADESSO) 
       
      D_GRAD_P=MATMUL(D(1:3,1:3),GRAD_P_ACTIVE) 
      DENOM=DOT_PRODUCT(GRAD_F_ACTIVE,D_GRAD_P)+ETA/DTIME 
       
      S_C=S_PRINC‐F(ATTIVA_ADESSO)/DENOM*D_GRAD_P 
       
      DELTA_LAMBDA=F(ATTIVA_ADESSO)/DENOM 
       
      GRAD_F_D=MATMUL(GRAD_F_ACTIVE,D(1:3,1:3)) 
       
      FORALL(II=1:3,JJ=1:3) NOM_D(II,JJ)=D_GRAD_P(II)*GRAD_F_D(JJ) 
      
      DENOM_D=DOT_PRODUCT(GRAD_F_D,GRAD_P_ACTIVE)+ETA/DTIME 
       
      D_EP=0.0_8 
      D_EP(1:3,1:3)=D(1:3,1:3)‐NOM_D/DENOM_D 
      D_EP(4,4)=D(4,4) 
       
      END SUBROUTINE RETURN_TO_PLANE 
 
 
      PURE SUBROUTINE STRESS_POSITION(K,M,C,F,S_B,D,D_INV,REG,T1,T2) 
! This subroutine calculates the position of the stress in the principal stress 
space with respect to the Mohr Coulomb yield condition after Chapter 3.4.1 of 
Clausen et al. 2007 
 
      IMPLICIT NONE 
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      REAL(8), intent(in) :: K,M,C,S_B(3),D(4,4),F(6),D_INV(4,4) 
      INTEGER(4), intent(out) :: REG(6) 
      REAL(8), intent(out) :: T1(6),T2(6) 
 
      INTEGER(4) COUNTER 
      REAL(8) S_APEX(3),A_VEKTOR(3),B_VEKTOR(3),L1(3),L1_G(3),L2(3) 
      REAL(8) L2_G(3),D_A_VEKTOR(3),DENOM_R_P,R_P(3) 
      REAL(8) CROSS_PRODUCT_I_III(3),P_I_II,P_I_III,D_INV_S(3) 
      REAL(8) D_INV_L2(3),TT1,TT2,CROSS_PRODUCT_I_II(3),D_INV_L1(3) 
       
       interface 
     
    pure subroutine CROSS(AAAA,BBBB,CCCC) 
      IMPLICIT NONE 
      REAL(8), intent (in) :: AAAA(3),BBBB(3) 
      REAL(8), intent (out) :: CCCC(3) 
    end subroutine CROSS 
       
  end interface 
       
      S_APEX(1)=2.0_8*C*sqrt(K)/(K‐1.0_8) 
      S_APEX(2)=2.0_8*C*sqrt(K)/(K‐1.0_8) 
      S_APEX(3)=2.0_8*C*sqrt(K)/(K‐1.0_8) 
       
      COUNTER=1 
      REG(1)=0 
      REG(2)=0 
      REG(3)=0 
      REG(4)=0 
      REG(5)=0 
      REG(6)=0 
       
      DO WHILE (COUNTER<7) 
       
      IF (COUNTER .EQ. 1) THEN 
      A_VEKTOR(1)=K 
      A_VEKTOR(2)=0._8 
      A_VEKTOR(3)=‐1._8 
       
      B_VEKTOR(1)=M 
      B_VEKTOR(2)=0.0_8 
      B_VEKTOR(3)=‐1.0_8 
       
      L1(1)=1.0_8 
      L1(2)=1.0_8 
      L1(3)=K 
       
      L2(1)=1.0_8 
      L2(2)=K 
      L2(3)=K 
       
      L1_G(1)=1.0_8 
      L1_G(2)=1.0_8 
      L1_G(3)=M 
       
      L2_G(1)=1.0_8 
      L2_G(2)=M 
      L2_G(3)=M 
       
      ELSE IF (COUNTER .EQ. 2) THEN 
       
      A_VEKTOR(1)=0.0_8 
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      A_VEKTOR(2)=K 
      A_VEKTOR(3)=‐1.0_8 
       
      B_VEKTOR(1)=0.0_8 
      B_VEKTOR(2)=M 
      B_VEKTOR(3)=‐1.0_8 
       
      L1(1)=K 
      L1(2)=1.0_8 
      L1(3)=K 
       
      L2(1)=1.0_8 
      L2(2)=1.0_8 
      L2(3)=K 
       
      L1_G(1)=M 
      L1_G(2)=1.0_8 
      L1_G(3)=M 
       
      L2_G(1)=1.0_8 
      L2_G(2)=1.0_8 
      L2_G(3)=M 
       
      ELSE IF (COUNTER .EQ. 3) THEN 
      A_VEKTOR(1)=‐1.0_8 
      A_VEKTOR(2)=K 
      A_VEKTOR(3)=0.0_8 
       
      B_VEKTOR(1)=‐1.0_8 
      B_VEKTOR(2)=M 
      B_VEKTOR(3)=0.0_8 
       
      L1(1)=K 
      L1(2)=1.0_8 
      L1(3)=1.0_8 
       
      L2(1)=K 
      L2(2)=1.0_8 
      L2(3)=K 
       
      L1_G(1)=M 
      L1_G(2)=1.0_8 
      L1_G(3)=1.0_8 
       
      L2_G(1)=M 
      L2_G(2)=1.0_8 
      L2_G(3)=M 
       
      ELSE IF (COUNTER .EQ. 4) THEN 
      A_VEKTOR(1)=‐1.0_8 
      A_VEKTOR(2)=0.0_8 
      A_VEKTOR(3)=K 
       
      B_VEKTOR(1)=‐1.0_8 
      B_VEKTOR(2)=0.0_8 
      B_VEKTOR(3)=M 
       
      L1(1)=K 
      L1(2)=K 
      L1(3)=1.0_8 
       
      L2(1)=K 
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      L2(2)=1.0_8 
      L2(3)=1.0_8 
       
      L1_G(1)=M 
      L1_G(2)=M 
      L1_G(3)=1.0_8 
       
      L2_G(1)=M 
      L2_G(2)=1.0_8 
      L2_G(3)=1.0_8 
       
      ELSE IF (COUNTER .EQ. 5) THEN 
      A_VEKTOR(1)=0.0_8 
      A_VEKTOR(2)=‐1.0_8 
      A_VEKTOR(3)=K 
       
      B_VEKTOR(1)=0.0_8 
      B_VEKTOR(2)=‐1.0_8 
      B_VEKTOR(3)=M 
       
      L1(1)=1.0_8 
      L1(2)=K 
      L1(3)=1.0_8 
       
      L2(1)=K 
      L2(2)=K 
      L2(3)=1.0_8 
       
      L1_G(1)=1.0_8 
      L1_G(2)=M 
      L1_G(3)=1.0_8 
       
      L2_G(1)=M 
      L2_G(2)=M 
      L2_G(3)=1.0_8 
       
      ELSE IF (COUNTER .EQ. 6) THEN 
      A_VEKTOR(1)=K 
      A_VEKTOR(2)=‐1.0_8 
      A_VEKTOR(3)=0.0_8 
       
      B_VEKTOR(1)=M 
      B_VEKTOR(2)=‐1.0_8 
      B_VEKTOR(3)=0.0_8 
       
      L1(1)=1.0_8 
      L1(2)=K 
      L1(3)=K 
       
      L2(1)=1.0_8 
      L2(2)=K 
      L2(3)=1.0_8 
       
      L1_G(1)=1.0_8 
      L1_G(2)=M 
      L1_G(3)=M 
       
      L2_G(1)=1.0_8 
      L2_G(2)=M 
      L2_G(3)=1.0_8 
       
      END IF 
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      D_A_VEKTOR=MATMUL(D(1:3,1:3),A_VEKTOR) 
       
      DENOM_R_P=DOT_PRODUCT(B_VEKTOR,D_A_VEKTOR) 
      R_P=MATMUL(D(1:3,1:3),B_VEKTOR)/DENOM_R_P 
       
      CALL CROSS(R_P,L1,CROSS_PRODUCT_I_II) 
       
      CALL CROSS(R_P,L2,CROSS_PRODUCT_I_III) 
       
      P_I_II=DOT_PRODUCT(CROSS_PRODUCT_I_II,(S_B‐S_APEX)) 
       
      P_I_III=DOT_PRODUCT(CROSS_PRODUCT_I_III,(S_B‐S_APEX)) 
       
      D_INV_S=MATMUL(D_INV(1:3,1:3),(S_B‐S_APEX)) 
       
      D_INV_L1=MATMUL(D_INV(1:3,1:3),L1) 
       
      D_INV_L2=MATMUL(D_INV(1:3,1:3),L2) 
       
      TT1=DOT_PRODUCT(L1_G,D_INV_S)/DOT_PRODUCT(L1_G,D_INV_L1) 
       
      TT2=DOT_PRODUCT(L2_G,D_INV_S)/DOT_PRODUCT(L2_G,D_INV_L2) 
       
      IF (TT1>0.0_8 .AND. TT2>0.0_8 .AND. F(COUNTER)>0.0_8) THEN 
      REG(COUNTER)=4 
      T1(COUNTER)=TT1 
      T2(COUNTER)=TT2 
      ELSE 
       
      IF (P_I_II>=0.0_8 .AND. P_I_III<=0.0_8 .AND. F(COUNTER)>0.0_8)THEN 
       
      !PLANE, REGION 1 
      REG(COUNTER)=1 
      ELSE IF(P_I_II<0.0_8.AND.P_I_III<0.0_8.AND. F(COUNTER)>0.0_8)THEN 
       
      !LINE1, REGION 2 
      REG(COUNTER)=2 
      ELSE IF (P_I_II>0.0_8.AND.P_I_III>0.0_8.AND.F(COUNTER)>0.0_8)THEN 
       
      !LINE2, REGION 3 
      REG(COUNTER)=3 
      END IF 
      END IF 
      COUNTER=COUNTER+1 
      END DO 
       
             
      IF (MAXVAL(REG,MASK=REG>0)==MINVAL(REG,MASK=REG>0)  
     1.AND. MAXVAL(REG,MASK=REG>0)==3) then 
      REG(1)=0 
      REG(2)=0 
      REG(3)=0 
      REG(4)=0 
      REG(5)=0 
      REG(6)=0 
      END IF 
       
      IF (MAXVAL(REG,MASK=REG>0)==MINVAL(REG,MASK=REG>0)  
     1.AND. MAXVAL(REG,MASK=REG>0)==2) then 
      REG(1)=0 
      REG(2)=0 
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      REG(3)=0 
      REG(4)=0 
      REG(5)=0 
      REG(6)=0 
      END IF 
       
      END SUBROUTINE STRESS_POSITION 
 
 
      PURE SUBROUTINE D_EP_ON_LINE_CORRECTION_FACTOR(S_B,S_C,K,M 
     1,ACTIVE_PLANE1,ACTIVE_PLANE2,D,D_INV,D_EP_LINE) 
! This subroutine calculates a correction factor for the calculation of the 
stiffness matrix, calculated considering the steps in Chapter 8.3 in Clausen 
(2007). The correction factor is needed as the matrix is singular in the 
directions other than the direction of the plastic strain increment and thus can 
lead to numerical instabilities.  
 
      IMPLICIT NONE 
      REAL(8), intent(in) :: D(4,4),D_INV(4,4),M,K,S_B(3),S_C(3) 
      INTEGER(4), intent(in) :: ACTIVE_PLANE1,ACTIVE_PLANE2 
      REAL(8), intent(out) :: D_EP_LINE(4,4) 
 
      INTEGER(4) PLANE_ACT,II,JJ 
      REAL(8) L1(3),L1_G(3),COMB_LINE(3,3),D_INV_L1_G(3),DENOM_DEP_LINE 
      REAL(8) C_VEK(3),E_PLAST(3) 
 
       interface 
     
    pure subroutine CROSS(AAAA,BBBB,CCCC) 
      IMPLICIT NONE 
      REAL(8), intent (in) :: AAAA(3),BBBB(3) 
      REAL(8), intent (out) :: CCCC(3) 
    end subroutine CROSS 
       
  end interface 
       
      E_PLAST=MATMUL(D_INV(1:3,1:3),S_B‐S_C) 
       
      IF (ACTIVE_PLANE1==1 .AND. ACTIVE_PLANE2==2) THEN 
      PLANE_ACT=1 
      END IF 
       
      IF (ACTIVE_PLANE1==2 .AND. ACTIVE_PLANE2==1) THEN 
      PLANE_ACT=1 
      END IF 
       
      IF (ACTIVE_PLANE1==2 .AND. ACTIVE_PLANE2==3) THEN 
      PLANE_ACT=2 
      END IF 
       
      IF (ACTIVE_PLANE1==3 .AND. ACTIVE_PLANE2==2) THEN 
      PLANE_ACT=2 
      END IF 
       
      IF (ACTIVE_PLANE1==3 .AND. ACTIVE_PLANE2==4) THEN 
      PLANE_ACT=3 
      END IF 
       
      IF (ACTIVE_PLANE1==4 .AND. ACTIVE_PLANE2==3) THEN 
      PLANE_ACT=3 
      END IF 
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      IF (ACTIVE_PLANE1==4 .AND. ACTIVE_PLANE2==5) THEN 
      PLANE_ACT=4 
      END IF 
       
