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A B S T R A C T

This thesis provides a general construction of the Kinetic Field Theory (KFT)
framework and its microscopic perturbation theory for any classical physical
system which can be described by a Hamiltonian. The generating functional of
KFT is constructed based on a definition of phase space in terms of the cotangent
bundle of configuration space and utilizing methods borrowed from the path
integral formulation of classical mechanics. From it, observables of the system
and their expectation values are derived. In order to facilitate calculations, an
expansion in the interactions is performed leading to a microscopic pertur-
bation theory. Improvements over previous approaches to this perturbative
treatment include novel expressions for contributions to observables as well
as a transparent diagrammatic formalism, both in a significantly generalized
setting. The results are applied to two problems from the field of cosmology:
cosmic structure formation and clustering of cosmic neutrinos.
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Z U S A M M E N FA S S U N G ( G E R M A N A B S T R A C T )

Diese Dissertation beschreibt die Konstruktion von Kinetischer Feldtheorie
und seiner mikroskopischen Störungstheorie für beliebige klassische physikali-
sche Systeme, die durch eine Hamilton-Funktion beschrieben werden können.
Basierend auf einer Definition des Phasenraums als Tangentialbündel des Kon-
figurationsraums und unter Verwendung von Methoden, die aus der Pfadinte-
gralformulierung der klassischen Mechanik entlehnt sind, wird das erzeugende
Funktional von Kinetischer Feldtheorie konstruiert. Aus diesem Funktional
werden Beobachtungsgrößen des Systems und ihre Erwartungswerte abgeleitet.
Um Berechnungen zu ermöglichen wird eine Entwicklung in den Wechsel-
wirkungen durchgeführt, die zu einer mikroskopischen Störungstheorie führt.
Verbesserungen gegenüber früheren Ansätzen dieser perturbativen Behandlung
sind unter anderem neue Ausdrücke für Beiträge zu Beobachtungsgrößen sowie
ein transparenter diagrammatischer Formalismus, beides in einem erheblich
verallgemeinerten Kontext. Die Ergebnisse werden auf zwei Probleme aus dem
Bereich der Kosmologie angewendet, der Bildung kosmischer Strukturen und
der Überdichte kosmischer Neutrinos.
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In the beginning, the big bang created the universe. What happened within
the first billionth part of a second of its lifetime is currently far from understood.
It is a monumental achievement of cosmology, physics and science in general
that we have a quite detailed understanding of the evolution of the universe
since then—a time span between 10−9 and 1017 seconds after the big bang.

Granted, there is a lot which we do not know yet. Dark Energy (DE) seems
to be described well by a Cosmological Constant (Λ), but its magnitude is
far smaller than naively expected.[11] It is possible that DE is dynamic and
better described by a scalar, vector or tensor field. Alternatively, it could be that
Einstein’s theory of general relativity does not quite describe gravity correctly
and instead a modification is necessary. Such modified theories of gravity can
give rise to the observed accelerated expansion of the universe at late times.[12]

Conveniently, modified theories of gravity and additional fields might also
be an explanation of the second elusive dark component of our universe,
Dark Matter (DM).[13] Well described as a particle which does not interact
electromagnetically with other standard model particles[14], DM manifests its
presence through its gravitational attraction. We can indirectly observe halos of
invisible mass around galaxies through observations of gravitational lensing
and other observables. Moreover, baryonic matter is more clustered than would
be expected from its own gravitational attraction alone.[15]

While DE and DM account for at least 95% of our lack of knowledge (by
present time energy density [16]), the about 5% of the universe we call ordinary
matter are not fully understood either. Depending on the context, stars or
even galaxies can be regarded as point particles in cosmology. In such cases,
three of the four fundamental forces of nature can mostly be ignored and only
gravitational interactions need to be considered.

When considering processes on smaller scales, at higher energies or in the
early universe, such a simplification is not possible. Then, knowledge from
particle physics, astrophysics and many other areas need to be combined in
order to understand the universe as a whole. Examples are black holes and
their formation, the genesis of baryons and their subsequent nuclear reactions,
formation of stars and reionization. Any uncertainties or gaps in knowledge
regarding any of these areas induces uncertainty about the universe as a whole.

Yet, it is a fortuitous fact that often in physics understanding of a system does
not necessitate full knowledge of its constituents. It is rarely appreciated how
conceptually counterintuitive this is. Our experience is that we can describe
the orbits of the planets without knowing anything about them except for
their mass. We can describe fluids and gases without knowing positions and
momenta of their atoms. We can describe the energy levels of electrons bound
in atoms without knowing about quarks and gluons. Somehow, more often
than not, it is possible to integrate out microscopic information and describe a
system with a few macroscopic observables.

In the same way, we have arrived at a description of the universe as a whole
despite vast gaps in our knowledge about its constituents. Many open questions
persist about DE, DM, black holes, galaxies, stars, neutrinos and yet we are able to
predict the age of the universe with an uncertainty of less than two percent.[16]
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We know that minutes after the big bang, hydrogen atoms combined to helium
and are able to predict—and observationally confirm—the fractions of 2H, 3He
and 4He in the universe.[17] We are able to run simulations which produce
stars, galaxies and even larger structures matching observations.[14, 18]

Much of our collective knowledge of the universe as a whole is encapsulated
in the Cosmological Standard Model (ΛCDM-model). This model asserts that the
universe contains Cold Dark Matter (CDM)1 in addition to the usual baryonic
matter of the standard model of particle physics and that this form of matter
does not interact with ordinary matter except through gravity. Moreover, DE in
the form of Λ causes a late-time acceleration of the expansion of the universe.

Dependent on seven free parameters, the ΛCDM-model provides a framework
to study not only the background evolution of the spacetime manifold, but
also the matter perturbations within it. One standard technique to do so is
to perform a hydrodynamic approximation: DE, DM and baryonic matter are
regarded as fluids and described by their respective density and velocity fields.
When modeled by Λ, this approximation is actually exact for DE. For baryonic
matter the approximation is very well satisfied for some components (e.g.
intergalactic gas) up to very small scales, but for other components it is only
valid on large scales or early times. For CDM the hydrodynamic approximation
likewise breaks down at small scales or late times.[19]

The fact that neither dark nor baryonic matter can be fully described by fluids
limits our understanding of the formation of structures in the universe. Contrary
to the background evolution which can be described with very simple equations
originally derived by Friedmann, the evolution of (matter) perturbations can
currently be described analytically only at large scales or early times. As soon as
streams of matter—in the form of dark matter, halos, galaxies, stars, etc.—cross,
it is no longer possible to describe the “fluid” in terms of a density and velocity
field. Specifically, one can no longer assign a unique bulk velocity to a point
in space, but rather individual streams would need to be assigned individual
velocities.

On even smaller scales, the assumption of streams itself breaks down and
each point-particle carries its own velocity vector. Throughout this thesis and
the field of cosmology the term “point-particle” may refer to elementary par-
ticles (including particle-DM), but also stars, galaxies, halos or even larger
gravitationally bound objects. Conceptually, therefore, a description making
use of these microscopic properties captures the actual physics much better. In
principle, the macroscopic fields can still be derived from the microscopic data,
e.g., by suitable averaging.

In practice, of course, using a microscopic description tends to be significantly
more involved. No longer does the microscopic complexity get averaged over,
reducing the degrees of freedom by tens of orders of magnitude. Instead of
keeping track of a few macroscopic fields subject to a small number of simple
field equations, an extremely high number of coupled point-particles need to
be evolved according to a correspondingly large number of kinetic equations.

1 DM being cold, as opposed to being hot, refers to them being non-relativistic for the majority of
cosmic history.



introduction 4

To deal with these large numbers of point-particles, numerical simulations
can be used. Simulating millions, billions or even trillions of interacting particles
has become an indispensable tool in cosmology to model how matter forms
structures on various scales. In many cases, the setup of N gravitationally
interacting point-particles has been augmented to include other forces or effects
like baryonic pressure or supernova explosions.[18] Numerical simulations
have been used to study the formation of stars, galaxies and even the entirety
of the universe.[14, 18, 20]

In this thesis, we investigate and further develop an analytic approach to
studying the formation of structure in the universe: Kinetic Field Theory (KFT).
This recently developed framework attempts to mimic the conceptual approach
of numerical simulations in an analytic fashion. Specifically, instead of perform-
ing a hydrodynamic approximation, KFT considers gravitationally interacting
point-particles. Just like numerical simulations in cosmology, Newtonian gravi-
tational interactions on an expanding background are used—a well-justified
approximation.[21]

Of course there is a reason why such systems are usually not studied analyti-
cally. Even a system of three gravitationally interacting point particles does not
permit an analytical solution in the sense that there is no elementary function
describing the particle trajectories.[22] Numerical methods can provide accurate
approximations to these trajectories by solving the equations of motion of the
system. Accuracy and particle number are only limited by computation require-
ments. Simulations used in cosmology are extremely sophisticated and rely
on approximations of the gravitational interaction like tree and particle-mesh
methods to minimize computational cost.

It may seem as if analytical methods are significantly disadvantaged in deal-
ing with this problem. Hydrodynamic approximations only work on large
scales or early times. Analytical approximations to the trajectories of particles
like a Born approximation are significantly outclassed by numerical approxima-
tions. And even more generally it appears tedious to trace a large number of
point-particles subject to individual initial conditions and forces.

Nonetheless, the prospect of an analytical approach to this problem is tempt-
ing. Analytically there is no limit in resolution—exactly described forces at
arbitrarily small distances, infinitesimally small time-steps, infinite extent of
the system and even an infinite number of particles are feasible in principle.
All these aspects are limiting factors in numerical simulations and need to
be dealt with by smoothing of the interacting potential or by refinement of
the grid-size, time-step optimizations, boundary conditions and extrapolation,
respectively.[14]

In order to realize these ambitious goals and to combat the aforementioned
challenges, KFT relies on three key ideas:

1. Determine analytic expressions for observables without explicitly solving the
system.

2. Split free evolution from interactions while keeping the description exact.

3. Determine observables given a stochastic initial state.
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The first key idea addresses the problem that trajectories of particles are
a particularly difficult observable. They contain effectively all information
available in the system and any other observable of the system can be derived
from them. In many applications this amount of information is not needed.
As an example, the main observable in many simulations of cosmic structure
formation is the matter-fluctuation power spectrum Pδ(k), a single function.
It is arguably excessive to compute the trajectory of N particles for a total of
3N functions, especially if this number N is very large.

While for numerical methods such an approach may be feasible and poten-
tially even optimal, an analytical method needs to aim for a more direct way
of determining observables. In KFT this is achieved by relying on a generating
functional as a central mathematical object. While it contains all the information
of the system, it is never explicitly computed. Still, analytical expressions for
observables can be obtained from it via suitable functional derivatives.

The second key idea of KFT is inspired by perturbation theory. In many areas
of physics it is easy to analytically solve a system in absence of interactions.
The resulting free evolution of the system serves as a background or reference
evolution. Interactions cause deviations from it which are much more difficult or
impossible to analytically solve. By performing such a splitting in free evolution
and interactions we obtain a partial analytical solution.

In the KFT framework, the choice what we regard as free evolution and
interactions has significant freedom. Conceptually, an optimal split should
minimize the interactions while keeping the free evolution simple enough to be
solved analytically. Importantly, the split should not necessitate a perturbative
treatment of the interactions, making perturbation theory one of multiple
possible approaches for their treatment.

The third idea stated above is both of conceptual and practical nature. In
many applications the precise initial conditions are unknown or irrelevant. For
example, in cosmic structure formation initial positions and momenta of the
point-particles are usually obtained via the sampling of a smooth density field.
Numerical approaches usually solve the system subject to the initial conditions
of one single sampling and rely on the ergodic hypothesis to identify sample
and spatial averages. In KFT the initial conditions are taken to be intrinsically
stochastic, i.e., given by a probability distribution.

Working with stochastic initial conditions can lead to significant simplifi-
cations. Averaging an observable over the probability distribution of initial
values yields an expectation value which is often of much simpler form than
the observable itself. The reason for this is that certain sources of difficulty
affecting the observable may be irrelevant upon averaging, especially if the
initial conditions are subject to a high degree of symmetry.

KFT has been proposed in 2016 by [23] with substantial foundational work
having been performed in [24]. It is based on a path integral formulation of
classical mechanics suggested in [25] and further developed in [26–29]. The
early development of KFT relied significantly on the works [30, 31]. For further
references relevant to the initial proposal of KFT, we refer to [23, 24].
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Since its inception, KFT has seen significant further development. It has been
applied predominantly to cosmic structure formation, but the framework is
very general and allows for applications in other areas of physics, too. We refer
to the review [32] for the details and references.

There is one notable direction of work in KFT which is not directly related to
this thesis, but very well demonstrates the advantages of an analytic approach
to cosmic structure formation and therefore is worth highlighting here. In [33]
it was shown that the asymptotic behavior of the cosmic density-fluctuation
power spectrum is Pδ(k) ∝ k−3 for k→ ∞. This behavior is independent of the
choice of cosmological model and type of DM. Such a result is fundamentally
out of reach for numerical approaches to cosmic structure formation.

The main focus of this thesis is the general and mathematically rigorous
construction of the KFT framework as well as the perturbative treatment of
interactions. The work presented here can arguably be seen as a reassessment
of the original KFT proposal in [23]. Relying on the further development and
improved understanding of KFT over the past years, the framework is presented
here in a very general form applicable to any classical physical system subject
to Hamiltonian equations of motion and a probability distribution of initial
values.

Our construction of KFT in chapter 2 is carried out in the language of dif-
ferential geometry to allow for applications, where the configuration space is
a manifold. However, by choosing a chart which contains the entirety of the
system’s evolution, we are able work exclusively in coordinates. We provide
a rigorous definition of phase space, states of system, the Hamiltonian and
evolution maps in section 2.1.

In section 2.2 we define the generating functional as the central mathematical
object of KFT. Implementing the first key idea stated above, we show how
observables can be derived from it. A significant part of this section is dedicated
to manipulating the expression of the generating functional to not explicitly
depend on the evolution of the system.

The second key idea is addressed in section 2.3. We define conditions for
an admissible split of the equations of motion into a free and interaction part.
To ensure that the free evolution can be solved analytically, we demand the
existence of a Green’s function. Implementing the splitting on the level of the
generating functional, we arrive at one of the central equations of KFT at the
end of this section: The generating functional expressed as the exponential of
an interaction operator acting on a simple exponential of the free evolution.

Section 2.4 explores the third key idea of KFT. We briefly describe the method
of smoothing discrete observables which is used, e.g., to extract smooth den-
sity fields from numerical simulations. This is contrasted to the averaging
method employed in KFT which yields expectation values of observables from
a probability distribution of initial values.

The entirety of chapter 2 is based on [23]. Similarly to the construction
presented in [1], it generalizes and simplifies the treatment and aims to make it
simultaneously more rigorous and accessible. Unlike [1], the construction of
KFT is not tailored to the application to interacting N-body systems.
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Chapter 3 presents microscopic perturbation theory in KFT. The underlying
idea is the expansion of the generating functional in the interactions. In practice,
this is achieved via a series expansion of the exponential of the interaction
operator in the aforementioned central equation. Truncation of this series yields
approximations to observables.

While the perturbative treatment of interactions is in slight dissonance with
the second key idea above, it allows to obtain expressions for observables which
can be evaluated more easily. We remark that other approaches for evaluat-
ing interactions in KFT are feasible, too. A prominent one is the mean field
approximation which performs an averaging of the interaction operator.[34]

Section 3.1 performs the series expansion of interactions. We present a novel
formalism here, which takes inspiration from Quantum Mechanics to express
the action of operators in terms of commutators. In the process we are able to
completely avoid the auxiliary source field Kwhich is present in most of the KFT

literature. In fact, even the omnipresent source field J is eventually eliminated
from the formalism and we are able to express perturbative corrections to
observables solely in terms of the free evolution and functional derivatives with
respect to it.

The description of perturbative corrections in terms of operators is replaced
by a diagrammatic treatment in section 3.2. The diagrams facilitate both the
construction of expressions for observables and the interpretation of the per-
turbative treatment of interactions in KFT. We carefully discuss the properties
of diagrams, comment on their construction and perform a comparison of the
perturbative treatment in KFT to the iterative Born approximation.

In section 3.3 we specialize the formalism to self-gravitating systems. Also
referred to as interacting N-body systems, these are systems of N classical
point-particles which interact via Newtonian gravitational potential. This is the
context in which KFT is constructed and applied in most of the literature. We
show that the special properties of these systems allow for some substantial
simplifications compared to the general formalism.

As a major part of this thesis, chapter 3 expands upon the perturbative
treatment in [23]. It also generalizes the formalism presented in [1] beyond
interacting N-body systems. While many constructions, expressions and con-
clusions are original, the chapter relies on the ideas present in both these works.
The diagrammatic treatment in terms of Feynman diagrams was actually intro-
duced in [7], but it is possible to find an equivalence to the diagrams in [24].
The diagrams and Feynman rules in this thesis are a generalization.

Throughout chapters 2 and 3 we use the one-dimensional harmonic oscillator
as a recurring example. While mostly intended to demonstrate the application
of the formalism, it provides an example in which the perturbative expansion
of KFT is convergent and can be completely resummed.

In chapter 4 we highlight two applications of the formalism developed in
this thesis. Both of these are in the area of cosmology, hence we provide a brief
introduction to relevant equations and concepts in section 4.1. In particular,
we show how the dynamics of point-particles on an expanding background
can be described. We also introduce the Cosmic Microwave Background (CMB)
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and Cosmic Neutrino Background (CνB) which are directly relevant to our
applications.

As described above, KFT has been developed specifically for the application
to cosmic structure formation. In section 4.2 we consider this problem from
the perspective of microscopic perturbation theory. In particular, we adapt
our Feynman rules to obtain expressions for expectation values of density
correlation functions provided correlated initial conditions. It is shown that
the linear growth of the cosmic matter fluctuation power spectrum can be
reproduced by a first order expansion in the initial particle correlations, as
reported in [1].

The second application presented in this thesis is the clustering of the CνB. In
section 4.3 we show that neutrinos which decoupled in the early universe are
more abundant in dark matter halos compared to their mean number density in
the universe. This result is based on [2] and agrees with earlier studies relying
on numerical simulations.

As a final remark in this introductory chapter, we mention that while conduct-
ing this thesis, a mostly independent investigation of microscopic perturbation
theory in KFT has been performed in [35]. Naturally, there is a certain overlap in
the methods and results. However, in this thesis the focus is on the mathemati-
cal constructions in a general setting, while [35] aims more at the application to
cosmic structure formation.
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2.1 phase space

Kinetic Field Theory (KFT) is a framework for analytically describing classical
physical systems. For technical reasons discussed in later sections, the system
ought to be described in the Hamiltonian formalism of classical mechanics. In
this section we lay the groundwork for such a description and introduce the
notation used throughout this thesis.