      IF (ACTIVE_PLANE1==5 .AND. ACTIVE_PLANE2==4) THEN 
      PLANE_ACT=4 
      END IF 
       
      IF (ACTIVE_PLANE1==5 .AND. ACTIVE_PLANE2==6) THEN 
      PLANE_ACT=5 
      END IF 
       
      IF (ACTIVE_PLANE1==6 .AND. ACTIVE_PLANE2==5) THEN 
      PLANE_ACT=5 
      END IF 
       
      IF (ACTIVE_PLANE1==6 .AND. ACTIVE_PLANE2==1) THEN 
      PLANE_ACT=6 
      END IF 
       
      IF (ACTIVE_PLANE1==1 .AND. ACTIVE_PLANE2==6) THEN 
      PLANE_ACT=6 
      END IF 
       
      IF (PLANE_ACT .EQ. 1) THEN 
      L1(1)=1.0_8 
      L1(2)=1.0_8 
      L1(3)=K 
       
      L1_G(1)=1.0_8 
      L1_G(2)=1.0_8 
      L1_G(3)=M 
      ELSE IF (PLANE_ACT .EQ. 2) THEN 
      L1(1)=K 
      L1(2)=1.0_8 
      L1(3)=K 
       
      L1_G(1)=M 
      L1_G(2)=1.0_8 
      L1_G(3)=M 
      ELSE IF (PLANE_ACT .EQ. 3) THEN 
      L1(1)=K 
      L1(2)=1.0_8 
      L1(3)=1.0_8 
       
      L1_G(1)=M 
      L1_G(2)=1.0_8 
      L1_G(3)=1.0_8 
      ELSE IF (PLANE_ACT .EQ. 4) THEN 
      L1(1)=K 
      L1(2)=K 
      L1(3)=1.0_8 
       
      L1_G(1)=M 
      L1_G(2)=M 
      L1_G(3)=1.0_8 
      ELSE IF (PLANE_ACT .EQ. 5) THEN 
      L1(1)=1.0_8 
      L1(2)=K 
      L1(3)=1.0_8 
       
      L1_G(1)=1.0_8 
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      L1_G(2)=M 
      L1_G(3)=1.0_8 
      ELSE IF (PLANE_ACT .EQ. 6) THEN 
      L1(1)=1.0_8 
      L1(2)=K 
      L1(3)=K 
       
      L1_G(1)=1.0_8 
      L1_G(2)=M 
      L1_G(3)=M 
      END IF 
       
      CALL CROSS(E_PLAST(1:3),L1_G,C_VEK(1:3)) 
       
      FORALL(II=1:3,JJ=1:3) COMB_LINE(II,JJ)=C_VEK(II)*C_VEK(JJ) 
       
      D_INV_L1_G=MATMUL(D_INV(1:3,1:3),C_VEK) 
       
      DENOM_DEP_LINE=DOT_PRODUCT(C_VEK,D_INV_L1_G) 
       
      D_EP_LINE=0.0_8 
      D_EP_LINE(1:3,1:3)=COMB_LINE/DENOM_DEP_LINE 
      D_EP_LINE(4,4)=D(4,4) 
       
      END SUBROUTINE D_EP_ON_LINE_CORRECTION_FACTOR 
 
       pure subroutine Jacobi(a,x,abserr,n,AA) 
        !=========================================================== 
        ! Evaluate eigenvalues and eigenvectors 
        ! of a real symmetric matrix a(n,n): a*x = lambda*x  
        ! method: Jacoby method for symmetric matrices  
        ! Alex G. (December 2009) 
        !from: https://github.com/minar09/parallel‐
computing/blob/master/OMP_Fortran.f90 
        !‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 
        ! input ... 
        ! a(n,n) ‐ array of coefficients for matrix A 
        ! n      ‐ number of equations 
        ! abserr ‐ abs tolerance [sum of (off‐diagonal elements)^2] 
        ! output ... 
        ! a(i,i) ‐ eigenvalues 
        ! x(i,j) ‐ eigenvectors 
        ! comments ... 
        !=========================================================== 
        implicit none 
        INTEGER(4), intent(in) :: n 
        REAL(8), intent(in) :: A(n,n),abserr 
        REAL(8), intent(out) :: AA(n,n),x(n,n) 
        REAL(8)  b2, bar 
        REAL(8) beta, coeff, c, s, cs, sc 
        INTEGER(4) i, j, k 
        ! initialize x(i,j)=0, x(i,i)=1 
        ! *** the array operation x=0.0 is specific for Fortran 90/95 
      AA=a 
        x = 0.0_8 
        do i=1,n 
                x(i,i) = 1.0_8 
        end do 
 
        ! find the sum of all off‐diagonal elements (squared) 
        b2 = 0.0_8 
        do i=1,n 
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          do j=1,n 
            if (i.ne.j) b2 = b2 + AA(i,j)**2.0_8 
          end do 
        end do 
 
        if (b2 <= abserr) return 
 
        ! average for off‐diagonal elements /2 
        bar = 0.5_8*b2/dble(n*n) 
 
        do while (b2.gt.abserr) 
          do i=1,n‐1 
            do j=i+1,n 
              if (AA(j,i)**2.0_8 <= bar) cycle  ! do not touch small elements 
              b2 = b2 ‐ 2.0_8*AA(j,i)**2.0_8 
              bar = 0.5_8*b2/dble(n*n) 
        ! calculate coefficient c and s for Givens matrix 
              beta = (AA(j,j)‐AA(i,i))/(2.0_8*AA(j,i)) 
              coeff = 0.5_8*beta/sqrt(1.0_8+beta**2.0_8) 
              s = sqrt(max(0.5_8+coeff,0.0_8)) 
              c = sqrt(max(0.5_8‐coeff,0.0_8)) 
        ! recalculate rows i and j 
              do k=1,n 
                cs =  c*AA(i,k)+s*AA(j,k) 
                sc = ‐s*AA(i,k)+c*AA(j,k) 
                AA(i,k) = cs 
                AA(j,k) = sc 
              end do 
        ! new matrix a_{k+1} from a_{k}, and eigenvectors  
              do k=1,n 
                cs =  c*AA(k,i)+s*AA(k,j) 
                sc = ‐s*AA(k,i)+c*AA(k,j) 
                AA(k,i) = cs 
                AA(k,j) = sc 
                cs =  c*x(k,i)+s*x(k,j) 
                sc = ‐s*x(k,i)+c*x(k,j) 
                x(k,i) = cs 
                x(k,j) = sc 
              end do 
            end do 
          end do 
        end do 
         
        end subroutine 
         
 
      PURE SUBROUTINE CROSS(AAAA,BBBB,CCCC) 
! Calculates the cross product 
      REAL(8), intent (in) :: AAAA(3),BBBB(3) 
      REAL(8), intent (out) :: CCCC(3) 
       
      CCCC(1)=AAAA(2)*BBBB(3)‐AAAA(3)*BBBB(2) 
      CCCC(2)=AAAA(3)*BBBB(1)‐AAAA(1)*BBBB(3) 
      CCCC(3)=AAAA(1)*BBBB(2)‐AAAA(2)*BBBB(1) 
       
      end subroutine 
       
 
 
 
      PURE SUBROUTINE COORD_TRANS_MATRIX(LAMBDA_IJ,S,S_B,AA) 
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! This subroutine is needed to calculate the coordinate transformation matrix, 
needed when transforming the updated stress from principal to local coordinate 
system defined for a 2D problem after Appenidx B in Chapter B.1 in Clausen et al. 
(2007) 
      IMPLICIT NONE 
      REAL(8), intent(in) :: LAMBDA_IJ(3,3),S(3),S_B(3) 
      REAL(8), intent(out) :: AA(4,4) 
 
      REAL(8) A_5(6,6) 
       
       
      A_5(1,1)=LAMBDA_IJ(1,1)*LAMBDA_IJ(1,1) 
      A_5(1,2)=LAMBDA_IJ(2,1)*LAMBDA_IJ(2,1) 
      A_5(1,3)=LAMBDA_IJ(3,1)*LAMBDA_IJ(3,1) 
      A_5(1,4)=LAMBDA_IJ(1,1)*LAMBDA_IJ(2,1) 
      A_5(1,5)=LAMBDA_IJ(3,1)*LAMBDA_IJ(1,1) 
      A_5(1,6)=LAMBDA_IJ(2,1)*LAMBDA_IJ(3,1) 
       
      A_5(2,1)=LAMBDA_IJ(1,2)*LAMBDA_IJ(1,2) 
      A_5(2,2)=LAMBDA_IJ(2,2)*LAMBDA_IJ(2,2) 
      A_5(2,3)=LAMBDA_IJ(3,2)*LAMBDA_IJ(3,2) 
      A_5(2,4)=LAMBDA_IJ(1,2)*LAMBDA_IJ(2,2) 
      A_5(2,5)=LAMBDA_IJ(3,2)*LAMBDA_IJ(1,2) 
      A_5(2,6)=LAMBDA_IJ(2,2)*LAMBDA_IJ(3,2) 
       
      A_5(3,1)=LAMBDA_IJ(1,3)*LAMBDA_IJ(1,3) 
      A_5(3,2)=LAMBDA_IJ(2,3)*LAMBDA_IJ(2,3) 
      A_5(3,3)=LAMBDA_IJ(3,3)*LAMBDA_IJ(3,3) 
      A_5(3,4)=LAMBDA_IJ(1,3)*LAMBDA_IJ(2,3) 
      A_5(3,5)=LAMBDA_IJ(3,3)*LAMBDA_IJ(1,3) 
      A_5(3,6)=LAMBDA_IJ(2,3)*LAMBDA_IJ(3,3) 
       
      A_5(4,1)=2*LAMBDA_IJ(1,1)*LAMBDA_IJ(1,2) 
      A_5(4,2)=2*LAMBDA_IJ(2,1)*LAMBDA_IJ(2,2) 
      A_5(4,3)=2*LAMBDA_IJ(3,1)*LAMBDA_IJ(3,2) 
      A_5(4,4)=LAMBDA_IJ(1,1)*LAMBDA_IJ(2,2)+LAMBDA_IJ(1,2) 
     1*LAMBDA_IJ(2,1) 
      A_5(4,5)=LAMBDA_IJ(3,1)*LAMBDA_IJ(1,2)+LAMBDA_IJ(3,2) 
     1*LAMBDA_IJ(1,1) 
      A_5(4,6)=LAMBDA_IJ(2,1)*LAMBDA_IJ(3,2)+LAMBDA_IJ(2,2) 
     1*LAMBDA_IJ(3,1) 
       
      A_5(5,1)=2*LAMBDA_IJ(1,3)*LAMBDA_IJ(1,1) 
      A_5(5,2)=2*LAMBDA_IJ(2,3)*LAMBDA_IJ(2,1) 
      A_5(5,3)=2*LAMBDA_IJ(3,3)*LAMBDA_IJ(3,1) 
      A_5(5,4)=LAMBDA_IJ(1,3)*LAMBDA_IJ(2,1)+LAMBDA_IJ(1,1) 
     1*LAMBDA_IJ(2,3) 
      A_5(5,5)=LAMBDA_IJ(3,3)*LAMBDA_IJ(1,1)+LAMBDA_IJ(3,1) 
     1*LAMBDA_IJ(1,3) 
      A_5(5,6)=LAMBDA_IJ(2,3)*LAMBDA_IJ(3,1)+LAMBDA_IJ(2,1) 
     1*LAMBDA_IJ(3,3) 
       
      A_5(6,1)=2*LAMBDA_IJ(1,2)*LAMBDA_IJ(1,3) 
      A_5(6,2)=2*LAMBDA_IJ(2,2)*LAMBDA_IJ(2,3) 
      A_5(6,3)=2*LAMBDA_IJ(3,2)*LAMBDA_IJ(3,3) 
      A_5(6,4)=LAMBDA_IJ(1,2)*LAMBDA_IJ(2,3)+LAMBDA_IJ(1,3) 
     1*LAMBDA_IJ(2,2) 
      A_5(6,5)=LAMBDA_IJ(3,2)*LAMBDA_IJ(1,3)+LAMBDA_IJ(3,3) 
     1*LAMBDA_IJ(1,2) 
      A_5(6,6)=LAMBDA_IJ(2,2)*LAMBDA_IJ(3,3)+LAMBDA_IJ(2,3) 
     1*LAMBDA_IJ(3,2) 
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      IF (S(3)==S_B(3)) THEN 
       
      AA(1,1)=A_5(1,1) 
      AA(2,1)=A_5(2,1) 
      AA(3,1)=A_5(3,1) 
      AA(4,1)=A_5(4,1) 
       
      AA(1,2)=A_5(1,2) 
      AA(2,2)=A_5(2,2) 
      AA(3,2)=A_5(3,2) 
      AA(4,2)=A_5(4,2) 
       
      AA(1,3)=A_5(1,3) 
      AA(2,3)=A_5(2,3) 
      AA(3,3)=A_5(3,3) 
      AA(4,3)=A_5(4,3) 
       
      AA(1,4)=A_5(1,4) 
      AA(2,4)=A_5(2,4) 
      AA(3,4)=A_5(3,4) 
      AA(4,4)=A_5(4,4) 
       
      ELSEIF (S(2)==S_B(3)) THEN 
       
      AA(1,1)=A_5(1,1) 
      AA(2,1)=A_5(2,1) 
      AA(3,1)=A_5(3,1) 
      AA(4,1)=A_5(5,1) 
       
      AA(1,2)=A_5(1,2) 
      AA(2,2)=A_5(2,2) 
      AA(3,2)=A_5(3,2) 
      AA(4,2)=A_5(5,2) 
       
      AA(1,3)=A_5(1,3) 
      AA(2,3)=A_5(2,3) 
      AA(3,3)=A_5(3,3) 
      AA(4,3)=A_5(5,3) 
       
      AA(1,4)=A_5(1,4) 
      AA(2,4)=A_5(2,4) 
      AA(3,4)=A_5(3,4) 
      AA(4,4)=A_5(5,4) 
       
      ELSEIF (S(1)==S_B(3)) THEN 
       
      AA(1,1)=A_5(1,1) 
      AA(2,1)=A_5(2,1) 
      AA(3,1)=A_5(3,1) 
      AA(4,1)=A_5(6,1) 
       
      AA(1,2)=A_5(1,2) 
      AA(2,2)=A_5(2,2) 
      AA(3,2)=A_5(3,2) 
      AA(4,2)=A_5(6,2) 
       
      AA(1,3)=A_5(1,3) 
      AA(2,3)=A_5(2,3) 
      AA(3,3)=A_5(3,3) 
      AA(4,3)=A_5(6,3) 
       
      AA(1,4)=A_5(1,4) 
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      AA(2,4)=A_5(2,4) 
      AA(3,4)=A_5(3,4) 
      AA(4,4)=A_5(6,4) 
       
      END IF 
       
      END SUBROUTINE COORD_TRANS_MATRIX 
       
       
      PURE SUBROUTINE TRANSFORMATION_MATRIX(S_C_RET,S_PRINC_S 
     1,S_B,TRANS_MAT) 
! This subroutine calculates the modification matrix needed to calculate the 
stiffness matrix of the finite step, calculated after Chapter B.2 of Appendix B 
in Clausen et al. 2007. 
      IMPLICIT NONE 
      REAL(8), intent(in) :: S_C_RET(3),S_PRINC_S(3),S_B(3) 
      REAL(8), intent(out) :: TRANS_MAT(4,4) 
       
      INTEGER(4) VALORE_UNO,VALORE_DUE 
       
      TRANS_MAT=0.0_8 
      TRANS_MAT(1,1)=1.0_8 
      TRANS_MAT(2,2)=1.0_8 
      TRANS_MAT(3,3)=1.0_8 
       
      IF (S_PRINC_S(3)==S_B(3)) THEN 
      VALORE_UNO=1 
      VALORE_DUE=2 
      ELSEIF (S_PRINC_S(2)==S_B(3)) THEN 
      VALORE_UNO=1 
      VALORE_DUE=3 
      ELSEIF (S_PRINC_S(1)==S_B(3)) THEN 
      VALORE_UNO=2 
      VALORE_DUE=3 
      END IF 
       
      IF (S_C_RET(VALORE_UNO)‐S_C_RET(VALORE_DUE)>0.0_8) THEN 
      TRANS_MAT(4,4)=(S_C_RET(VALORE_UNO)‐S_C_RET(VALORE_DUE)) 
     1/(S_PRINC_S(VALORE_UNO)‐S_PRINC_S(VALORE_DUE)) 
      END IF 
       
      END SUBROUTINE TRANSFORMATION_MATRIX 
       
       
 
      PURE SUBROUTINE PRINT_DIR(SS_0,LAMBDA_IJ_IN,SS 
     1,LAMBDA_IJ,PROBLEMA) 
! This subroutine calculates the coordinate transformation matrix needed to 
calculate the stresses from principal to local coordinate system. 
      IMPLICIT NONE 
      REAL(8), intent(in) :: SS_0(3) 
     1,LAMBDA_IJ_IN(3,3) 
      REAL(8), intent(out) :: LAMBDA_IJ(3,3), SS(3) 
      INTEGER(4), intent(out) :: PROBLEMA 
       
      REAL(8) CROSS_PROD(3) 
      INTEGER(4) L_MAX(1),L_MIN(1),L_MED(1) 
       
       
       !‐‐‐‐ Explicit interfaces ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 
  interface 
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    pure subroutine CROSS(AAAA,BBBB,CCCC) 
      IMPLICIT NONE 
      REAL(8), intent (in) :: AAAA(3),BBBB(3) 
      REAL(8), intent (out) :: CCCC(3) 
    end subroutine CROSS 
       
  end interface 
       
      PROBLEMA=0 
       
      IF (SS_0(1)==SS_0(2) .AND. SS_0(1)==SS_0(3)) THEN 
        
      SS=SS_0 
      LAMBDA_IJ=LAMBDA_IJ_IN 
        
      ELSE 
            L_MAX=MAXLOC(SS_0) 
            L_MIN=MINLOC(SS_0) 
            L_MED(1)=6‐L_MAX(1)‐L_MIN(1) 
                
            LAMBDA_IJ(:,1)=LAMBDA_IJ_IN(:,L_MAX(1)) 
            LAMBDA_IJ(:,2)=LAMBDA_IJ_IN(:,L_MED(1)) 
            LAMBDA_IJ(:,3)=LAMBDA_IJ_IN(:,L_MIN(1)) 
                
            SS(1)=SS_0(L_MAX(1)) 
            SS(2)=SS_0(L_MED(1)) 
            SS(3)=SS_0(L_MIN(1)) 
             
           IF (SS(1)==SS(2)) then 
           CALL CROSS(LAMBDA_IJ(:,1),LAMBDA_IJ(:,2),CROSS_PROD) 
               IF (CROSS_PROD(1)==LAMBDA_IJ(1,3) .AND. CROSS_PROD(2) 
     1==LAMBDA_IJ(2,3).AND. CROSS_PROD(3)==LAMBDA_IJ(3,3)) THEN 
               LAMBDA_IJ(:,1)=LAMBDA_IJ_IN(:,L_MED(1)) 
               LAMBDA_IJ(:,2)=LAMBDA_IJ_IN(:,L_MAX(1)) 
               end if 
           end if 
            
           IF (SS(1)==SS(2)) then 
           CALL CROSS(LAMBDA_IJ(:,1),LAMBDA_IJ(:,2),CROSS_PROD) 
               IF (CROSS_PROD(1)==LAMBDA_IJ(1,3) .AND. CROSS_PROD(2) 
     1==LAMBDA_IJ(2,3).AND. CROSS_PROD(3)==LAMBDA_IJ(3,3)) THEN 
               PROBLEMA=1 
!               stop 
               end if 
           end if 
            
           IF (SS(2)==SS(3)) then 
           CALL CROSS(LAMBDA_IJ(:,1),LAMBDA_IJ(:,2),CROSS_PROD) 
               IF (CROSS_PROD(1)==LAMBDA_IJ(1,3) .AND. CROSS_PROD(2) 
     1==LAMBDA_IJ(2,3).AND. CROSS_PROD(3)==LAMBDA_IJ(3,3)) THEN 
               LAMBDA_IJ(:,2)=LAMBDA_IJ_IN(:,L_MIN(1)) 
               LAMBDA_IJ(:,3)=LAMBDA_IJ_IN(:,L_MED(1)) 
               end if 
           end if 
            
           IF (SS(2)==SS(3)) then 
           CALL CROSS(LAMBDA_IJ(:,1),LAMBDA_IJ(:,2),CROSS_PROD) 
               IF (CROSS_PROD(1)==LAMBDA_IJ(1,3) .AND. CROSS_PROD(2) 
     1==LAMBDA_IJ(2,3).AND. CROSS_PROD(3)==LAMBDA_IJ(3,3)) THEN 
               PROBLEMA=1 
!               stop 
               end if 
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           end if 
      END IF 
       

      END SUBROUTINE PRINT_DIR 
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Appendix C. Validation of the creep constitutive 
model MC-Perzyna 

This Appendix is structured in three parts and will show the validation of the MC-Perzyna 

constitutive model implemented in the present thesis. Results of numerical computations 

considering the MC-Perzyna constitutive model are compared with analytical solutions. In the 

first section numerical results are compared with results of the analytical solution at laboratory 

scale derived considering Appendix A. In the second section numerical results of an unsupported 

tunnel under plane strain conditions are compared with the analytical solutions of an elastic 

ground after Kirsch (1898) and with the analytical solution of an elastoplastic ground after 

Anagnostou and Kovári (1993). In the third section numerical results of an axisymmetric TBM 

step-by-step excavation process are compared with results of Ramoni & Anagnostou (2010b). 

C.1. Laboratory scale 

One axial symmetric element in the local coordinate system r, y and θ (being radial, axial and out 

of plane respectively) is subjected to an instantaneous axial compressive stress increment (Δσy at 

t = 0+) of 10 MPa which then remains constant in time (see the inset in Figure C.1), with 

parameters given in the same Figure. The ground is modelled considering the MC Perzyna 

constitutive model discussed in Appendix A, the subroutine of which is given in Appendix B. The 

initial stress state is σr = σy = σθ = 0. Additional boundary conditions of the problem are σr = 0 and 

εθ = 0. From the boundary condition results that the principal stresses are σy = σ1, σθ = σ2, σr = σ3 

with σ1 > σ2 > σ3 as defined in Appendix A. Due to the boundary conditions of the problem and 

the material behaving instantaneously only elastically, i.e. Δεvp (t = 0+) = 0, the total strain 

increment at t = 0+ is equal to the elastic strain increment and can be calculated after Eq. A.1 

which is for each component as follows: 
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For t > 0+ viscous deformations start to develop and the viscoplastic strain must be added to the 

instantaneous elastic part. The viscoplastic strain is calculated by integrating Eq. A.9 (the first 

from the three given equations is valid as σ1 > σ2 > σ3). Thus, the total strain is equal to 
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where f1 is equal to 9 MPa, after Eq. A.2. 

Figure C.1 compares the axial and radial strains as function of time determined from the numerical 

computation considering the subroutine in Appendix B (black line) and the analytically derived 

results (red line) considering equations C.1 and C.2. As visible the results coincide. 

 
Figure C.1. (a) Radial and (b) axial strains function of time 
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C.2. Plane strain unsupported tunnel 

The present section shows the validation and plausibility of the constitutive model, MC-Perzyna, 

for an unsupported tunnel under plane strain conditions. The computational model is the same as 

presented in Section 4.2.2 and shown in Figure 4.1a.  

For the considered constitutive model, the ground will behave instantly as an elastic material, in 

time viscous deformations will develop until all viscoplastic deformation took place and steady 

state conditions are achieved (cf. Section 2.2). Thus, results for five different viscosities η are 

presented herein and compared with analytical solutions: 

1. η = ∞, compared with Kirsch’s (1898) analytical solution, cf. Figure C.2a 

2. η = 0, compared with Anagnostou & Kovári’s (1993) analytical solution, cf. Figure C.2a 

3. Three intermediate viscosities between 0 and ∞, cf. Figure C.2b 

Both analytical solutions consider the same boundary value problem of an unsupported tunnel 

under plane strain conditions. On the one hand Kirsch’s (1898) solution for an elastic material 

and on the other hand Anagnostou & Kovári’s (1993) solution for an elastic-perfectly plastic 

material with MC yield condition and non-associated flow rule.  

As visible the numerical result for infinite viscosity (practically elastic) coincides with Kirsch’s 

solution, same can be said for zero viscosity (practically elasto-plastic) with Anagnostou & 

Kovári’s (1993) solution. For the three intermediate values it is visible that instantaneous results 

coincide with Kirsch’s solution and steady state results coincide with Anagnostou & Kovari’s 

(1993) solution. The time-development of results for these three viscosities is plausible, as the 

displacements develop at different rates, more specifically, the time development is inverse 

proportional to the viscosity as defined in Eq. 2.4 in Section 2.2. 

 
Figure C.2 Evolution of the radial displacements at the tunnel boundary of an unsupported tunnel with 

parameters given in figure for (a) η = 0 and ∞, (b) three different viscosities with values given 

in figure (a). 
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C.3. TBM step-by-step excavation 

The computational model used for validation of the MC-Perzyna constitutive model in the present 

section is a TBM step-by-step excavation under axisymmetric conditions (presented in Section 

2.3). The purpose of the present section is dual: (i) to validate the MC-Perzyna constitutive model 

for the case of zero viscosity; (ii) to assess the adequacy of the selected round length for the step-

by-step simulations considered in Chapter 3 in order to develop the design equation for estimating 

the required thrust force in creeping rock under squeezing conditions. Results of the considered 

constitutive model are compared with results of Ramoni & Anagnostou (2010b), which have been 

performed using the steady state method (Nguyen Minh and Corbetta 1991) and consider a time 

independent elastic perfectly plastic constitutive model with a MC yield condition and a non-

associated flow rule, for further details regarding this computational model the reader is referred 

to Ramoni & Anagnostou (2010b).  

Figure C.3a shows the longitudinal rock pressure distribution after Ramoni & Anagnostou 

(2010b) and the computational results considering the MC-Perzyna constitutive model for 

different round length s (ranging from 0.1 m to 1 m). Evidently, the smaller the round length of 

the step-by-step simulation is, the closer the results to the numerical results of Ramoni & 

Anagnostou (2010b). Thus, the MC-Perzyna constitutive model is able to map for zero viscosity 

the same behaviour as a time-independent elastic-perfectly plastic constitutive model with MC 

yield condition. 