We start out by defining the configuration space of the system. Unlike
previous works in KFT, we explicitly allow for the configuration space to be
a d-dimensional manifold. However, utilizing a special choice of chart, it is
possible to find a description in terms of coordinates which coincides with the
common construction of KFT in Euclidean space. The potentially non-trivial
structure of configuration space is completely absorbed into the equations of
motion.

In subsection 2.1.2, we introduce the tangent bundle of configuration space
which allows us to define a velocity of the system. Supposing that the equations
governing the evolution are of second order in the configuration, the velocity is
needed to specify initial conditions for the system. Based on this observation,
an element of the tangent bundle offers a more complete characterization of
the configuration of the system.

Subsequently, we translate the description in the tangent bundle to the
cotangent bundle. The latter is the natural habitat of Hamiltonian mechanics
and we show how the Hamiltonian of the system can be obtained from the
Lagrangian in such a general setting. Using a local trivialization of the cotangent
bundle induced by the aforementioned chart, we obtain a definition of phase
space.

Subsection 2.1.4 extracts the key definitions of the previous subsections and
introduces Hamilton’s equations. The description is presented completely in
coordinates and the existence of the manifold structure is hidden. As such, the
constructions in this subsection—and the remainder of this thesis—are directly
applicable if one were to start out with a phase space X = R2d.

We conclude the section by applying the definitions and constructions to
the one-dimensional harmonic oscillator. This recurring example shows how
the abstract formalism of the first three subsections yields familiar equations
and definitions upon using the local trivialization of the cotangent bundle. The
equations of motion as well as the analytic solution of the harmonic oscillator
are referred to repeatedly in the subsequent sections.

This section introduces the notation and defines the mathematical objects used through-
out this thesis. As such it is a general introduction to Hamiltonian mechanics on
manifolds utilizing standard definitions and constructions from differential geometry
which mainly relied on [36]. Additional references were [37, 38].

2.1.1 Configuration Space

Let M be the space of possible configurations of a classical physical system.
Generically, M is a manifold of dimension d, where d is the number of (mi-
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croscopic) degrees of freedom of the system. Points in this manifold specify
the configuration the system is in. More precisely, a point µ ∈ M contains
all information about the instantaneous properties of the system, e.g., all the
positions of the particles in an N-body system. It does not, however, specify the
rate of change of this configuration and thus it is not possible to infer quantities
like the total energy of the system just from knowing the point µ.

However, there is an even more significant roadblock for defining mathe-
matical objects and quantities given a configuration µ ∈M. Namely, general
manifolds lack addition and scalar multiplication. This absence of a vector
space structure prevents direct calculations of physical quantities. Hence, be-
fore we tackle the issue of describing the rate of change of classical physical
configurations, we first explain how to ingrain a vector space structure into the
manifold M.

In fact, there is a vector space structure concealed in manifolds already
from their definition. Indeed, for any point µ ∈M there is a neighborhood U
of µ which admits a diffeomorphism ψ : U ∼−→ Rd. Such a pair (U,ψ) is
called a chart and it allows to transfer calculations performed in Euclidean
space onto the manifold. To a physicist, charts are also known by the name
of coordinate systems, emphasizing that they allow to describe a point µ in an
abstract space M by a finite set of real numbers—its coordinates.

The freedom of choice of a chart corresponds to the freedom of choosing
a coordinate system. Therefore, the transition functions between different
charts are simply coordinate transformations. From a physicist’s perspective,
calculations in a manifold are thus facilitated significantly by working in
coordinates. It allows to pretend that physics is taking place in Euclidean space
despite the configurations of the system forming much more difficult abstract
space. In practice, this difficulty can mostly be avoided locally, although care
has to be taken when studying global properties of such systems.

It should be stressed that it is possible to perform calculations on manifolds
without relying on charts this heavily. Classical field theory on manifolds
describes the evolution of fields using tensor calculus in tangent spaces—which
are intrinsically Euclidean. Points in the manifolds thus appear only implicitly
in the field equations and it is possible to proceed largely without explicit use
of charts. However, note that in this case, the manifold is not the configuration
space of the system. The configuration space would be the the set of all allowed
configurations of the involved fields. Unless there exist severe constraints on the
allowed field configurations, this space is of infinite dimension and applying
the formalism introduced here might potentially be infeasible.

One main aim of classical physics is to describe—and ideally also to predict—
the evolution of a physical system. Mathematically, such an evolution can be
modeled by a smooth map R →M which assigns a specific configuration µ to
every value of a time parameter t ∈ R. In practice, the time parameter t usually
takes values in a finite interval between an initial time ti and a finite time tf.
The initial time ti can correspond to, e.g., the time at which an experiment is
started or an instance of time where the configuration of a system is known.
The final time tf can be, e.g., the time at which a measurement is conducted
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or the instance of time for which a prediction is made. While we continue to
denote the evolution of a classical system by map R →M, we understand that
only a finite interval [ti, tf] is considered.

The reason for emphasizing the finite time interval is that this implies the
configurations µ the classical physical system goes through in its evolution
forms a compact subset of M. Basic topology therefore implies that the evo-
lution of the system can be covered by a finite set of charts. When describing
the evolution of the system using coordinates, at most a finite number coor-
dinate transformations is required. Under relatively weak assumptions this
number can be reduced to zero. For example, assuming that the evolution is
non-intersecting, i.e., the configuration of the system at different instances of
time is always different, then by choosing a metric on the manifold in which the
evolution is a geodesic and using Fermi normal coordinates along this geodesic,
a coordinate system can be constructed which covers the entire evolution of
the system. Other assumptions are possible, too, the simplest of which—M
admits a global coordinate system—is true for the majority of systems which
have been studied using KFT.

To avoid the technical details and the notation involved when allowing for
coordinate transformations, throughout this thesis we demand that the evolu-
tion of the classical physical system under consideration shall be contained in a
single chart. As pointed out above, this is not a particularly strong assumption
and it poses no loss of generality for the system studied in this thesis. In fact,
it would have been adequate for the applications considered here to simply
set M = Rd from the beginning. However, for the sake of generality and in
order to introduce expanding backgrounds in a natural way, we shall consider
the real numbers with which we describe our physical system as coordinates in
the sense of differential geometry.

Utilizing this assumption our setup is henceforth: M is a manifold of dimen-
sion d and (U,ψ) is a chart of M. Any point µ ∈ U specifies the configuration
of the classical physical system under consideration and via ψ has coordi-
nates ψ(µ). Any map R →M describing the evolution of the system within
the neighborhood U, i.e., mapping [ti, tf] into U, can be composed with ψ to
yield a map φ(q) : R → Rd. Such a map φ(q) describes the configuration space
evolution of the physical system with respect to the coordinate system (U,ψ).

The choice of notation φ(q) for the evolution map is anticipating the introduc-
tion of phase space—the superscript (q) indicates that this map only contains
the coordinate information of the evolution, while a superscript (p) is reserved
for the momentum information. Effectively, our setup allows us to mostly for-
get about the existence of the manifold and focus on the map φ(q) : R → Rd

between Euclidean spaces. This allows us to employ common mathematical
tools like tensor calculus and Fourier transforms.

One might wonder how the manifold geometry influences the evolution
of the system. It should make a difference for the evolution of the system
whether the configuration space M is curved, even if the evolution is entirely
contained in the chart U. Indeed, this is the case, although the dependence on
the manifold geometry is somewhat indirect: The equations of motion for the
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system depend on the choice of coordinates (U,ψ) and thus on the geometry of
the manifoldM. We will see in the following section how in the KFT-framework
the equations of motion select the physical evolution of the system from the
many possible ways how the system could change over time.

Selecting the physical evolution from the set of possible maps φ(q) is in fact
a central step in our setup. Not any map φ(q) : R → Rd describes an evolution
of the physical system which is possible. Indeed, any classical physical system
is subject to some set of differential equations governing the allowed dynamics
of this system—the equations of motion. They ensure, e.g., the conservation of
certain quantities like the total energy.

The equations of motion impose a strong constraint on the allowed evolu-
tions φ(q). Given a physical evolution φ̃(q) on any time interval (t1, t2), there is
one and only one way of extending it to a physical evolution for all times t ∈ R.
For the sake of rigor it we mention that this assumes having chosen an arbi-
trary, but fixed chart (U,ψ) as well as a specific time parameter t—although
while the mathematical form of φ̃(q) changes under changes of coordinates and
reparametrizations of time, it still describes the same physical evolution R →M

of the system.
This constraint on physical evolutions is directly related to the existence and

uniqueness of solutions of differential equations. The knowledge of the config-
uration of a classical physical system in a time interval (t1, t2) determines the
initial conditions x(q) for its equations of motion. The unique solution φ̃(q)(t; x)
of these equations given those initial conditions x, is precisely the physical
evolution for all times. Note that while the theory of differential equations does
not guarantee the existence of a solution for all times t ∈ R in general, one
might hope that a well-posed physical system would be subject to sufficiently
well-behaved equations of motion with such a global solution. In fact, otherwise
the system would need to feature a singularity with a loss of predictability—a
severe physical and even philosophical problem.[39]

For this thesis, we only consider systems which do not feature a singularity
in their physical evolution within the considered time interval. Specifically,
we assume that the system and its initial conditions at a time ti are such that
the solution of its equations of motion exists for all times t ∈ [ti, tf]. The final
time tf here is chosen such that it is larger than all values of time relevant to
the physical problem considered.