Figure C.3b shows the average rock pressure for different round length, for the results shown in 

Figure C.3a, which is needed in order to determine the thrust force in order to overcome shield 

jamming. In this figure the results for a round length equal to zero (s = 0) are the results of Ramoni 

& Anagnostou (2010b), black solid line in Figure C.3a. In Figure C.3c the error with respect to 

the results of Ramoni & Anagnostou (2010b) is shown, for results shown in Figure C.3b. As 

visible, round lengths between 0.1 and 0.5 m underestimate the numerical solution of Ramoni & 

Anagnostou (2010b) by 4 – 5 %, in accordance with the results shown in Figure C.3a which 

clearly underestimate Ramoni & Anagnostou (2010b) results. Although the peak at the shield tail 

is underestimated by a maximum of 33% for s = 0.5 m this leads to only an underestimation of 

5% of the average rock pressure. In the case of a a round length of 1 m the results of Ramoni & 

Anagnostou (2010b) are overestimated by around 3%, this although the peak at the shield tail is 

underestimated by around 35% (and maximal for the four considered round lengths). The reason 

is the bigger element discretization and the overestimation next to the tunnel face, at around 2.5 

m, cf. red dash dotted line compared to solid black line. As the error shown for all round lengths 

considered (s = 0.1 - 1 m) is smaller than ± 5 %, in order to save computational time, a round 

length of s = 1 m is considered for performing the numerical analyses in Chapter 3, as a total of 

12,300 computations have been performed. 
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Figure C.3 (a) Longitundinal rock pressure distribution, (b) Average rock pressure function of different 

round length, (b) Error of the step-by-step computation with respect to results of Ramoni & 

Anagnostou (2010b) (s = 0) (parameters: R = 5 m, ΔR = 0.05 m, L = 10 m, σ0 = 10 MPa, 

E = 1 GPa, ν = 0.25, fc = 3 MPa,  = 25°, ψ = 5°, Ks = 1008 MPa/m, Kl = 360 MPa/m).  
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Appendix D. Influence of pore pressures on the 
cutterhead pressure 

D.1 Introduction 

Section 4.5.2 discusses the unfavourable effect of seepage forces on the tunnel face, causing 

excessive extrusions, which can lead to cutterhead jamming. More specifically, Figure D.1 shows 

that for an in-situ pore pressure, p0 of 1 and 4 MPa, the axial displacement prior contact is 

maximum at ca. 5 m above the centre of the face. For p0 = 1 MPa, this effect vanishes (Fig. D.1; 

t > 2.6 d); however, for p0 of 4 MPa, this effect remains and leads to a maximum pressure at the 

cutterhead closer to the tunnel boundary than to the centre of the tunnel (Fig. D.2). This pressure 

development is counter-intuitive, as one would expect the highest pressure to develop at the centre 

of the face, as seen for p0 = 1 MPa (Fig. D.2). 

The counter-intuitive behaviour is explained in Section D.2, and thus the behaviour prior contact 

with the cutterhead, whereas Section D.3 shows the behaviour after contact with the cutterhead. 

 
Figure D.1. Radial distribution of the axial displacement of the face during standstill considering different 

time instances before contact with the cutterhead. 
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Figure D.2. Radial distribution of the axial loading of the cutterhead during standstill at different time 

instances 

D.2 Before contact with the cutterhead 

This counter-intuitive behaviour is explained based on the following Figures D.3, D.4 and D.5. 

Figure D.3 shows the extrusion vs. time, Figure D.4 shows the plastic zone around the tunnel for 

different time instances prior contact with the cutterhead, and Figure D.5 shows the pore pressure 

contours for the same time instances as Figure D.4. 

Both for p0 = 1 MPa and 4 MPa, the plastic zones ahead of the face embed a core of elastic material 

in the initial state (Fig. D.4; t = 0.1d). This is due to the stabilisation offered by the negative pore 

pressures (Fig. D.5; t = 0.1d). This is wider at the centre of the face than further above, hence it 

stabilises the ground more at the centre, and this explains the smaller extrusion there than above.  

As the plasticity is higher for p0 = 4 MPa (cf. plastic zones in Fig. D.4), the ground undergoes 

larger extrusion, hence contact with the cutterhead is established first at around 3 days, half of the 

required ca. 6 days in the case p0 = 1 MPa (Fig. D.3). 

Over time, as the excess pore pressures start dissipating, the elastic core vanishes for both 

p0 = 1 MPa and 4 MPa (Fig. D.4; t > 0.1d), hence the stiffening effect progressively vanishes, too. 

At 2.6 days, shortly before contact is established in the case p0 = 4 MPa, the stiffening effect has 

not yet vanished; this is also true for the lower p0 = 1 MPa (Fig. D.1). Therefore, contact is 

established first at r = ca. 5 m for p0 = 4 MPa. 

At around 6 days, however, when contact is established in the case p0 = 1 MPa, sufficient time 

has elapsed for the stiffening effect to vanish, hence the largest extrusion is at the centre (Fig. D.1, 

t = 5.2 d) and thus contact is established first there (Fig. D.2; t = 6.6 d).  
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The point where contact occurs for the first time affects also the radial distribution of the axial 

pressure on the cutterhead, which is thus maximum at r = 4 - 5 m for p0 = 4 MPa, and at the centre 

for p0 = 1 MPa (Fig. D.2).  

 
Figure D.3. Time development of the face extrusion during standstill, at 0.2 m contact with the cutterhead 

is established. 
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Figure D.4. Plastic zone for different time instances before contact with the cutterhead. 
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Figure D.5. Contour-lines of pore pressure at different time instance before contact with the cutterhead. 
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D.3 After contact with the cutterhead 

After contact, the plastic zones indicate that the ground returns to an elastic state, cf. Figure D.6, 

showing the plastic zone after contact with the cutterhead. This is attributed to the so called 

“elastic re-compression” (see Gärber 2003) and occurs also behind the shield, as shown by 

Ramoni and Anagnostou (2011c). The ground has experienced partially irreversible 

deformations; however, its stress state is located within the elastic domain, also called “past-yield 

zone” (Ramoni and Anagnostou 2011c). 

 
Figure D.6. Plastic zone for different time instances after contact with the cutterhead. 
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Appendix E. Systematic investigation on the effect 
of the tunnel diameter on the risk of TBM 
entrapment5 

Abstract 

A notable hazard in shield tunnelling through squeezing ground is the entrapment of the tunnel 

boring machine (TBM) due to insufficient thrust force. One often associates larger tunnel 

diameters with higher risks compared to smaller ones, mainly due to the higher propensity for 

problems related to an increased tunnel face size. However, depending on the tunnel diameter, 

different technical limitations exist that are associated with particular TBM parameters and the 

construction process, the effects of which are complex to assess and often mutually competing 

with respect to the TBM entrapment risk; all such limitations considered, the question arises: is a 

larger tunnel diameter always more critical? The present appendix addresses this question by 

numerically investigating the effect of the tunnel diameter on the risk of TBM entrapment during 

mechanised excavation and after construction standstills, considering relevant technical 

limitations, a broad range of geotechnical conditions, as well as the effect of time-dependency of 

squeezing. The investigations yield an interesting finding – larger diameter tunnels are more 

favourable in poor quality ground, while the opposite holds in higher quality ground, as well as 

in the case of pronouncedly time-dependent ground behaviour. Besides their theoretical value, the 

results of the presented investigations also provide practice guidance concerning the use of 

experiences acquired from existing tunnels about the required thrust force as a reference for 

different diameter tunnels constructed under the same geotechnical conditions. 
  

                                                      

5 This Appendix has been accepted for publication in form of a conference paper on 02.01.2024 in the World Tunnel 

Congress 2024 with the following reference: Nordas, A. N., Leone, T., & Anagnostou, G. (2024). Is a large TBM 

diameter unfavourable under squeezing conditions? ITA-AITES World Tunnel Congress 2024, Shenzhen, China, 19-

25 April 2024 (accepted for publication). 
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E.1 Introduction 

A situation sometimes encountered in tunnelling practice is that of different diameter tunnels 

constructed under practically the same geotechnical conditions, e.g. a smaller diameter pilot 

tunnel constructed prior to the main tunnel for exploration, advance drainage or ground 

improvement; or a road tunnel upgraded by later construction of a safety tunnel of smaller 

diameter. In such cases, the larger diameter tunnel usually poses a higher risk during construction, 

as a large cross-section is unconditionally less favourable for certain hazards (e.g., collapse of the 

tunnel face), and more likely to encounter adverse conditions (e.g., weak zones, water inflow etc.; 

Kovári 1979; Schneider 2002). In the cases of mechanised construction with a shielded tunnel 

boring machine (TBM), one of the most critical hazards is TBM entrapment due to insufficient 

thrust force (“shield jamming”; Ramoni and Anagnostou 2010). Although one may tend to think 

that a larger diameter tunnel is also more critical in relation to this hazard, this is not always 

straightforward when it comes to assessment for two reasons.  

First, depending on the tunnel diameter, there are different technical limitations for certain TBM 

parameters, including the annular overcut around the shield, shield length, shield and lining 

stiffnesses and installable thrust force (Ramoni and Anagnostou 2010b). These limitations often 

have mutually competing influences on the risk of shield jamming, which render their combined 

effect complex to assess.  

Second, the tunnel diameter also poses limitations on certain parameters of the construction 

process, including the TBM advance rate during excavation and the duration of construction 

standstills. These are only relevant in the cases of time-dependent ground behaviour, and thus in 

squeezing ground. The latter may undergo rapid convergences following excavation, but its 

behaviour is often characterised by continuous deformations over a period of days, weeks, or even 

months due to creep or consolidation (Kovári and Staus 1996; Barla 2001; Anagnostou and 

Kovári 2005; Anagnostou 2007). 

Considering all aforementioned factors, the question of whether a larger diameter tunnel is more 

critical than a smaller one in relation to the risk of shield jamming becomes complex and far from 

straightforward to answer qualitatively. Although the problem of shield jamming in mechanised 

tunnelling through squeezing ground – additionally considering creep and consolidation effects –

has overall attracted significant attention in the literature (for a recent review see Chapter 2), the 

effect of the tunnel diameter on the risk of shield jamming (henceforth referred to as “scale 

effect”) has not been addressed thus far in the literature.  

This question will be numerically investigated here, considering all factors mentioned above, a 

broad range of geotechnical conditions including pronounced creep of the ground, and the main 

two operational conditions – ongoing excavation and restart after a construction standstill. For 

details concerning the case of consolidation, the reader is referred to Chapter 5, which focuses 

principally on time-dependent ground behaviour and examines the differences between creep and 

consolidation. 
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This appendix starts with the problem definition and the computational assumptions adopted in 

the numerical investigations (Section E.2). Subsequently, it presents some theoretical 

considerations that improve the understanding of the problem (Section E.3), as well as the 

practical considerations and limitations concerning the TBM and construction process parameters 

which must be considered in the simulations (Sections E.4 and E.5). Finally, it presents the results 

of the numerical investigations into the scale effect; first, for the case of time-independent ground 

behaviour, where the scale effect is associated solely with the TBM parameters (Section E.6), and 

then for the case of time-dependent behaviour, where the construction process parameters are also 

relevant and a distinction must be made between the conditions prevailing during excavation 

(Section E.7) and those during restart after a longer standstill (Section E.8). 

E.2 Computational assumptions  

Consideration is given to the rotationally symmetric problem of a deep, cylindrical tunnel of 

radius R, crossing homogeneous and isotropic rock subjected to a hydrostatic in-situ stress field 

(σ0). A numerical model of the advancing tunnel heading has been developed in Abaqus® 

(Dassault Systèmes, 2018) to simulate the mechanised excavation and lining installation, as well 

as the conditions during a sub-sequent TBM standstill of arbitrary duration (Fig. E.1). A detailed 

description of the computational assumptions can be found in Chapter 5, while some key aspects 

of the model are discussed hereafter.  

On account of rotational symmetry, the model assumes uniform overcut ΔR and backfilling 

around the segmental lining. The excavation process, which in reality consists of intervals of 

continuous TBM propulsion (with the net advance rate vN) regularly alternating with standstills 

for lining erection (zero advance rate), is simulated as continuous with an average advance rate 

v; this simplification has been shown to be sufficiently accurate in most cases (Chapter 2). At 

each numerical excavation step, part of the ground equal to the 0.5 m round length (Fig. E.1) is 

removed ahead of the face and an equal part of lining is installed immediately behind the shield 

tail (step-by-step simulation method; see, e.g., Franzius and Potts, 2005). The tunnel face is 

considered unsupported, taking into account the fact that open shield TBMs are employed in most 

practical cases of mechanised tunnelling through squeezing rocks. The tunnel support is modelled 

by radial springs that account for the shield and lining stiffnesses (Ks and Kl) as well as for the 

radial overcut ΔR (for details see Ramoni and Anagnostou, 2010b).  

In transient analyses considering creep, a linear elastic-viscous perfectly plastic constitutive 

model is adopted for the rock, with a Mohr-Coulomb yield condition and a non-associated 

viscoplastic flow rule based on Perzyna’s theory (Perzyna, 1966); this is suitable for modelling 

rheological processes in squeezing ground, where the dominant portion of time-dependent 

deformations is plastic. The model has six parameters – Young’s Modulus E, Poisson’s ratio v, 

uniaxial compressive strength fc, angle of internal friction ϕ, angle of dilation ψ, and the viscosity 

η, which determines the rate of viscoplastic deformations. Details on its formulation and 

numerical implementation in Abaqus® can be found in Chapter 2. In the absence of creep (η = 0), 

the constitutive model degenerates into the classic elastoplastic model.  
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The model provides the longitudinal distribution of the rock pressure σR (x) on the shield at any 

time instance. The simulated excavation length is set equal to 60 excavation steps which is 

sufficiently long for achieving steady state with respect to the advancing heading; the standstill 

phase of duration t is initiated thereafter. 

 
Figure E.1 Axisymmetric computational model of the advancing tunnel heading for tunnels with 

diameter of 12 m (a) and 4 m (b) (Parameters: Table E.1) 
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E.3. Theoretical considerations  

The risk of shield jamming is assessed based on the required thrust force to overcome shield skin 

friction, which depends on the rock pressure exerted on the shield (Ramoni and Anagnostou, 

2010b). In the following, the average pressure ͞σR will be considered. It is obtained via integration 

over the shield length L and depends in general on all problem parameters, including the in-situ 

stress σ0, tunnel radius R, ground parameters E, ν, fc, ϕ, ψ, η, TBM parameters Ks, Kl, L, ΔR, and 

process parameters, i.e. advance rate v, and standstill duration t (Chapter 5): 
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In practice, different technical constraints exist for the TBM parameters and the advance rate 

depending on the size of the tunnel cross-section (here the tunnel radius R), while the rock 

parameters may also differ at the representative material volume which, however, is not as 

relevant in weak, squeezing ground (Section E.4). Therefore, the dimensionless parameters in Eq. 

(E.1) cannot in general take the same values for tunnels of different size, which gives rise to the 

scale effect. 

Evidently, there is not much use in trying to quantify the combined influence of all parameters 

qualitatively; even by neglecting time-dependency to simplify matters (the last two terms in Eq. 

E.1 become irrelevant), the combined influence of the TBM parameters is cumbersome to assess, 

due to their mutually competing effects (e.g., L/R and ΔR/R both decrease with increasing R, but 

the former is favourable for the rock pressure, while the latter is unfavourable). Therefore, one 

must resort to numerical simulations. However, before undertaking this it is useful to understand 

the influence of each parameter, as it offers a better comprehension of the problem. The influence 

of the TBM parameters is generally known (Ramoni and Anagnostou, 2010b), and so in this 

instance we focus on the last two parameters related to the advance rate v and the standstill 

duration t, which are only relevant in the cases of time-dependent ground behaviour due to creep. 

To examine their influence, we consider an idealised situation where all other dimensionless 

parameters in Eq. (E.1) related to the ground and TBM are fixed regardless of R. 

First, let us examine the isolated influence of the last term related to the standstill duration t. We 

can do this by considering a case where the excavation occurs rapidly in relation to the rate at 

which the ground to responds to it (v η → ∞), which renders the penultimate parameter infinite 

regardless of R and the rock pressure only dependent on the last parameter. Since R does not 

appear in the last parameter of Eq. (E.1), one can conclude that the rock pressure develops at the 

same rate regardless of the cross-section size. 

Next, let us examine the influence of the penultimate term related to the advance rate v, by 

considering a case where the excavation is not followed by a standstill and the last term becomes 

irrelevant. First of all, in order to compare the rock pressure in tunnels with different R, v alone 

is not the most suitable measure of the rate of advance. When the shield reaches any given tunnel 

cross-section, it remains exposed to pressure at that section for as long as it is required for its 

entire length L to pass through it; therefore, the shield pressure that ultimately develops depends 
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on the time required for the TBM to advance by one shield length, i.e. L/v (= (L/R) / (v/R)), which 

is only a function of v/R since L/R is considered fixed here regardless of R. A more suitable 

measure of the rate of advance would thus be v/R – considering the same v/R means that the TBM 

takes the same time to advance by one shield length irrespective of R. For a given v/R, the 

normalised advance rate (v/R).(η/Ε) is constant, which means that the pressure develops at the 

same rate irrespective of R – exactly as in the case of the standstill examined previously. 

Combining the above, for both conditions – during advance and for restart after a standstill of the 

TBM – there would be no scale effect in the case of time-independent ground behaviour, but also 

in the case of creep, if the same dimensionless parameters related to the ground and the TBM 

could be specified for different diameter tunnels and these could be excavated with the same rate 

v/R. In all other cases, there will be a scale effect, which can only be quantified numerically. 

E.4. Practical considerations 

Notwithstanding the value of the theoretical considerations discussed in Section 3, the scale effect 

resulting from the combined influence of all parameters is far more complex due to the 

aforementioned constraints and limitations concerning the advance rate, the TBM parameters and, 

possibly, also the ground parameters. These are discussed in the following subsections. 

E.4.1 Advance rate 

The assumption adopted in Section 3 – that v/R can be the same for the two tunnels, i.e. v is 

proportional to R – is particularly erroneous, as it means that a larger diameter tunnel could be 

excavated at a higher rate. In practice, it is well-known that the larger the boring diameter, the 

slower the TBM advances, i.e. v decreases with increasing R. In fact, v can be assumed inversely 

proportional to R, which then makes v/R inversely proportional to R2, as discussed hereafter. 

Mechanised excavation can be idealised as a “stop-and-go” process, where intervals ΔT1 of 

continuous TBM propulsion over the length of one prefabricated segmental lining ring LT 

regularly alternate with standstill intervals ΔT2 for the corresponding ring installation. The net 

advance rate of the TBM during continuous excavation can thus be expressed as vN = LT/ΔT1, 

while the average advance rate during the “stop-and-go” process considered in this work (Section 

E.2) can be expressed as v = LT/(ΔT1 + ΔT2) (Chapter 2).  

The net advance rate is defined as vN = ROP*RPM, where ROP is the rate of penetration and 

RPM the number of rotations of the TBM cutterhead per minute. For tunnels under identical 

ground conditions ROP can be assumed to be the same, provided that the installed thrust force is 

higher in the larger TBM, as is common in practice. RPM can be assumed inversely proportional 

to R, considering that the linear velocity of the gauge cutters is limited to 150-200 m/min to avoid 

overheating, irrespective of the TBM diameter (Rispoli et al., 2020; Hamburger and Weber, 

1992). Under these assumptions, vN becomes inversely proportional to R. Assuming that the lining 

ring length LT is the same regardless of R, ΔT1 becomes proportional to R. It is reasonable to 

assume that ΔT2 is also proportional to R (see, e.g., Tahernia and Rostami, 2021; Farokh, 2013, 

2020), which then makes v inversely proportional to R. 
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It is indicatively noted here that, by incorporating the above realistic assumption in the theoretical 

analysis of Section E.3, the conclusions concerning the scale effect during advance already change 

completely – the normalised advance rate (v/R).(η/Ε) becomes inversely proportional to R2, which 

means that the pressure develops faster in a larger tunnel. In practice, this means that if the tunnel 

diameter was, e.g., four times larger, the pressure would develop 16 times faster (as if the ground 

viscosity η was lower by a factor of 16). On the other hand, the scale effect during a standstill 

preceded by a rapid advance (v η → ∞) is not influenced; however, as the tunnel size influences 

the advance and standstill phases differently, the overall scale effect already becomes very 

complex to assess – this is even more so the case when the technical constraints for the TBM 

parameters are additionally considered, as discussed next. This underscores the importance of 

incorporating these limitations in our numerical investigations. 

E.4.2 TBM parameters  

The TBM parameters (overcut ΔR, shield length L and shield and lining stiffnesses Ks and Kl) that 

can be materialised in practice are limited to a specific range, regardless of the tunnel diameter. 

Therefore, the nondimensional parameters EΔR/(σ0R), L/R, KsR/E and KlR/E cannot in general 

take the same values for a large and small tunnel. Furthermore, when evaluating potential scale-

effects with respect to the risk of shield jamming, it is not sufficient to only consider the shield 

loading or the required thrust force (which depend on the parameters in Eq. E.1), but also the 

installed or installable thrust force. The latter increases with the tunnel diameter, which introduces 

an additional scale effect to be considered. Typical values for these parameters based on technical 

data gathered from various TBMs can be found in Ramoni and Anagnostou (2010b). 

E.4.3 Ground parameters 

The strength and stiffness of the ground tentatively decrease with increasing representative 

volume and, in turn, tunnel diameter, hence scale-effects may exist also in relation to the ground 

parameters. However, as squeezing ground is often weak at the scale of specimen, the differences 

between a small and a large diameter tunnel with respect to the ground parameters are not 

significant and can be neglected. 

E.5. Assumptions of quantitative analysis  

Two tunnels with diameters D = 4 m and 12 m excavated under identical ground conditions will 

be analysed numerically using the computational model introduced in Section E.2 (Fig. E.1) and 

considering practically relevant TBM and process parameters based on the limitations discussed 

in Section E.4, as given in Table E.1.  

The average advance rates during the stop-and-go operation are selected to be inversely 

proportional to the diameter (Section E.4.1). The common overcut ΔR = 50 mm and shield length 

L = 10 m adopted for both tunnels are realistic, considering that the corresponding normalised 

values ΔR/R = 2.5% and 0.8%, and L/R = 5 and 1.7, are typical for D = 4 m and 12 m, respectively 

(cf. Fig. E.6 in Ramoni and Anagnostou, 2010b). The thicknesses ds of the shield and dl of the 

lining are assumed proportional to the radius R; this assumption is reasonable and makes the 
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normalised radial stiffnesses KsR/E = (Es/E) ds/R and KlR/E = (El/E) dl/R identical for the two 

tunnels, and dependent only on the Young’s moduli Es, Ec and E of steel, concrete and the ground, 

respectively.  

To assess the risk of shield jamming, the required thrust force Fr must be considered in 

combination with the installed thrust force Fi. Therefore, the comparison between the two tunnels 

is based on the ratio Fr /Fi, which expresses the percentage of Fi utilised by Fr and will be hereafter 

referred to as “thrust utilisation factor” (TUF). The required thrust force Fr is computed as  

μ 2πR L µ ͞σR, where μ denotes the static friction coefficient. Strictly speaking, this expression 

holds for the conditions during TBM restart after a standstill and not during advance; however, 

the former is the most critical operational stage in most cases (see Ramoni and Anagnostou, 

2010b), hence the expression in general provides a conservative estimate. The installed TBM 

thrust force is assumed to increase proportionally with the cross-section area, and thus with R2, 

according to the expression Fi = 5 R2 MN/m2 which provides values in the high end of the range 

of technical data collected from various TBMs (cf. Fig. 7 in Ramoni and Anagnostou 2010b).  

The scale effect is first analysed by disregarding creep (rapid squeezing development), where it 

is solely influenced by the TBM parameters (Section E.6). Subsequently, the case of time-

dependent ground behaviour due to creep is examined, considering the conditions during TBM 

advance (Section E.7) and at restart after a 200-day long TBM standstill (Section E.8). 

Table E.1. Parameters considered in the numerical simulations 
Ground   

Young’s Modulus, E [GPa] 1 
Poisson’s ratio, v [-] 0.25 
Uniaxial compressive strength, fc [MPa] var. 
Angle of internal friction, ϕ [°] 25 
Dilatancy angle, ψ [°] 5 
Depth of cover, H [m] 400 
In-situ stress at tunnel axis, σ0 [MPa] 10 
Viscosity, η [MPa.d] var. 

TBM 
  

Boring Diameter, D [m] 4 or 12 
Radial overcut, ΔR [cm] 5 
Shield length, L [m] 10 
Radial shield stiffness, Ks [MPa/m] 875 (D = 12m) 

2625 (D = 4m) 
Shield thickness, ds [m] 0.15 (D = 12m) 

0.05 (D = 4m) 
Young’s modulus of steel, Es [GPa] 210 
Average Advance rate, v [m/d] 30 (D = 12m) 

90 (D = 4m) 
Shield skin friction coefficient, μ [-] 0.15 
Installed thrust force, Fi  [MN] 180 (D = 12 m) 

20 (D = 4 m) 

Lining 
  

Young’s modulus of concrete, Ec [GPa] 30 
Lining thickness, dl [cm] 0.75 (D = 12m) 

0.25 (D = 4m) 
Radial lining stiffness, Kl [MPa/m] 625 (D = 12m) 

1875 (D = 4m) 
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E.6. Results disregarding creep 

Figure E.2 shows the thrust utilisation factors of the two tunnels with D = 4 m (solid lines) and 

D = 12 m (dashed lines) as functions of the rock quality, expressed by its uniaxial compressive 

strength fc. 

 
Figure E.2 Thrust force required to overcome shield skin friction normalised by the installed thrust force 

(“thrust utilisation factor”, TUF), as a function of the uniaxial compressive strength of the 

ground fc (no creep; parameters: Table E.1) 

 
Figure E.3 Results of a parametric study about the effects of rock strength fc, rock stiffness E and overcut 

ΔR on the thrust utilisation factor (TUF) (Fr after the design nomograms of Ramoni and 

Anagnostou, 2010b, for a 400 m deep tunnel with σ0 = 10 MPa, v = 0.25, fc = 0.5 – 4 MPa, ϕ 

= 25°, ψ = 5°, L = 10 m, ΚsR/E = 10, ΚlR/E = 0.5, μ = 0.15, Fi = 20 and 180 MN for D = 4 

and 12 m, respectively) 
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The results of Figure E.2 contradict the common perception that a smaller diameter tunnel is less 

vulnerable than a larger one. This may be unconditionally true for other potential hazards (e.g., 

instability of the tunnel face), but not for shield jamming, where it is only true in higher quality 

ground (fc > 3.2 MPa), while the opposite holds in weaker ground. The TUF of the TBM in the 

larger diameter tunnel is generally less sensitive to variations of rock quality than in the smaller 

diameter tunnel and is consistently lower than 1, which means that the tunnel excavation is 

feasible for the considered strength range, whereas the small tunnel excavation is only feasible in 

higher quality ground (fc  > ca. 2.7 MPa). 

Considering this interesting finding, a more extensive parametric study was conducted to assess 

its general validity. The computations concern a 400 m deep tunnel (σ0 = 10 MPa) and have been 

performed using the design nomograms of Ramoni and Anagnostou (2010b). Concerning ground 

parameters, consideration is given to variable uniaxial compressive strength fc = 0.5 – 4 MPa, 

Young’s moduli E = 500 fc and 1500 fc, which respectively correspond to the lower and upper 

limits of possible stiffnesses for a geomaterial with given fc, and otherwise identical parameters 

to those given in Table E.1, which were also considered by Ramoni and Anagnostou (2010b).  

Concerning TBM parameters, consideration is given to overcuts ΔR = 50, 75 and 150 mm, which 

respectively correspond to the relatively small value adopted in the computational example (Table 

E.1), an intermediate value and an unusually large value. The shield length and installed thrust 

force are as given in Table E.1, but different normalised radial stiffnesses of the shield KsR/E = 10 

and the lining KlR/E = 0.5 are considered, which correspond to those assumed by Ramoni and 

Anagnostou (2010b) for producing the design nomograms; although the latter assumption leads 

to more conservative predictions for the required thrust force, it does not affect the conclusions 

of the study otherwise.  