2.1.2 Tangent Bundle and Velocity

Aside from the conceptual issue of predictability, the discussion above also
displayed a more practical aspect. In order to uniquely determine the physical
evolution φ̃(q)(t; x) of the system, we need to know it on a time interval (t1, t2).
This is, because the initial conditions x do not only depend on the instantaneous
configuration of the system x(q), but also on its rate of change. In fact, in
principle it is possible that the initial conditions depend even on higher order
time-derivatives of the configuration. This can happen if the equations of
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motion are (equivalent to) differential equations of at least third order in the
coordinates of the system. In this thesis we do not consider such systems.

In fact, appearance of derivatives higher than second order in the equations
of motion is highly unusual for classical physical systems.2 In the language
of both Lagrangian and Hamiltonian mechanics, the equations of motion are
generically of at most second order in the system’s configuration. In the case
of Lagrangian mechanics, this corresponds to Lagrangians L which contain
time-derivatives of up to first order. This allows for the usual kinetic term as
well as all commonly occurring interactions. The Euler-Lagrange equations are
differential equations of second order in the coordinates in this case. Conse-
quently, the initial conditions for these equations require the configuration of
the system and its rate of change at a given initial instance of time.

For reasons which become apparent in section 2.2.3, KFT is usually formulated
in the realm of Hamiltonian mechanics. Here, the equations of motion contain
only first order time-derivatives. However, the first order time-derivative of the
momentum p corresponds to a second order time-derivative of the associated
coordinate. Indeed, using Hamilton’s equations, a simple calculation

d2q
dt2

=
d
dt
∂H

∂p
=
∂2H

∂p2
dp
dt

+
∂2H

∂q∂p

dq
dt

+
∂2H

∂p∂t
, (1)

where H = H(q,p, t) is the Hamiltonian function, yields a relationship be-
tween dp

dt and d2q
dt2 which in practice often simplifies to a proportionality.

Therefore, Hamilton’s equations can be regarded as second order differen-
tial equations for the coordinates q.

This further motivates to restrict ourselves to equations of motion which
are of at most second order in the system’s configuration. Crucially, however,
this still implies that the initial conditions for the system contain not only
the instantaneous configuration, but also its rate of change. This prompts the
question whether the configuration space of the system M actually contains
the full information about the system. In fact, we implicitly raised that question
already in the very first paragraph of the previous subsection when we asserted
that certain quantities like the total energy of a classical physical system cannot
be determined from its configuration µ ∈M.

We summarize that the configuration of a classical physical system µ ∈M
does give the full information of the instantaneous properties and observables.
But it does not give access to all relevant physical quantities and in particular
does not uniquely determine the evolution of the configuration. However, this
shortcoming can be fully remedied by having simultaneous knowledge of the
rate of change of the configuration of the system. Therefore, given an evolution
map of a classical physical system φ(q) : R → Rd in a chart (U,ψ) the pair(

x(q), x(v)
)
:=

(
φ(q)(t),

d
dt
φ(q)(t)

)
(2)

gives the full information about the system at the time t ∈ [ti, tf] and determines
its evolution for all times in [ti, tf]. The quantity x(v) encodes the rate of change

2 In large part, this is due to the Ostrogradsky instability.[40]
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of the system and thus may be referred to as the velocity coordinate of the
system. For an N-body system, where x(q) is the set of all particle positions,
the velocity x(v) is the set of all particle velocities.

The velocity of the system can be defined independently of the chart (U,ψ).
Let ψ−1 ◦φ(q) : R →M be the corresponding map assigning to a time t the
point µ := ψ−1

(
φ(q)(t)

)
∈M. The velocity of the configuration µ then can be

defined as

ν :=
d
dt

(
ψ−1 ◦φ(q)

)
(t) (3)

and thus is an element of the tangent space TµM at the point µ. Clearly, it
is x(v) = dψµ(ν), where dψµ : TµM ∼−→ Tx(q)Rd ∼= Rd is the differential of the
map ψ.

The pair (µ,ν) can be regarded as an element of the tangent bundle TM of
the manifold M. In analogy to equation (3), the evolution map φ(q) : R → Rd

induces a map to the tangent bundle by(
ψ−1 ◦φ(q),

d
dt

(
ψ−1 ◦φ(q)

))
: R → TM . (4)

This definition uses that locally in the chart (U,ψ) the tangent bundle has a
product structure TU ∼= U×Rd, but does not rely on our previous assumptions
on the properties of (U,ψ). Following our earlier discussion, this map is
advantageous for describing the evolution of the system. Indeed, for any
instance of time t, this map yields not only the configuration of the classical
physical system, but also its rate of change. Therefore, it allows us to directly
extract any instantaneous observables and quantities including, e.g., the total
energy of the system. Moreover, given second order equations of motion, the
value of this map at a single instance of time uniquely determines the physical
evolution of the system.

2.1.3 Cotangent Bundle and Momentum

At this point it may seem natural to use the tangent bundle and these definitions
to describe the classical physical system. In this case, one obtains a construction
of KFT on the tangent bundle of a manifold which is suited for Lagrangian
equations of motion. It may also be a good starting point for formulating KFT

for particles following geodesic motion within a (possibly dynamic) mani-
fold. However, traditionally KFT has been formulated within the framework
of Hamiltonian mechanics which allows for a substantial simplification in the
formalism. Specifically, a certain functional determinant is particularly simple
for Hamilton’s equations of motion and would otherwise have to be dealt with
by introducing Grassmann fields. Therefore, we formulate and apply KFT in the
language of Hamiltonian mechanics in this thesis.

The natural habitat of Hamiltonian mechanics is the cotangent bundle T∗M

of the manifold M. It is very closely related to the tangent bundle TM intro-
duced above, but possesses a canonical symplectic 2-form. Together with this
differential form, the cotangent bundle becomes a symplectic manifold. In fact,
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any real valued function on a symplectic manifold can naturally take the role of
a Hamiltonian.[36, section 21.2] Below we obtain the Hamiltonian of the system
in a more conventional way via a Legendre transform of the Lagrangian of the
system.

As shown below, the Lagrangian can be used to provide a vector bundle
isomorphism between tangent and cotangent bundle. This allows us to obtain a
mapping between velocity ν and momentum π. This way, in complete analogy
to the velocity above, the momentum below supplies information about the
rate of change of the configuration of a classical physical system. Therefore, a
map R → T∗M uniquely determines the evolution of a system and allows the
direct extraction of observables and other relevant quantities given its value at
a single instance of time, too.

The cotangent bundle T∗M of a manifold M can be defined independently
of the tangent bundle TM as the quotient of certain function spaces on the
productM×M. However, it is neither enlightening, nor useful for our purposes
to employ such an abstract definition. Instead, we shall define the cotangent
bundle as the dual bundle of the tangent bundle. Moreover, for the sake of
simplicity, we give most definitions in local coordinates. While this surrenders
the coordinate-independent language of abstract differential geometry, the gain
in clarity is amplified by our assumptions of the existence of a chart containing
the entire evolution of the system. Indeed, this allows us to work in coordinates
without being concerned about coordinate transformations.

By definition, given any vector bundle ξ : E → M, the preimage of any
point µ ∈M under the bundle projection ξ is a finite-dimensional real vector
space called the fiber F := ξ−1(µ) of the bundle. This definition is justified,
because the preimages of different points are isomorphic and therefore the fiber
is well-defined up to vector space isomorphism. Let F∗ be the dual vector space
of F defined as F∗ = Hom(F, R) = {f : F→ R | f linear}. Then the dual bundle
is the vector bundle ξ∗ : E∗ →M, where E∗ = {(µ, f) | µ ∈M, f ∈ F∗} and ξ∗ is
the projection on the first factor.

In order to confirm that the dual bundle is indeed a vector bundle, let (U,ψ)
be a chart of M. Then the map (ψ,dψ) : TU ∼−→ Rd × Rd induces a local
trivialization of the bundle ξ : E → M, i.e., it gives rise to a fiber-preserving
diffeomorphism U× Rk ∼−→ ξ−1(U) = TU. Using that any vector space is
isomorphic to its dual3, this diffeomorphism induces a local trivialization of
the dual bundle ξ∗ : E∗ →M over U, too. Applied specifically to the tangent
bundle of the manifold M, this implies that within any chosen chart we may
think of the cotangent bundle T∗M as a Cartesian product T∗U ∼= U× Rd.
As such, the physical picture is indeed very similar to the one of the tangent
bundle TM discussed above.

The fibers F of the tangent bundle are the tangent spaces TµM = ξ−1(µ) = F.
Their elements are the velocities ν which can be associated to the configu-
ration µ. In perfect analogy, the fibers of the cotangent bundle F∗ are called

3 Note that this isomorphism is not canonical, i.e., its construction requires choices. Hence it
cannot easily be used for identifications of elements of T∗M with those of TM which ultimately
necessitates the lengthy construction below. For finding a local trivialization, however, any
isomorphism is sufficient.
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cotangent spaces T∗
µM = (ξ∗)−1(µ) = F∗. An element π of the cotangent

space TµM is called momentum of a configuration µ. This nomenclature is not
yet justified at this stage, but it is explained below how the cotangent bundle
can be identified with phase space.

To bridge this gap, we need to introduce the Legendre transform which under
certain conditions provides a natural vector bundle isomorphism TM ∼−→ T∗M.
It should be noted that using local trivializations TU ∼= U× Rd ∼= T∗U it is
simple to obtain some (local) bijection between the tangent and the cotangent
bundle. This is not surprising, given that real vector spaces of equal dimension
are always isomorphic. However, even if such a bijection can be extended to the
entire vector bundles, it is not a canonical isomorphism because its construction
involves choices (cf. footnote 3). Therefore, such a naive procedure does not
yield a meaningful relationship between velocity ν and momentum π.

The Legendre transform can be defined for any real-valued function on TM,
but for the sake of concreteness we define it directly for the Lagrangian.
In our setting, the Lagrangian L of a classical physical system is a func-
tion L : TM→ R. In cases where the Lagrangian is explicitly time-dependent,
one can replace M 7→ R ×M throughout—the first factor provides the time-
coordinate—and proceed analogously. Despite anticipating to encounter this
case in our applications, we refrain from formulating this entire section for
systems with time-dependent Lagrangians as it would unnecessarily clutter the
discussion and notation. Instead, we mention the necessary changes wherever
they appear.

The Legendre transform is defined fiber-wise, so let µ ∈M and let L
∣∣
µ

be

the Lagrangian restricted to the fiber TµM = ξ−1(µ). We demand that the
Hessian of L

∣∣
µ

is a positive definite quadratic form on all of TµM. We define
the Hamiltonian H fiber-wise via

H
∣∣
µ
: T∗
µM→ R , H

∣∣
µ
(π) := π(ν) − L

∣∣
µ
(ν) , (5)

where ν is the unique element of TµM such that

π = d
(
L
∣∣
µ

)
ν
∈ Hom(TµM) = T∗

µM . (6)

Several comments are required at this point: Firstly, the Hessian d2
(
L
∣∣
µ

)
ν

can
be viewed as a bilinear map TµM× TµM→ R and thus induces a quadratic
form. Indeed, it is

d2
(
L
∣∣
µ

)
ν
: u 7→ ut

∂2
(
L
∣∣
µ

)
(ν)

∂ν∂ν
u =

∂2

∂2λ
L
∣∣
µ
(ν+ λu)

∣∣∣∣
λ=0

. (7)

Secondly, given that this quadratic form is assumed to be positive definite,
the Lagrangian restricted to the fiber TµM is strictly convex and, in particular,
has a unique critical point which is a global minimum. Crucially, this implies
that, thirdly, the map ν 7→ d

(
L
∣∣
µ

)
ν

is an isomorphism between the tangent
and the cotangent spaces. In particular, there is a natural relationship between
velocity ν and momentum π of the system justifying the implicit definition of ν
via equation (6).
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As a fourth comment it should be noted that as an element of T∗
µM the

momentum is a map π : TµM → R and thus can be evaluated on elements
of TµM justifying the notation π(ν) in equation (5). It is shown below that upon
choosing dual bases of TµM and T∗

µM, this expression can be transformed into
the expected scalar product “π · ν”. This way the definition of the Hamiltonian
takes its commonly known form.

We have shown that a Lagrangian with a positive definite Hessian induces a
fiber-wise isomorphism TM ∼−→ T∗M. For many commonly encountered terms
in the Lagrangian—e.g. a standard kinetic term—this assumption is satisfied.
However, exceptions exist and give rise to so-called constrained Hamiltonian
systems. For these, the naive Legendre transformation fails because equation (6)
cannot be solved (uniquely) for the velocity ν.

Throughout this thesis all considered classical physical systems satisfy our
assumption and thus allow for a Hamiltonian to be constructed in the described
way. In fact, below we simply define systems via their Hamiltonian description
instead of taking the detour over the Lagrangian formulation. However, it
should be emphasized that the relationship between tangent and cotangent
bundles established above is a prerequisite for our discussions.

One key motivation for our discussion about velocities and momenta was that
the instantaneous configuration of a system does not determine its evolution.
Complementary information about the rate of change of the configuration is
required to provide proper initial conditions for the equations of motion. While
it is in principle possible to formulate the equations of motion directly on the
(co)tangent bundle, it is convenient to choose a chart and formulate them on
Euclidean space. Recall that having a vector space structure available facilitates
practical calculations.

For this purpose we want to define a momentum coordinate x(p) in analogy
to the definition in equation (2). Let φ(q) : R →M be an evolution map for the
system such that φ(q)([ti, tf]) is contained in a chart (U,ψ). We assume that
the Lagrangian L of the system has a positive definite Hessian on fibers such
that it induces a natural isomorphism d

(
L
∣∣
•
)
• : TM

∼−→ T∗M. The •s indicate
the slots to be taken by elements on which this function is evaluated, i.e.,

(µ,ν) 7→ d
(
L
∣∣
•
)
•(µ,ν) := d

(
L
∣∣
µ

)
ν
∈ T∗

µM . (8)

As above, the resulting element of the cotangent space T∗
µM is the momentum π

associated to the velocity ν.
Using local trivializations induced by the chart (U,ψ), we can create a

commutative diagram of isomorphisms

Rd × Rd Rd × Rd =: X

TU T∗U
d
(
L
∣∣
•
)
•

(ψ, dψ) (ψ, dψ∗)

fL

which defines an isomorphism fL : Rd × Rd ∼−→ X. It should be emphasized
again that it is trivial to find some isomorphism between these spaces, but the
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map fL has physical significance. Using these definitions, we can define the
momentum coordinate as

x(p) := f
(p)
L

(
x(v)

)
=
(

dψ∗
µ ◦ d

(
L
∣∣
µ

)
• ◦ dψ−1

µ

)(
x(v)

)
= dψ∗

µ(π) (9)

given a velocity coordinate x(v). The notation f(p)L refers to the second compo-
nent of the map fL. Its first component f(q)L is simply the identity map. Thus, fL
maps the pair (x(q), x(v)) to the pair (x(q), x(p)) providing a connection between
velocity and momentum coordinates of the system.

In the above diagram we already introduced the abbreviation X for the space
of pairs of configuration and momentum coordinates (x(q), x(p)). This space is
the familiar phase space of Hamiltonian mechanics. Any element x ∈ X provides
the state of the classical physical system under consideration. Formalizing the
notation used above, we refer to the first component of x as the configuration
part and denote it by x(q). The second component of x is the momentum part
and is denoted by x(p). More generally, if φ : R → X is an evolution map, we
denote its configuration and momentum parts by φ(q) and φ(p), respectively.
This allows for a natural generalization of the notion of evolution maps to
describe paths in phase space instead of configuration space. Further comments
and details on this are supplied in the following subsection.

As a final task in this subsection, let us transfer the Hamiltonian from
the cotangent bundle to phase space. This allows us to work exclusively with
configuration and momentum coordinates without having to refer to the tangent
and cotangent bundles, their local trivializations and, more generally, the
language of differential geometry. Consider equation (5), which defines the
Hamiltonian fiber-wise as a function H : T∗M→ R. Within the chart (U,ψ) we
can use the local trivialization of the cotangent bundle to define the Hamiltonian
of coordinates H via a commutative diagram

X R

T∗U

H

(ψ, dψ∗)−1 H

Written as an equation, the definition displayed in the diagram becomes

H(x) = H
∣∣
ψ−1(x(q))

((
dψ∗

(ψ−1(x(q)))

)−1 (
x(p)

))
. (10)

Analogously, the Lagrangian of coordinates L is the composition L ◦ (ψ, dψ)−1.
In terms of the Lagrangian, the Hamiltonian then is given by

H(x) = x(p) ·
((
f
(p)
L

)−1(
x(p)

))
−L

(
f−1L (x)

)
. (11)

Note that the velocity coordinate x(v) =
(
(f

(p)
L )−1(x(p))

)
and the momentum

coordinate x(p) are not elements of the same space such that their scalar product
can actually only be taken upon mapping x(v) back into X via the identity map.
However, for the sake of compactness we omit this identity map from such
scalar products and simply write x(p) · x(v). This way, equation (11) takes the
familiar form.
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2.1.4 Hamilton’s Equations

The construction of phase space was the main aim of the previous section. While
it would in principle be possible to start out our construction of KFT using a
naive definition of phase space as the set of configurations and momenta, there
are several advantages of constructing rather than postulating phase space.
Firstly, it explicitly provides a rigorous connection between the Lagrangian and
Hamiltonian formulations of mechanics and between velocity and momentum
of the system. Secondly, the entire construction was done on a manifold and
thus is very general and in particular completely coordinate independent. And
lastly, it provides a mathematical context for our constructions and ensures that
they are well-defined.

Nonetheless, the remainder of this thesis is agnostic to whether we regard
phase space as the local trivialization of the cotangent bundle or simply assert
that X = R2d, where d is the number of microscopic degrees of freedom of the
system. As has been pointed out above, if the underlying manifold M has a
non-trivial geometric structure, then (locally) it only affects the equations of
motion. Crucially, though, the key assumption that the evolution is contained
in a single chart needs to be satisfied. Otherwise the above construction needs
to be significantly altered.

Summarizing the construction above, we have defined the central mathemati-
cal objects needed for constructing the formalism of KFT. These are:

• phase space X,

• states x =
(
x(q), x(p)

)
∈ X,

• Hamiltonian H : X→ R,

• evolution maps φ : R → X.

The aim of this subsection is to introduce the equations of motion of the classical
physical system under consideration as well as its physical evolution φ̃.

In the previous subsections, it was already mentioned that while any smooth
map φ : R → X describes an evolution of our system, this evolution might not
be physical. Indeed, for any instance of time t, such a map provides a valid
configuration φ(q)(t) of the system. However, due to uniqueness of solutions
to differential equations, providing initial conditions x = φ(ti) to the equations
of motion of the system determines the physical evolution completely (up to
reparametrization). We have discussed that these initial conditions need to
include the rate of change of the system at ti provided our assumption that the
equations of motion are of second order in the configuration of the system.