The results of the parametric study (Fig. E.3) confirm that a larger diameter tunnel is always less 

vulnerable than a smaller one in weak ground (dashed lines for D = 12 m consistently below solid 

lines for D = 4 m in the range of low fc). Moreover, it is less sensitive to variations of the ground 

quality and its excavation is practically feasible in all cases considered, in contrast to the smaller 

diameter tunnel, which exhibits a much higher sensitivity to the ground quality and its excavation 

is only feasible in higher quality ground. 

E.7. Results for creep and TBM advance 

In the example of Figure E.2, the TUFs of the two TBMs are equal for fc = ca. 3.2 MPa, which 

means that the competing effects of the TBM parameters (Section E.3) outweigh one another and 

the scale effect associated with these is eliminated. Therefore, the transient computations have 

been performed for this strength (and the parameters of Table E.1). This enables examining the 

isolated influence of the advance rate v or, equivalently, the viscosity η in the case of creep (note 

the dimensionless expressions in Eq. E.1).  

Figure E.4 shows the thrust utilisation factor as a function of η for the two tunnels with D = 4 m 

(solid lines) and D = 12 m (dashed lines). 
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Figure E.4 Thrust utilisation factor (TUF) as a function of the viscosity η (fc = 3.2 MPa; other parameters: 

Table E.1) 

With the exception of the range of high viscosities, a scale effect clearly exists with respect to the 

risk of shield jamming: an increase in diameter results in a higher utilisation of the thrust force, 

as reflected by the vertical distance between the dashed line and the solid line that is consistently 

below it. This means that in the case of time-dependent ground behaviour, the situation is more 

favourable for the smaller diameter, which is also consistent with the results discussed in Section 

E.6 and shown in Figure E.2: time-dependency delays squeezing, hence the rock responds to 

tunnel excavation as if it were of a higher quality, and an increase in rock quality renders a smaller 

diameter more favourable. It is noted here that this result is qualitatively consistent with the 

theoretical considerations discussed in Section E.4.1, according to which the rock pressure on the 

shield develops faster on the larger TBM for a given advance rate (or, equivalently, viscosity η 

herein). 

The scale effect is negligible in the range of high viscosities because the rock behaviour is 

practically elastic, hence the convergences around the advancing shield area are small anyway, 

regardless of the tunnel diameter. 

The scale effect can also be demonstrated in an alternative way. Let us consider a case where the 

4 m diameter tunnel was constructed first, and the actual applied force was equal to 20% of the 

installed one (TUF = 0.2). Assuming that the strength and stiffness parameters of the rock are 

known and correspond to the ones in Figure E.4, the rather low required thrust force could be 

explained on the basis of the convergence delay due to time-dependency (point A in Fig. E.4). 

What could one expect for the main, larger diameter tunnel? In order to limit the effect of 

squeezing and maintain the same, low TUF = 0.2, the viscosity η would have to be higher by a 

factor of about 50 (point B vs. A); equivalently, for the same η (as in point A), the advance rate v 

in the main tunnel would have to be about 50 times higher (note dimensionless expressions in Eq. 

E.1). This is, of course, impossible, but provides another interpretation of the scale effect. 
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For the parameters adopted in this example, the TUFs of both TBMs are consistently lower than 

the value of ca. 0.7 which corresponds to time-independent behaviour (very low viscosity; cf. Fig. 

E.2), indicating that the excavation of both tunnels is thoroughly feasible. However, the assumed 

values for the installed thrust force Fi = 5 R2 MN/m2 (20 MN for D = 4 m, 180 MN for D = 12 m; 

Table E.1) are very high for rock TBMs; with a moderate assumption, e.g. Fi = 3 R2 MN/m2 

(12 MN for D = 4 m, 108 MN for D = 12 m), jamming of the larger TBM might occur in the range 

of η = ca. 10–100 MPa.d, while the smaller TBM would remain entirely in the safe region. 

E.8. Results for creep and restart after standstill 

Transient computations have been performed considering the same parameters as before (Table 

E.1 and fc = 3.2 MPa), as well as a high viscosity η = 10,000 MPa.d to ensure that the behaviour 

during advance is elastic and, therefore, relevant shield loading develops only during the standstill 

(see TUF < 0.1 for η = 10,000 MPa.d in Fig. E.4). This enables an examination of the isolated 

influence of the standstill duration t.  

Figure E.5 shows the thrust utilisation factor as a function of t for the two tunnels with D = 4 m 

(solid lines) and D = 12 m (dashed lines).  

The same conclusions as for the advance stage examined in Section E.7 can basically be drawn 

also here. There is a clear effect of the tunnel diameter on the thrust force required for restart after 

a standstill and the associated shield jamming risk, as expressed by TUF. This scale effect is 

reflected by the width of the band defined by the dashed and solid lines.  

 
Figure E.5 Thrust utilisation factor (TUF) as a function of the standstill duration t (fc = 3.2 MPa; 

η = 104 MPa.d, other parameters: Table E.1) 



Systematic investigation on the effect of the tunnel diameter on the risk of TBM entrapment  177

E.9. Conclusions 

The present appendix numerically investigated the effect of the tunnel diameter on the risk of 

shield jamming during mechanised tunnel construction in squeezing ground, considering the 

various technical limitations concerning the TBM and construction process parameters depending 

on the tunnel diameter and the markedly time-dependent response that squeezing ground often 

exhibits. Exemplary numerical simulations with practically relevant parameters demonstrated that 

a larger diameter is always more favourable than a smaller one in poor quality ground, while the 

opposite is true in the case of higher quality ground or ground exhibiting time-dependent 

behaviour, where the delay in ground deformations is equivalent to an improvement of the ground 

quality.  

The appendix only considered time-dependency due to creep, but the conclusions drawn hold also 

for the case of consolidation – the other common mechanism of time-dependency in squeezing 

ground. Scale effect in this case is slightly less pronounced. For more details, the reader is referred 

to Chapter 5.  

Provided that data are available concerning the required thrust force in an existing tunnel, the 

findings of the present appendix provide useful indications and guidance concerning the risk of 

shield jamming during the later construction of an adjacent, different diameter tunnel. 
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Appendix F. Publications from the present thesis 
and contributions 

Chapter 2 is a paper which has been published with the following reference: Leone, T., Nordas, 

A.N. & Anagnostou, G. (2023). Effects of creep on shield tunnelling through squeezing ground. 

Rock Mechanics and Rock Engineering, doi: 10.1007/s00603-023-03505-x. 

Chapter 3 is a paper which has been published with the following reference: Leone, T., Nordas, 

A.N. & Anagnostou, G. (2024). An estimation equation for the TBM thrust force in creeping rock. 

Computers and Geotechnics, 165, 105802, doi: 10.1016/j.compgeo.2023.105802 

Chapter 4 is a paper which has been published with the following reference: Leone, T., Nordas, 

A.N. & Anagnostou, G. (2024). Creep versus consolidation in tunnelling through squeezing 

ground—Part A: Basic Time Effects. Rock Mechanics and Rock Engineering. doi: 

10.1007/s00603-023-03720-6. 

Chapter 5 is a paper which has been accepted on the 31.01.2024 for publication with the following 

reference: Nordas, A. N., Leone, T. & Anagnostou, G. (2024). Creep versus consolidation in 

tunnelling through squeezing ground  Part B: Applicability of Experience. Rock Mechanics and 

Rock Engineering (accepted for publication). 

Appendix E is a conference paper which has been accepted for publication on 02.01.2024 in the 

World Tunnel Congress 2024 with the following reference: 

Nordas, A. N., Leone, T., & Anagnostou, G. (2024). Is a large TBM diameter unfavourable under 

squeezing conditions? ITA-AITES World Tunnel Congress 2024, Shenzhen, China, 19-25 April 

2024 (accepted for publication) 

The present thesis considers the postprint version of the papers for Chapters 2, 3, 4 and 5, and 

Appendix E. 
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Following are the contributions of each author for the papers in Chapters 2 and 4: Thomas Leone: 

Numerical analyses, Formal analysis, Writing – original draft. Dr. Alexandros N. Nordas: 

Conceptualization, Formal analysis, Writing – review & editing. Prof. Dr. Georgios Anagnostou: 

Supervision, Conceptualization, Review. 

Following are the contributions of each author for the paper in Chapters 3: Thomas Leone: 

Numerical analyses, Formal analysis, Writing – original draft. Dr. Alexandros N. Nordas: Formal 

analysis, Writing – review & editing. Prof. Dr. Georgios Anagnostou: Supervision, 

Conceptualization, Review. 

Following are the contributions of each author for the paper in Chapter 5 and Appendix E: Thomas 

Leone: Numerical analyses, Formal analysis. Dr. Alexandros N. Nordas: Conceptualization, 

Formal analysis, Writing – original draft, review & editing. Prof. Dr. Georgios Anagnostou: 

Supervision, Conceptualization, Review. 
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Notation 

A coefficient used in the time function g 

A coordinate transformation matrix 

B coefficient used in the approximation of σ*
t=0 

c cohesion of the ground 

C1 coefficient used in the approximation of Δσ*
t=∞ 

C2 coefficient used in the approximation of Δσ*
t=∞ 

D tunnel diameter 

D1 coefficient used in the time function g 

D2 coefficient used in the time function g 

D3 coefficient used in the time function g 

D4 coefficient used in the approximation of t*
c 

 constant elastic stiffness matrix according to Hooke’s law 

Dvp viscoplastic tangent stiffness matrix in the principal coordinate system 

Dvp,c consistent viscoplastic tangent stiffness matrix in the principal coordinate system 

vpD  viscoplastic tangent stiffness matrix in the local coordinate system 

dl thickness of the lining 

ds thickness of the shield 

E Young’s modulus of the ground 

Ec Young’s modulus of the lining 

Es Young’s modulus of the shield 

e internal distance between the tunnel boundaries 

Fb thrust force required for boring 

Fi installed thrust force  

Fr thrust force required to overcome shield skin friction 

fc uniaxial compressive strength of the ground 

fc
* normalised fc  

elD
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fi yield function 

fs seepage force 

ft tensile strength of the ground 

g time function describing rock pressure development during standstills 

gi plastic potential function 

H depth of cover 

Hw Water table level above tunnel axis 

Kl stiffness of the lining  

Ks stiffness of the shield  

k permeability of the ground 

L length of the shield 

LT length of one lining segment  

m yield surface slope in the principal stress planes 

n normal vector to the tunnel boundary 

ni normal vector to the yield surface fi 

N number of TBM stroke-lining ring erection (“stop-and-go”) cycles 

p pore pressure  

p0 in-situ pore pressure  

q flux 

ri normal vector to the plastic potential surface gi 

R tunnel radius; in Chapter 4: tunnel radius in the deformed configuration 

R' maximum tunnel radius for achieving equilibrium  

Rp size of the seepage flow domain  

Rσ size of the computational domain  

R0 tunnel radius in the undeformed configuration 

R2 coefficient of determination 

ROP rate of penetration 

RPM number of rotations of the TBM cutterhead per minute 

r radial coordinate (distance from the tunnel axis) 

s round length 

T torque required to restart cutterhead rotation 

T modification matrix 

Ti installed torque 

TBM tunnel boring machine 

TUF thrust utilisation factor  

t time 

tc time at which contact between ground and shield occurs in Chapter 3, and at 
which contact between ground and cutterhead occurs in Chapter 4 
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tF time at which the frictional force to overcome shield jamming is equal to the 
installed thrust force of the machine 

tT time at which the torque needed to overcome cutterhead jamming is equal to the 
installed torque of the machine 

t* normalised t 

t95 time to achieve 95% of the time-dependent displacement or lining load increment 

u radial displacement of the ground at the tunnel boundary 

uR radial displacement of the ground at the tunnel boundary in Chapter 5 

ue axial displacement at the centre of the face  

v advance rate 

v* normalised advance rate 

vN net advance rate over the TBM strokes 

vN
* normalised vN 

vG gross advance rate over one full excavation cycle 

vS smeared advance rate over the “stop-and-go” phase 

vS
* normalised vS  

x axial coordinate (distance behind the tunnel face) 

xf distance of the tunnel face from the left model boundary 

y horizontal coordinate 

z vertical coordinate 

γ unit weight of the ground  

γij shear strain component over the plane ij of the local coordinate system 

γw unit weight of the pore water  

Δεj strain increment in the principal coordinate system at iteration j 

Δ ͠εj strain increment in the local coordinate system at iteration j 

Δσ increase in rock pressure during a standstill  

Δσ* normalised Δσ 

Δσt=∞ increase in rock pressure during a standstill that reaches steady state 

Δσ*
t=∞ normalised Δσt=∞ 

Δσt=∞,vs=∞ Δσt=∞ for infinite advance rate 

Δσ*
t=∞,vs=∞ normalised Δσt=∞,vs=∞ 

ΔDh convergence in y-coordinate  

ΔDv convergence in z-coordinate  

ΔT1 duration of one TBM stroke  

ΔT2 duration of one lining ring erection 

ΔT3 duration of TBM standstill following the “stop-and-go” phase 

ΔT duration of one full excavation cycle  

ΔR annular gap (overcut)  
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ΔR* normalised ΔR 