In the Lagrangian formalism for classical mechanics, the measure for the rate
of change is the velocity of the system x(v). Demanding that

x(q) = φ(q)(ti) and x(v) =
∂

∂t
φ(q)(ti) (12)

uniquely determines the physical evolution φ̃(q)
(
t;
(
x(q), x(v)

))
as well as its

rate of change for all times t ∈ [ti, tf]. Of course there are infinitely many other
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evolution maps φ(q) satisfying equation (12). These maps do not describe an
evolution compatible with the equations and thus are unphysical.

The Hamiltonian formalism—which is the one adopted in this thesis—
likewise considers evolution maps φ : R → X of the system’s configuration and
needs to provide initial conditions. While equation (12) would be legitimate for
that purpose, these initial conditions are clearly not adapted to the language of
Hamiltonian mechanics. Instead of specifying the velocity x(v), in this case the
initial conditions should specify the momentum x(p). However, given that the
momentum is connected only indirectly to the rate of change of the configura-
tion, expressing the initial conditions in terms of only the configuration part of
the evolution map φ(q)(t) is not optimal.

Instead, we should consider the evolution map as a pair φ =
(
φ(q),φ(p)

)
which provides the state, i.e., the configuration and momentum of the system
given a time t. Instead of considering the evolution purely in configuration
space M, we consider paths in the cotangent bundle T∗M, or, equivalently, in
phase space. This way we are also taking full advantage of a key feature of
Hamiltonian mechanics, namely that the equations of motion are first order
differential equations in the phase space coordinates x. In particular, initial
conditions x = φ(ti) do not need to include the rate of change of φ at initial
time. The required rate of change of the configuration part φ(q) is supplied by
the momentum part φ(p).

As a result of the generalization of our notion of evolution maps, our entire
setup is now adapted to phase space. A central aim of Hamiltonian mechanics is
then to select the physical evolution map φ̃(•; x) : R → X given a Hamiltonian H

and initial conditions x. If this can be accomplished, then the behavior of the
classical physical system described by H is solved in the sense that its state is
known for all times. This, of course, also allows us to determine the value of
any observable for the system at all times.

The selection of the physical evolution among the uncountable number of
maps φ happens via the equations of motion. In Hamilton’s formalism of
classical mechanics, these are Hamilton’s equations and read in our notational
conventions

dφ
dt

(t) = J
δH(φ(t), t)
δφ(t)

with J =

(
0 Id

−Id 0

)
. (13)

The symplectic matrix J is induced by the canonical symplectic form ω on the
cotangent bundle T∗M and is made up from d-dimensional unit matrices Id

on the off-diagonal blocks.4 We can rewrite this equation for the configuration
and momentum parts of φ separately and obtain the most familiar form of
Hamilton’s equations

dφ(q)

dt
(t) =

δH(φ(t), t)
δφ(p)(t)

and
dφ(p)

dt
(t) = −

δH(φ(t), t)
δφ(q)(t)

. (14)

Note that it is common to write the derivatives on the right-hand sides of the
equations as partial derivatives. Here, we write them as functional derivatives

4 For details on deriving Hamilton’s equations directly from the symplectic form, confer chapter 18

of [38].



2.1 phase space 22

to emphasize that the equations are evaluated on phase space paths φ, not
phase space points x.

As a further remark we should mention that we allow for an explicit time-
dependence of the Hamiltonian. In the previous subsection it was discussed that
this can be achieved formally by enlarging configuration space M 7→ R ×M,
i.e., by treating time as an additional coordinate. However, following this
suggestion literally enlarges phase space, too, and requires us to deal with the
time coordinate and its canonical momentum. Moreover, one would need to
distinguish between the proper time which parameterizes the evolution maps
and the coordinate time which becomes the first component of the evolution
map. While this can be done in principle, it adds additional complexity to our
discussion and particularly to our notation.

Fortunately, this issue can be sidestepped completely under the assumption
that the Lagrangian of the system does not depend on the (proper time) deriva-
tive of the time coordinate. This is generally true for non-relativistic classical
systems with time-dependent Lagrangians.5 Given that we are not considering
relativistic systems in this thesis, we can therefore deduce that the canonical
momentum associated to the time coordinate vanishes. Hence, projecting the
(2d+ 2)-dimensional enlarged phase space along this dimension does not lose
any information resulting in the space R ×X, where X is the non-enlarged
phase space. The Hamiltonian on enlarged phase space is equivalent to the one
on this space and hence can be regarded as a map H : X× R → R, where we
swapped the two factors in R ×X for purely aesthetic reasons.

Together with initial conditions φ(ti) = x ∈ X at time ti, Hamilton’s equa-
tions form an initial value problem. Due to classical mechanics being determin-
istic, its solution is unique and we call it the physical evolution of the system
and denote it by φ̃. For any value of the time parameter t ∈ [ti, tf], it yields
the state of the system φ̃(t; x). In our notation we make the dependence on
the initial conditions x explicit and thus can regard the physical evolution as
a map φ̃ : R ×X → X. In this form, it describes the Hamiltonian flow: for any
state x the system evolves along the paths φ̃(t; x) for t ∈ [ti, tf].

The Hamiltonian flow has a couple of important properties which we exploit
at various steps in the following, particularly in subsection 2.4.3. Firstly, due
to determinism, paths in phase space cannot intersect. Indeed, for any point
in phase space, there is a unique future and past trajectory given by the
Hamiltonian flow. Secondly, Liouville’s theorem implies that infinitesimal phase
space regions retain their volume under the Hamiltonian flow. This implies that

det
(
∂φ̃(t; x)
∂x

)
= 1 (15)

for all t ∈ [ti, tf]. We remark that the proof of this statement only relies on
the symplectic structure of Hamilton’s equations and thus is valid even if the
Hamiltonian is explicitly time-dependent.[37, Corollary 1.10]

5 Note that in non-relativistic classical mechanics there is a freedom of choosing a time parameter.
In special relativity, the natural time parameter is the proper time and thus acquires physical
meaning.
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There is another interpretation of the equations of motion which provides
a key shift in perspective enabling the formulation of KFT. Let us rewrite the
equations of motion as

E[φ] (t) :=
dφ
dt

(t) − J
δH(φ(t), t)
δφ(t)

= 0 . (16)

The object E can be regarded as a map E : C∞(R,X)× R → X, where C∞(R,X)
is the space of all smooth maps from R to X. However, we may also consider it
as a map E[•] : C∞(R,X) → C∞(R,X). In this form it is an operator and can be
written as

E[•] = d
dt

[•] − J
δH(•)
δφ

. (17)

The definition of E in equation (16) applies to any evolution map φ. The
object E[φ](t) measures if and by how much such an evolution violates the
equations of motion at time t. Any map φ : [ti, tf] → X for which E[φ] = 0,
i.e., E[φ](t) = 0 for all t ∈ [ti, tf], is a physical evolution with initial conditions
given by x = φ(ti). As mentioned above, due to determinism in classical
physics, upon fixing the initial conditions, there is exactly one such map.

Of course this perspective is essentially just rephrasing Hamilton’s principle
of stationary action. In fact, the quantity E[φ](t) can be related to the variation
of the action. However, instead of using this principle as a global criterion, we
intend to use it locally. Specifically, given explicit initial conditions x, KFT identi-
fies the physical evolution φ̃ as the unique map φ : [ti, tf] → X with φ(ti) = x
and E[φ](t) = 0 for all t ∈ [ti, tf]. We elaborate on this idea in the following
section where we introduce the KFT formalism.

2.1.5 Example: Harmonic Oscillator (I)

As a recurring example throughout the first two chapters of this thesis, we
consider the harmonic oscillator as a toy model. Our intention is to show
the construction of KFT for a simple classical system and to point out some
properties. Furthermore we perform some basic comparisons to the exact
solution and to standard approximations. In this subsection, we define the
phase space, the Hamiltonian and the equations of motion of the harmonic
oscillator. We then solve them to obtain the exact analytic solution of the system.

We are considering a standard one-dimensional harmonic oscillator, i.e., a
system evolving in D = 1 dimensions with configuration space M = R1. The
associated tangent bundle is TM = R2 and the velocity is simply ν = d

dtφ
(q)(t)

using a trivial global chart (U,ψ) = (R, id). Phase space and the cotangent
bundle coincide and we have X = T∗M = R2.