Δx longitudinal gap between cutterhead and tunnel face  

δu additional displacement occurring during standstill  

ε strain vector in the principal coordinate system 

͠ε strain vector in the local coordinate system 

 total strain rate vector in the principal coordinate system 

 elastic strain rate vector in the principal coordinate system 

 viscoplastic strain rate vector in the principal coordinate system 

εi normal strain component along the principal coordinate axis i 

εii normal strain component along the local coordinate axis i 

εp equivalent plastic strain 

η viscosity of the ground 

κ dilatancy constant 

 deconfinement factor 

 viscoplastic multiplier of plastic potential surface gi 

μ sliding shield skin friction coefficient 

μst static shield skin friction coefficient 

μst,c static friction coefficient between cutterhead and ground 

ν Poisson’s ratio of the ground 

ρ  radius of the plastic zone 

σ stress vector in the principal coordinate system 

͠σ stress vector in the local coordinate system 

 stress rate vector in the principal coordinate system 

σel
 elastic stress predictor 

σj stress vector in the principal coordinate system at iteration j 

͠σj stress vector in the local coordinate system at iteration j 

σ rock pressure average over the shield 

σ* normalised σ  

σ0 in-situ vertical stress 

σi normal stress component along the principal coordinate axis i 

σii normal stress component along the local coordinate axis i 

σR radial ground pressure at the tunnel boundary 

R  average radial ground pressure over the shield 

σr radial stress 

σ’t effective tangential stress 

σt=0 rock pressure average over the shield during advance 

σ*
t=0 normalised σt=0 

ε
elε

vpε

vp
i

σ
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σt=∞ rock pressure average over the shield during a standstill that reaches steady state 

σt=0, η=0 rock pressure average over the shield during advance for zero viscosity 

σ*
t=0, η=0 normalised σt=0, η=0 

σx longitudinal ground pressure on the cutterhead 

σy total stress in y-coordinate 

σ’y effective stress in y-coordinate 

σz total stress in z-coordinate 

σ’z effective stress in z-coordinate 

τij shear stress component over the plane ij of the local coordinate system 

ϕ angle of internal friction of the ground 

ψ dilatancy angle of the ground 

 





 187

References 

Anagnostou, G. (2006). Tunnel stability and deformations in water-bearing ground. Paper 

presented at the Eurock 2006: ISRM Symposium of Multiphysics coupling and long term 

behaviour in rock mechanics, Liège, Belgium, May 9-12, 2006. doi: 10.3929/ethz-a-010819313 

Anagnostou, G. (2007). Practical consequences of the time-dependency of ground behavior for 

tunneling. Proceedings - Rapid Excavation and Tunneling Conference, 255-265 

Anagnostou, G. (2009a). The effect of advance-drainage on the short-term behaviour of squeezing 

rocks in tunneling. In Proceedings of the 1st International Symposium on Computational 

Geomechanics (pp. 668-679). International Center of Computational Engineering. 

Anagnostou, G. (2009b). Pore pressure effects in tunneling through squeezing ground. In 

Proceedings of the Second International Conference on Computational Methods in Tunnelling: 

Ruhr University Bochum, September 9-11, 2009 (pp. 361-368). Aedificatio Publ. 

Anagnostou, G. (2014). Some critical aspects of subaqueous tunnelling. Muir Wood Lecture 

WTC 2014, Iguassu. 

Anagnostou, G. (2016). Role played by ETH chair of underground construction in the Gotthard 

base tunnel. In: "Tunnelling the Gotthard", Ehrbar et al. (Eds.), 684-689. 

Anagnostou, G., Kovári, K. (1993): Significant parameters in elasto-plastic analysis of 

underground openings. ASCE, Journal of Geotechnical Engineering, 119 (3), 401-419. 

Switzerland. doi: 10.1061/(ASCE)0733-9410(1993)119:3(401) 

Anagnostou, G., Kovári, K. 2003. The stability of tunnels in grouted fault zones. ETH, IGT, Vol. 

220. 

Anagnostou, G., Kovári, K. (2005) Tunnelling through geological fault zones. In: International 

symposium on design, construction and operation of long tunnels, Taipei, vol 1. Chinese Taipei 

Tunnelling Association, Taipei, pp 509–520 



 188

Anagnostou, G., Zingg, S. (2013). On the stabilizing effect of advance drainage in tunnelling. 

Geomechanics and Tunnelling, 6(4), 338-354. 

Anagnostou, G., Schuerch, R., Perazzelli, P., (2018). Lake Mead Intake No 3 tunnel – Design 

considerations and construction experiences. Geomech. Tunnelling 11, 15–23. doi: 

10.1002/geot.201700067. 

Anagnostou, G., Pimentel, E., Cantieni, L. (2008). AlpTransit Gotthard Basistunnel, Teilabschnitt 

Sedrun, Felsmechanische Laborversuche Los 378, Schlussbericht, Bericht Nr. 080109. Zurich, 

Switzerland: IGT, ETH Zurich (in German) 

Anagnostou G, Cantieni L, Nicola A, Ramoni M (2010) Lake Mead No 3 Intake Tunnel—

geotechnical aspects of TBM operation. In: Tunnelling: sustainable infrastructure, North 

American Tunnelling Conference, Portland. SME Inc., Littleton, pp 125–135 

Arn, T. (1989). Numerische Erfassung der Strömungsvorgänge im geklüfteten Fels. Ph.D. Thesis. 

ETH Zurich. (In German) doi: 10.3929/ethz-a-000507798 

Arora, K., Gutierrez, M., Hedayat, A. (2021a). New Physical Model to Study Tunnels in 

Squeezing Clay-Rich Rocks. Geotechnical Testing Journal, 44(4), 1055-1078. doi: 

10.1520/GTJ20200081 

Arora, K., Gutierrez, M., Hedayat, A. (2022). Physical model simulation of rock-support 

interaction for the tunnel in squeezing ground. Journal of Rock Mechanics and Geotechnical 

Engineering, 14(1), 82-92. doi: 10.1016/j.jrmge.2021.08.016 

Arora, K., Gutierrez, M., Hedayat, A., Cruz, E. C. V. (2021b). Time-Dependent Behavior of the 

Tunnels in Squeezing Ground: An Experimental Study. Rock Mechanics and Rock Engineering, 

54(4), 1755-1777. doi: 10.1007/s00603-021-02370-w 

Ates, U., Bilgin, N.,  Copur, H. (2014). Estimating torque, thrust and other design parameters of 

different type TBMs with some criticism to TBMs used in Turkish Tunnelling projects. 

Tunnelling and Underground Space Technology, 40, 46-63. doi: 10.1016/j.tust.2013.09.004 

Bamford, W., Yaghoubi, E. (2017). Cutter/rock interface friction: Worth measuring accurately? 

In Barton, ACT (eds.): 16th Australasian Tunnelling Conference 2017 - Challenging 

Underground Space: Bigger, Better, More. Engineers Australia. doi: 

10.3316/informit.380552563012939 

Barla G (2001) Tunnelling under squeezing rock conditions. In: Eurosummer-school in tunnel 

mechanics, Innsbruck. Logos Verlag, Berlin, pp 169–268 

Barla, G. (2018). Challenges in the Understanding of TBM Excavation in Squeezing Conditions. 

Gallerie e grandi opere sotteranee, 125 - marzo 2018, 67-82 



References 189

Barla, G., Bonini, M., Debernardi, D. (2008). Time Dependent Deformations in Squeezing 

Tunnels. In: The 12th international conference of International Association of Computer Methods 

and Advances in Geomechanics (IACMAG), Goa, India 

Barla, G., Barla, M., Bonini, M., Debernardi, D. (2014). Guidelines for TBM tunnelling in 

squeezing conditions – a case study. Géotechnique Letters, 4, 83–87. doi: 

10.1680/geolett.13.00065 

Barla, G., Debernardi, D., Sterpi, D. (2012). Time-Dependent Modeling of Tunnels in Squeezing 

Conditions. International Journal of Geomechanics, 12(6), 697-710. doi: 

10.1061/(ASCE)GM.1943-5622.0000163 

Bernaud, D. (1991) Tunnels profonds dans les milieux viscoplastiques : approches expérimentale 

et numérique. Modeling and Simulation. École Nationale des Ponts et Chaussées, France, French. 

Available at: https://tel.archives-ouvertes.fr/tel-00529719 

Boidy, E., Bouvard, A., Pellet, F. (2002). Back analysis of time-dependent behaviour of a test 

gallery in claystone. Tunnelling and Underground Space Technology, 17(4), 415-424. doi: 

10.1016/S0886-7798(02)00066-4 

Bonini, M., Debernardi, D., Barla, M., Barla, G. (2007). The Mechanical Behaviour of Clay 

Shales and Implications on the Design of Tunnels. Rock Mechanics and Rock Engineering, 42(2), 

361. doi:10.1007/s00603-007-0147-6 

Bufalini, M., Dati, G., Rocca, M. and Scevaroli, R. (2017). The Mont Cenis Base Tunnel. 

Geomechanics and Tunnelling, 10: 246-255. doi:10.1002/geot.201700009 

Burger, W. (2023). Personal communication. 

Burgers, J. M. (1935). Mechanical considerations - model systems - phenomenological theories 

of relaxation and of viscosity. J.M. Burgers (Ed.), First Report on Viscosity and Plasticity, 

Nordemann Publishing Company, New York 

Cantieni, L., Anagnostou, G. (2009). The Effect of the Stress Path on Squeezing Behaviour in 

Tunnelling. Rock Mechanics and Rock Engineering 42, 289–318. doi: 10.1007/s00603-008-

0018-9 

Cantieni, L., Anagnostou, G., Hug, R. (2011). Interpretation of Core Extrusion Measurements 

When Tunnelling Through Squeezing Ground. Rock Mechanics and Rock Engineering, 44. doi: 

10.1007/s00603-011-0170-5 

Clausen, J. (2007). Efficient Non-Linear Finite Element Implementation of Elasto-Plasticity for 

Geotechnical Problems. Esbjerg Institute of Technology, Aalborg University. 



 190

Clausen, J., Damkilde, L., & Andersen, L. (2007). An efficient return algorithm for non-

associated plasticity with linear yield criteria in principal stress space. Computers & Structures, 

85(23–24), 1795–1807. doi :10.1016/J.COMPSTRUC.2007.04.002 

Corbetta, F. (1990). Nouvelles méthodes d'étude des tunnels profonds : calculs analytiques et 

numériques. Thèse. École Nationale Supérieure des Mines de Paris, France, French. Available at: 

http://www.theses.fr/1990ENMP0227 

Dassault Systèmes (2018). ABAQUS 2018 Theory manual. Dassault Systèmes Simulia Corp., 

Providence, Rhode Island 

Debernardi, D. (2008). Viscoplastic behaviour and design of tunnels. Ph.D. Thesis, Politecnico di 

Torino, Department of Structural and Geotechnical Engineering, Italy. 

De la Fuente, M., Sulem, J., Taherzadeh, R., Subrin, D. (2020). Tunneling in Squeezing Ground: 

Effect of the Excavation Method. Rock Mechanics and Rock Engineering, 53(2), 601-623. doi: 

10.1007/s00603-019-01931-4 

Debernardi, D. (2008). Viscoplastic behaviour and design of tunnels. Ph.D. Thesis, Politecnico di 

Torino, Italy 

Egger, P., Ohnuki, T., & Kanoh, Y. (1982). Bau des Nakayama-Tunnels Kampf gegen 

Bergwasser und vulkanisches Lockergestein. In Engineering Geology and Geomechanics as 

Fundamentals of Rock Engineering: Contributions to the 30th Geomechanical Colloquium of the 

Austrian Society for Geomechanics, Salzburg 7.–9. Oktober 1981. pp. 275-293. Springer Vienna. 

Ehrbar, H., Gruber, Luzi. R., Sala, A., Zbinden, P. (2016). Tunnelling the Gotthard - the success 

story of the Gotthard Base Tunnel Published by the STS Swiss Tunnelling Society 

Farrokh, E. (2013). Study of utilization factor and advance rate of hard rock TBMs. Ph.D. thesis, 

Pennsylvania State University, USA. 

Farrokh, E. (2020). A study of various models used in the estimation of advance rates for hard 

rock TBMs. Tunnelling and Underground Space Technology, 97, 103219. doi: 

10.1016/j.tust.2019.103219 

Franzius, J. N., Potts, D. M. (2005). Influence of mesh geometry on three-dimensional finite-

element analysis of tunnel excavation. International Journal of Geomechanics, 5(3), 256-266. doi: 

10.1061/(ASCE)1532-3641(2005)5:3(256) 

Fritz, P. (1981). Numerische Erfassung rheologischer Probleme in der Felsmechanik. ETH 

Zürich, Switzerland. Available at: http://hdl.handle.net/20.500.11850/137161 

Gärber, R. (2003). Design of deep galleries in low permeable saturated porous media. Thèse No 

2721, EPFL Lausanne 



References 191

Ghaboussi, J., Gioda, G. (1977). On the time-dependent effects in advancing tunnels. International 

Journal for Numerical and Analytical Methods in Geomechanics, 1(3), 249-269. doi: 

10.1002/nag.1610010303 

Graziani A, Ribacchi R (2001) Short- and long-term load conditions for tunnels in low 

permeability ground in the framework of the convergence–confinement method. Adachi et al. 

(eds), Modern Tunneling Science and Technology, Swets and Zeitlinger1, 83–88 

Hamburger, H., Weber, W., 1992. Tunnelbau im Untertagebau – Tunnelvortrieb mit Vollschnitt- 

und Erweiterungsmaschinen für grosse Durchmesser im Festgestein. Taschenbuch für den 

Tunnelbau 1993, 139–197, Verlag Glückauf GmbH Essen. 

Hasanpour, R., Rostami, J., Barla, G. (2015). Impact of Advance Rate on Entrapment Risk of a 

Double-Shielded TBM in Squeezing Ground. Rock Mechanics and Rock Engineering, 48(3), 

1115-1130. doi: 10.1007/s00603-014-0645-2 

Heeres, O. M., Suiker, A. S. J., de Borst, R. (2002). A comparison between the Perzyna 

viscoplastic model and the Consistency viscoplastic model. European Journal of Mechanics - 

A/Solids, 21(1), 1-12. doi: 10.1016/S0997-7538(01)01188-3 

Hou, S., Liu, Y., Zhuang, W., Zhang, K., Zhang, R., Yang, Q. (2022). Prediction of shield 

jamming risk for double-shield TBM tunnels based on numerical samples and random forest 

classifier. Acta Geotechnica. doi: 10.1007/s11440-022-01567-9 

Itasca Consulting Group, Inc. (2019) FLAC — Fast Lagrangian Analysis of Continua, Ver. 8.1. 

Minneapolis: Itasca 

Kirsch, E. G. (1898). Die Theorie der Elastizität und die Bedürfnisse der Festigkeitslehre. 

Zeitschrift des Vereines deutscher Ingenieure, 42, 797–807 

Koiter, W. T. (1953). Stress-strain relations, uniqueness and variational theorems for elastic-

plastic materials with a singular yield surface. Quarterly of Applied Mathematics, 11(3), 350-354. 

Available at: http://www.jstor.org/stable/43634060 

Kovári, K. (1979). Basic considerations on the design of underground openings. IABSE Surveys 

= Revues AIPC = IVBH Berichte, 3, 23. doi: 10.5169/seals-44930 

Kovári, K., Ehrbar, H. (2008): The tunnel stretches with squeezing rock in the TZM-Nord of the 

Gotthard Base Tunnel - Design and Execution. Swiss Tunnel Congress, Lucerne. Band 7; SIA 

Dokumentation, 39-47 (in German) 

Kovári K, Staus J (1996) Basic considerations on tunnelling in squeezing ground. Rock Mech 

Rock Eng 29(4):203–210 

Liu, Y., Hou, S., Yang, Q., Jin, F., Chaoyi, L., Qin, P., Zhou, H. (2019). Excavation simulation 

and support time study of deep buried double-shield TBM tunnel. Fontoura, Rocca & Pavón 



 192

Mendoza (Eds). Rock Mechanics for Natural Resources and Infrastructure Development, 2950-

2957 

Lombardi, G. (1976). Gotthardtunnel: Gebirgsdruckprobleme beim Bau des Strassentunnels. 

Lombardi, G., Neuenschwander, M., Panciera, A., 2009. Gibraltar tunnel project update–the 

geomechanical challenges. Geomech. Tunnelling 2 (5), 578–590. 

Lussu, A., Grüllich, S., Kaiser, C. and Fontana, A. (2019). 15 km TBM exploratory tunnel 

excavation in the construction Lot H33 of the Brenner Base Tunnel. Geomechanics and 

Tunnelling, 12: 595-603. doi: 10.1002/geot.201900039 

Mezger, F., Anagnostou, G., Ziegler, H. J. (2013). The excavation-induced convergences in the 

Sedrun section of the Gotthard Base Tunnel. Tunnelling and Underground Space Technology, 38, 

447-463. doi: 10.1016/j.tust.2013.07.016 

Mezger, F. Anagnostou, G. (2019). On the variability of squeezing behaviour in tunnelling. 

Bundesamt für Strassen, FB 1664 AGT. doi: 10.3929/ethz-b-000424080. Available at: 

https://www.mobilityplatform.ch/fileadmin/mobilityplatform/normenpool/21754_1644_Inhalt.p

df. Access date: 10.08.2022 

Mezger, F. (2019). On the variability of squeezing behaviour in tunnelling. Doctoral dissertation 

25638, ETH Zurich. doi: 10.3929/ethz-b-000359768 

Mohammadzamani, D., Mahdevari, S., Bagherpour, R. (2019). Evaluation of required thrust force 

based on advance rates in shielded TBMs under squeezing conditions. Journal of Geophysics and 

Engineering, 16(5), 842-861. doi: 10.1093/jge/gxz050 

Morosoli, D., Cantieni, L., Anagnostou, G. (2023). Design considerations for deep caverns in 

Opalinus Clay. In Anagnostou, G., Benardos, A., & Marinos, V. P. (Eds.) Expanding 

Underground-Knowledge and Passion to Make a Positive Impact on the World: Proceedings of 

the ITA-AITES World Tunnel Congress 2023 (WTC 2023), 12-18 May 2023, Athens, Greece. 

CRC Press.. pp. 2114-2121. doi: 10.3929/ethz-b-000614352 

Nguyen Minh, D., Corbetta, F. (1991). Nouvelle méthodes de calcul des tunnels revêtus incluant 

l’effet du front de taille. In: 7th congress of the International Society for Rock Mechanics (ISRM), 

Aachen. A.A. Balkema, Rotterdam, vol 2, pp 1335–1338. 

Nordas, A., Natale, M., Leone, Th., Anagnostou, G. (2023a): Thrust force requirements in fault 

zones with squeezing ground. Computers and Geotechnics, Volume 160, doi: 

10.1016/j.compgeo.2023.105479 

Nordas, A.N., Brauchart, A, Anthi, M., Anagnostou, G. (2023b). Calibration method and material 

constants of an anisotropic, linearly elastic and perfectly plastic Mohr-Coulomb constitutive 

model for Opalinus Clay. Rock Mechanics and Rock Engineering (accepted for publication). 



References 193

Nordas, A. N., Natale, M., Anagnostou, G., & Cantieni, L. (2023c). Study into the TBM jamming 

hazard in Opalinus clay. In Anagnostou, G., Benardos, A., & Marinos, V. P. (Eds.) Expanding 

Underground-Knowledge and Passion to Make a Positive Impact on the World: Proceedings of 

the ITA-AITES World Tunnel Congress 2023 (WTC 2023), 12-18 May 2023, Athens, Greece. 

CRC Press. pp. 2146-2153. doi: 10.3929/ethz-b-000614351 

Pellet, F. (2004). Viscoplasticity and Rock Damage Applied to Modelling of the Long Term 

Behaviour of Underground Structures. G. Barla (Ed.). X Ciclo di Conferenze di Meccanica e 

Ingegneria delle Rocce, Patron Editore, Chapter 14, 423-448 

Pellet, F. (2009). Contact between a Tunnel Lining and a Damage-Susceptible Viscoplastic 

Medium. Computer Modeling in Engineering and Sciences, 52, 279-296. doi: 

10.3970/cmes.2009.052.279 

Perzyna, P. (1966). Fundamental Problems in Viscoplasticity. In G. G. Chernyi, H. L. Dryden, P. 

Germain, L. Howarth, W. Olszak, W. Prager, R. F. Probstein, H. Ziegler (Eds.), Advances in 

Applied Mechanics, Elsevier, Vol. 9, 243-377 

Pliego JM (2005) Open session—the Gibraltar Strait Tunnel. An overview of the study process. 

Tunnelling and underground space technology 20(6):558–569 

Ramond, P., Schivre, M. (2019). État de l’art concernantles évolutions des tunnelierset de leurs 

capacités de 2000 à 2019. AFTES (Recommandation de l’AFTES n°GT4R6F2 du 23 mai 2019) 

(In French) 

Ramoni, M. (2010). On the feasibility of TBM drives in squeezing ground and the risk of shield 

jamming. (236). Ph.D. Thesis. ETH Zurich. doi: 10.3929/ethz-a-006080779. Available at : 

http://hdl.handle.net/20.500.11850/30138 

Ramoni, M., Anagnostou, G. (2010a). Tunnel boring machines under squeezing conditions. 

Tunnelling and Underground Space Technology 25(2), 139-157. doi: 10.1016/j.tust.2009.10.003 

Ramoni, M., Anagnostou, G. (2010b). Thrust force requirements for TBMs in squeezing ground. 

Tunnelling and Underground Space Technology, 25(4), 433-455. doi: 10.1016/j.tust.2010.02.008 

Ramoni, M., Anagnostou, G. (2011a). Design aids for the planning of TBM drives in squeezing 

ground. Research project FGU 2007/005 of the Swiss Federal Roads Office (FEDRO), Report 

1341. Zürich 

Ramoni, M., Anagnostou, G. (2011b). The Effect of Consolidation on TBM Shield Loading in 

Water-Bearing Squeezing Ground. Rock Mechanics and Rock Engineering, 44(1), 63-83. doi: 

10.1007/s00603-010-0107-4 

Ramoni, M., Anagnostou, G. (2011c). The Interaction Between Shield, Ground and Tunnel 

Support in TBM Tunnelling Through Squeezing Ground. Rock Mechanics and Rock Engineering, 

44(1), 37-61. doi: 10.1007/s00603-010-0103-8 



194

Rispoli, A., Ferrero, A. M., Cardu, M. (2020). From Exploratory Tunnel to Base Tunnel: Hard 

Rock TBM Performance Prediction by Means of a Stochastic Approach. Rock Mechanics and 

Rock Engineering, 53(12), 5473-5487. doi: 10.1007/s00603-020-02226-9 

Rostami, J. (2008). Hard Rock TBM Cutterhead Modeling for Design and Performance 

Prediction. Geomechanics and Tunnelling, 1(1), 18-28. doi: 10.1002/geot.200800002 

Sänger, B., 2006. Disc cutters for hardrock TBM 1986–2006 – History and tendencies of 

development. Felsbau 24 (6), 46–51 

Schivre, M., Bochon, A., Vinnac, A., Ramond, P., Bianchi, G. W., Fuoco, S. (2014). TBM 

excavation of the Frejus safety tunnel through highly deformable schistous rock mass under high 

rock cover. Proceedings of the World Tunnel Congress 2014, Foz do Iguaçu, Brazil 

Schneider, A. (2002). Sicherheit gegen Niederbruch im Untertagbau. Ph.D. Thesis. ETH Zurich. 

(in German) doi: 10.3929/ethz-a-004466621 

Skuk, S., Wegscheider, D. (2015). Brenner Base Tunnel – a 10.5 km double shield TBM drive in 

granite / Brenner Basistunnel – 10,5 km Doppelschild-TBM im Granit. Geomechanik Tunnelbau, 

8: 221-238. doi: 10.1002/geot.201500006 

Steiner, W. (1996). Tunnelling in squeezing rocks: case histories. Rock Mechanics and Rock 

Engineering, 29(4), 211-246. 

Sterpi, D., Gioda, G. (2009). Visco-Plastic Behaviour around Advancing Tunnels in Squeezing 

Rock. Rock Mechanics and Rock Engineering, 42(2), 319-339. doi: 10.1007/s00603-007-0137-8 

Swannell, N., Palmer, M., Barla, G., Barla, M. (2016). Geotechnical risk management approach 

for TBM tunnelling in squeezing ground conditions. Tunnelling and Underground Space 

Technology, 57, 201-210. doi: 10.1016/j.tust.2016.01.013 

Tahernia, T., Rostami, J. (2021). The effect of TBM Diameter on Ring installation time, Rapid 

Excavation and Tunneling Conference 2021. Proceedings Jarrett E. Carlson, Gregg W. Davidson 

Society for Mining, Metallurgy & Exploration, 6 juin 2021 - 1248 pages. 

Terzaghi, K. (1925). Erdbaumechanik auf bodenphysikalischer Grundlage. Deuticke. Wien 

Vinnac, A., Marcucci, E., Schivre, M., Semeraro, M., Chiriotti, E. (2014). Performance 

monitoring for back-analysis of hard rock TBM tunnelling: the case of the Frejus safety tunnel. 

Proceedings of the World Tunnel Congress 2014, Foz do Iguaçu, Brazil 

Vlachopoulos, N., Diederichs, M.S., 2009. Improved longitudinal displacements profiles for 

convergence confinement analysis of deep tunnel. Rock Mech. Rock Eng. 42, 131–146. doi: 

10.1007/s00603-009-0176-4 



References 195

Vogelhuber, M. (2007). Der Einfluss des Porenwasserdrucks auf das mechanische Verhalten 

kakiritisierter Gesteine. Doctorate thesis dissertation No. 17079, Institut für Geotechnik, ETH 

Zürich, Zurich, Switzerland (in German).. doi: 10.3929/ethz-a-005399238 

Vogelhuber, M., Pimentel, E., Anagnostou, G. (2023). Strength, deformability and permeability 

of kakiritic rocks from the Gotthard base tunnel. Journal of Rock Mechanics and Geotechnical 

Engineering. doi: 10.1016/j.jrmge.2023.03.009 

Vrakas, A., Anagnostou, G. (2015). A simple equation for obtaining finite strain solutions from 

small strain analyses of tunnels with very large convergences. Géotechnique, 65(11), 936-944. 

doi:10.1680/jgeot.15.P.036 

Vrakas, A., Dong, W., Anagnostou, G. (2018). Elastic deformation modulus for estimating 

convergence when tunnelling through squeezing ground. Géotechnique, 68(8), 713-728. 

doi:10.1680/jgeot.17.P.008 

Zhang, J.-Z., Zhou, X.-P. (2017). Time-dependent jamming mechanism for Single-Shield TBM 

tunneling in squeezing rock. Tunnelling and Underground Space Technology, 69, 209-222. doi: 

10.1016/j.tust.2017.06.020 

Zhang, Y., Xu, W.-y., Shao, J.-f., Zhao, H.-b., Wang, W. (2015). Experimental investigation of 

creep behavior of clastic rock in Xiangjiaba Hydropower Project. Water Science and Engineering, 

8(1), 55-62. doi: 10.1016/j.wse.2015.01.005 

Zienkiewicz, O. C., Cormeau, I. C. (1974). Visco-plasticity—plasticity and creep in elastic 

solids—a unified numerical solution approach. International Journal for Numerical Methods in 

Engineering, 8(4), 821-845. doi: 10.1002/nme.1620080411 

Zienkiewicz, O. C., Humpheson, C., Lewis, R. W. (1975). Associated and non-associated visco-

plasticity and plasticity in soil mechanics. Géotechnique, 25(4), 671-689. doi: 

10.1680/geot.1975.25.4.671 