While the identity map id : R2 → R2 is a possible isomorphism between TM
and T∗M, it would just be an arbitrary choice. Instead, we consider the La-
grangian of the system

L((µ,ν)) =
1

2
mν2 −

1

2
κµ2 , (18)
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where m, κ ∈ R are some positive constants. Its Hessian is d2
(
L
∣∣
µ

)
ν
= mI1

and thus corresponds to a positive definite bilinear map. Therefore, the map(
L
∣∣
•
)
• : (µ,ν) 7→ d

(
L
∣∣
µ

)
ν

with (19)

d
(
L
∣∣
µ

)
ν
: u 7→ ∂

∂λ
L
∣∣
µ
(v+ λu)

∣∣∣∣
λ=0

= mν · u (20)

is a physically meaningful isomorphism
(
L
∣∣
•
)
• : TM → T∗M. Using the iso-

morphism
(
L
∣∣
•
)
•, we find the momentum of the system to be

π = d
(
L
∣∣
µ

)
ν
∈ Hom(TµM) with π(u) = mν · u . (21)

We can use it to define the Hamiltonian via the Legendre transform

H((µ,π)) = π(ν) − L((µ,ν)) = mν · ν− 1
2
mν2 +

1

2
κµ2 =

1

2
mν2 +

1

2
κµ2 (22)

which coincides with the total energy of the system. However, the Hamiltonian
should of course be expressed as a function of π and not of ν. Hence, we need
to invert equation (21) which yields the final form of the Hamiltonian

H((µ,π)) =
π2

2m
+
1

2
κµ2 . (23)

Exploiting the choice of a trivial chart (U,ψ) = (R, id), we can replace (µ,π)
by the associated coordinates and obtain

H(x) =

(
x(p)
)2

2m
+
1

2
κ
(
x(q)
)2 (24)

for the Hamiltonian. Hence, Hamilton’s equations take the familiar form

dφ
dt

(t) = J
δH(φ(t), t)
δφ(t)

=

(
φ(p)(t)
m

−κφ(q)(t)

)
. (25)

The physical evolution map φ̃(•; x) is the unique solution of these equations
for initial value x at time ti. In the case of the harmonic oscillator an analytic
form for the physical evolution can be obtained. By standard methods we find

φ̃(t; x) =

 cos
(√

κ
m(t− ti)

)
x(q) + 1√

κm
sin
(√

κ
m(t− ti)

)
x(p)

−
√
κm sin

(√
κ
m(t− ti)

)
x(q) + cos

(√
κ
m(t− ti)

)
x(p)

 . (26)
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2.2 generating functional

The generating functional is the central mathematical object in KFT. This section
is dedicated to its definition as well as its use to derive classical observables.
Moreover, we manipulate the expression for the generating functional in such a
way that the explicit dependence on the physical evolution in its definition is
avoided. Through this, we realize the first of the three key ideas of KFT listed
in the introductory chapter: Determine analytic expressions for observables without
explicitly solving the system.

We start out in subsection 2.2.1 with a definition of the generating functional
in its simplest form. We show that the physical evolution map can be derived
from it. This demonstrates that the generating functional contains the full
information about the system. We proceed to define composite systems which
are the basis of applications of KFT to N-body systems. Subsequently, we define
several important observables like the macroscopic density and its correlation
functions.

These definitions are applied to the harmonic oscillator in the following
subsection. In order to provide an example for composite systems, we consider
a collection of N independent harmonic oscillators and define its macroscopic
density. We also explain the differences between microscopic and macroscopic
densities as well as the densities of components.

In the final subsection we perform the aforementioned manipulations of
the expression for the generating functional. We discuss in detail how the
description of the dynamics with Hamilton’s equations avoids the appearance
of a complicated functional determinant. The resulting expression for the
generating functional depends only on the equations of motion, the initial
conditions and an auxiliary source field J.

The constructions and definitions as well as manipulations in this section are standard
in the KFT literature, e.g., in [1, 23, 35] and others.

2.2.1 Classical Observables

In the previous section we have introduced several central mathematical ob-
jects relevant to the construction of KFT: phase space X, states x ∈ X, the
Hamiltonian H : X→ R, evolution maps φ : R → X and the equations of mo-
tion E[φ] = 0. Given an initial state x at time ti there is a unique evolution
map φ̃ for which the equations of motion are valid for all times t ∈ [ti, tf]. We
refer to this map as the physical evolution of the system. Explicitly, it satisfies

φ̃(ti; x) = x and
d
dt
φ̃(t; x) − J

δH(φ̃(t; x), t)
δφ(t)

= 0 ∀ t ∈ [ti, tf] . (27)

Equivalently, the physical evolution is the solution of the initial value problem
given by the equations of motion E[φ] = 0 and the initial conditions x.

In practice, it is quite rare that an interesting classical physical system has a
physical evolution which can be found by explicitly solving the initial value
problem. In fact, it is not uncommon that differential equations do not have
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a solution which can be expressed in terms of elementary functions. Thus,
it is often too ambitious to attempt to analytically find an expression for φ̃.
Fortunately, often a lot of information about the system under consideration
can be extracted even without having an explicit expression for the physical
evolution. This is the first key idea of KFT: Determine analytic expressions for
observables without explicitly solving the system.

At first glance, this idea might seem to be doomed to fail: How can we
determine observables of a system at some time t > ti without knowing
the state of the system φ̃(t; x)? However, a simple example shows that this
pessimism is unfounded: Consider a system of N interacting point-particles
with arbitrary initial positions and momenta. For N > 2 one can mathematically
prove that the phase space trajectory of this system cannot be expressed in terms
of elementary functions, unless one assumes very special initial conditions.[22]
Yet, the center-of-mass position is an observable for this system and it can be
calculated easily from the initial state and the elapsed time.

This example shows that there are observables which are significantly sim-
pler to determine than the physical evolution. In fact, arguably the physical
evolution is an observable itself and conceptually it is the most difficult of all
possible observables of the system because it contains the maximal amount
of information. Conservation laws and simplifications due to projection and
averaging processes allow us sometimes to determine observables even though
the state of the system remains unknown.

While the mentioned reasons for simplifications can be exploited purpose-
fully, this usually requires developing a specific approach for any given system.
For example, many textbook problems in classical mechanics can be solved us-
ing, e.g., energy conservation. However, in order to extract certain information
about the system might require creative application of this concept or use it in
conjunction with other tools and methods. KFT is a general formalism applicable
to any classical physical system described by a Hamiltonian. Therefore, we
cannot use, e.g., conservation laws explicitly. Nonetheless, our key idea relies
strongly on their effect in simplifying the calculation of certain observables.

Having outlined our aim of determining observables without relying on the
physical evolution map φ̃, let us do the exact opposite. Assume that a classical
physical system is described by an Hamiltonian H which induces equations
of motion E[φ] = 0. Let x ∈ X be the state of the system at the initial time ti.
Assume further that φ̃ is the physical evolution, i.e., for any time t ∈ [ti, tf] the
state of the system is given by φ̃(t; x).

Continuing contrary to our goal, let us define the generating functional of the
system in terms of φ̃. This mathematical object is the central quantity of KFT

and is defined as

Z[J; x] = exp
(
i

∫tf
ti

dt ′ J(t ′) · φ̃(t ′; x)
)

. (28)

The generating functional Z functionally depends on an auxiliary source func-
tion J : R → X. This function does not have a relevant physical interpretation
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and is introduced for the sole reason to allow us to extract φ̃ from Z via a
simple functional derivative. Indeed, it is

δ

i δJt(t)
Z[J; x]

∣∣∣∣
J=0

=
δ

i δJt(t)
exp

(
i

∫tf
ti

dt ′ J(t ′) · φ̃(t ′; x)
) ∣∣∣∣
J=0

(29)

=

∫tf
ti

dt ′ δD(t ′ − t)φ̃(t ′; x) (30)

= φ̃(t; x) . (31)

The notation δD will be used throughout this thesis for the Dirac δ-function.
Note that in this calculation it ensures that φ̃ is evaluated at the instance of time
at which we take the functional derivative. By construction, we get a vanishing
contribution if our time parameter is outside the interval [ti, tf].

The calculation above is our first example of how to derive—or generate—
an observable from the generating functional. Given Z[J; x] the phase space
trajectory of the system can be obtained by a simple functional derivative.
If the system considered is, e.g., an N-body system this allows access to all
particle positions and momenta at all times t ∈ [ti, tf]. For the remainder of this
subsection we define some other observables which can be derived from the
generating functional. Following some examples, subsection 2.2.3 achieves our
current aim of removing the explicit dependence of the generating functional
on the physical evolution φ̃. This way our definitions here are realigned with
the first key idea of KFT formulated above.

The idea of having a mathematical object from which observables can be
obtained via functional derivation is taken from Quantum Field Theory (QFT).
In the path integral formulation of QFT, the partition function is a generating
functional for correlation functions and takes a very similar form to equa-
tion (28). Here, we apply the same concept to classical mechanics. Instead of
correlation functions of quantum fields, our observables are classical. Specifi-
cally, the observables we are most interested in are the phase space trajectory,
the density field as well as (classical) correlation functions of the density field.

We have already shown above how the phase space trajectory can be derived
from the generating functional. In order to generate the phase space trajectory
at time t ∈ [ti, tf] we simply take a functional derivative of the generating
functional with respect to the source field J(t). Written as an equation, we have

δ

i δJt(t)
Z[J; x]

∣∣∣∣
J=0

= φ̃(t; x) . (32)

We can also easily extract only the configuration or momentum parts of the
phase space trajectory φ̃(q)(t; x) and φ̃(p)(t; x) by taking functional derivatives
with respect to J(q)(t) and J(p)(t), respectively. Particularly the configuration
space trajectory φ̃(q)(t; x) is of importance given that most properties of a
classical system do not rely explicitly on the momentum.

The second important observable is the density field. It is different from
the phase space trajectory in that it can be regarded as a macroscopic object.
In order to make clear what is meant by this assertion, let us define the
notions of microscopic and macroscopic in our setting. We are considering
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a classical physical system with d degrees of freedom, i.e., the configuration
space of our system has d dimensions. We refer to these degrees of freedom
as microscopic and usually we consider systems with d ≫ 1. An important
example is interacting N-body systems in 3 dimensions for which d = 3N,
namely every position coordinate of each particle acts as a microscopic degree
of freedom.

KFT is a framework in which we can analytically keep track of large numbers
of microscopic degrees of freedom. In fact, in some cases it is even possible
to analytically take the limit of d → ∞. However, we are rarely interested
in microscopic quantities, e.g., for an interacting N-body system it is often
irrelevant to precisely know the individual positions of all particles at all
times. Instead, it is usually sufficient to know the collective properties of the
system via macroscopic observables. These are functions which depend on the
microscopic configuration in such a way that most of the complexity is projected
out. Mathematically, they are maps from X to a low-dimensional space with
a significant amount of symmetry or which have a very weak dependence on
individual degrees of freedom.

For certain macroscopic observables it is possible to find an (approximate)
evolution equation. An example for this are oscillations of crystals, so-called
phonons, whose dynamics can be described without explicit reference to the
configuration of the underlying system of a large number of periodically
arranged atoms. In this case we may refer to macroscopic degrees of freedom
and completely avoid dealing with the microscopic dynamics. One potential
problem with such macroscopic descriptions is that the evolution equations
are usually only approximately correct. Often, they result from smoothing
over discrete particles to obtain a continuous smooth macroscopic field and
then describing its perturbations around a certain background field value or
evolution. Care has to be taken that these approximations are valid for the
entirety of the evolution of the system.

Instead of attempting to model the evolution of macroscopic fields, KFT

conventionally derives these macroscopic quantities directly from the micro-
scopic dynamics. It should be mentioned, however, that so-called Resummed
Kinetic Field Theory (RKFT) provides a formalism for working directly with
macroscopic fields, though the underlying dynamical equations remain micro-
scopic.[41, 42] In this thesis we work with the conventional approach to KFT. In
particular, we describe the evolution of the microscopic degrees of freedom in
phase space and treat macroscopic observables as derived quantities.

In our discussion it has become apparent that the definition of a macroscopic
observable usually requires the existence of components of our system. Indeed,
the macroscopic system is made up from the collection of these microscopic
components—providing a separation of scales. In many examples, the micro-
scopic components are particles, while the macroscopic system may, e.g., be a
crystal or a fluid. Mathematically, we encode such a property as follows: Let Xj
for 1 ⩽ j ⩽ N be the phase spaces of the microscopic components. We allow for
the case of N = 1, where the entire system is treated as microscopic. Together,
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these components make up the classical physical system under consideration,
i.e., we demand that

X = X1 ×X2 × . . .×XN with x = (x1, x2, . . . , xN) . (33)

Given our definition of phase space X = (X(q),X(p)) the equality above is
understood to be valid up to reordering. In many applications we have Xj = Xk
for all j,k and we can simply write X = XN.

At this point we can finally explain why we have been using bold faced
mathematical symbols so far: From the beginning, we were anticipating that the
classical physical system is allowed to result from combining a potentially large
number of components. In fact, even the limit N → ∞ can be taken in some
cases. Throughout this thesis, bold faced mathematical symbols are related
to the entire system. Quantities involving components are regular faced and
indexed by subscripts. We use letters from the middle of the Roman alphabet
for these subscripts, usually j,k, ℓ,m. The Einstein sum convention does not
apply to these indices.

Our discussion and construction of phase space X transfers completely to
the component phase spaces Xj except for aspects related to the equations of
motion. Due to interactions between the components, it may not be possible
to find equations of motion for each component individually. But even if this
is feasible, the solution of such equations for the jth component would require
initial conditions for all components and not only xj ∈ Xj.

Let us return to the density field as a specific example for a macroscopic
observable. We define the microscopic density of the jth component as

ρj : Xj → C̄∞(Xj, R) with ρj(x; xj) := δD(x− xj) . (34)

We denoted by C̄∞(Xj, R) the set of distributions from Xj to R. The definition is
to be understood in the sense that given the state of the component xj ∈ Xj, the
density is a distribution which returns a real number ρj(x; xj) given (almost)
any state x ∈ Xj. This distribution is a Dirac δ-function because once we fix
the state of the component to be xj ∈ Xj, the density needs to be zero for any
state x ̸= xj.

Given an evolution map φj(t) for the jth component, the density ρj
(
x;φj(t)

)
effectively becomes a time dependent distribution on Xj. In this context, the
physical microscopic density of the jth component

ρ̃j(x, t; x) := ρj
(
x; φ̃j(t; x)

)
(35)

is of special importance. It is the microscopic density of the component when
evaluated on the physical evolution. This is indicated by an overset tilde, which
we use throughout this thesis to denote observables of a physically evolving
system. Note that this notation is consistent, since the physical evolution map φ̃
itself can be regarded as such an observable.

The physical microscopic density can be easily obtained from the generating
functional. Indeed, we simply replace

φ̃j(t; x) 7→
δ

i δJt(t)
(36)
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in its definition. The idea is that this derivative turns back into the phase space
trajectory upon acting on the generating functional and setting the source field J
to zero. This way, the original expression is recovered. Explicitly, it is

ρ̃j(x, t; x) = ρj

(
x;

δ

i δJtj(t)

)
Z[J; x]

∣∣∣∣∣
J=0

, (37)

though it is somewhat technically involved to show this explicitly here due to
the Dirac δ-function in ρj. Instead we provide a proof of concept for the Fourier
transform of the density defined below. In the equation, the quantity Jj is the
component of the source field J corresponding to φ̃j, i.e., the component which
gets coupled to φ̃j via the scalar product J · φ̃ in equation (28).

For various reasons we will often encounter the Fourier transform of the
density in our applications. We use the convention

f(k) =

∫∞
−∞dx f(x)e−ik·x and f(x) =

∫∞
−∞

dk
(2π)d

f(k)eix·k (38)

for the Fourier transform of a function f : X→ R. Specifically, the minus sign
appears in the Fourier transform and the numerical prefactor in the inverse
Fourier transform. Note that we distinguish between the function f and its
Fourier transform only via their argument. In Fourier space, the physical
microscopic density takes the form

ρ̃j(k, t; x) := exp
(
−ik · φ̃j(t; x)

)
. (39)

Again, through the replacement (36) we can extract ρ̃j(k, t; x) directly from the
generating functional. As promised above, in this case we can explicitly prove
this assertion without resorting to an abundance of technical subtleties. The key
idea is to expand the exponential function into a power series—which actually
is the way to properly define what is meant by an (exponential) function
evaluated on an expression involving a derivative. It is

exp

(
−ik · δ

i δJtj(t)

)
Z[J; x]

∣∣∣∣∣
J=0

=

( ∞∑
m=0

(−i)m

m!

(
k · δ

i δJtj(t)

)m)
exp

(
i

∫tf
ti

dt ′ J(t ′) · φ̃(t ′; x)
) ∣∣∣∣∣
J=0

(40)

=

( ∞∑
m=0

(−i)m

m!
(
k · φ̃j(t; x)

)m) exp
(
i

∫tf
ti

dt ′ J(t ′) · φ̃(t ′; x)
) ∣∣∣∣∣
J=0

(41)

= ρ̃j(k, t; x) . (42)

We remark that inserting derivatives into a function has similarities to the more
common occurrence of inserting a matrix into a function. The formal definition
of this procedure is via a power series expansion, too. Conversely, difficulty
caused due to non-commutativity of matrices is also a recurring issue for this
kind of operations with derivatives.
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Let us now define the macroscopic density function. For this purpose, we
assume that all component phase spaces are equal, i.e., it is X = XN. We define
the macroscopic density as

ρ : X→ C̄∞(X, R) with ρ(x; x) :=
N∑
j=1

ρj
(
x; xj

)
. (43)

For the special caseN = 1we obtain the system’s phase space density. ForN > 1
we effectively project onto the component phase space X and sum over the
contributions of the various components. As an example, the macroscopic
density for an N-body system is the sum over the contributions to the density
from all particles. The macroscopic density is thus a sum over Dirac δ-functions.

Just as for the microscopic density, we are usually most interested in the
physical macroscopic density, i.e., the density evaluated along the physical
evolution of the system. It is simply given by

ρ̃(x, t; x) :=
N∑
j=1

ρ̃j(x, t; x) . (44)

Due to linearity of the Fourier transform, this relationship holds analogously in
Fourier space. In both cases, the component densities ρ̃j can be obtained from
the generating functional and thus the physical macroscopic density can be
extracted from the generating functional via functional derivation with respect
to the source field J, too. The same holds true for the following observables.

In many physical systems, the interactions depend on the configuration of
a system, but not its momentum. In fact, quite often the interactions have the
form of a convolution of an interaction potential with the configuration space
density. Above, the density functions we defined were phase space densities,
i.e., they were distributions on the component phase space X. We define the
spatial macroscopic density as

ρ̃(q)
(
x(q), t; x

)
:=

N∑
j=1

ρ̃
(q)
j

(
x(q), t; x

)
:=

N∑
j=1

δD

(
x(q) − φ̃

(q)
j (t; x)

)
. (45)

This is a slight abuse of our notation of superscribed •(q) which in this particular
case does not pick out elements of a vector, but rather terms from a product.
The spatial density is one of the most important observables for the applications
considered in this thesis.

Equally important to the spatial macroscopic density are its r-point correla-
tion functions6. These are closely related to the density power spectrum which
is an important observable in cosmological applications. Notably, the density
correlation functions encode properties of the density field which are obscured
when analyzing the density in a statistical setting. While this statement be-
comes clear once we define expectation values of observables in section 2.4.3,
we remark already at this point that expectation values of density correlation

6 We refrain from using the more common term n-point correlation function because the letter n
acts as a central expansion index in the perturbative approach to KFT.
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functions supply vastly more information in a statistically homogeneous setting
than the expectation value of the density itself.

We define the density correlation functions only in Fourier space and only
for the macroscopic density functions. The r-point density correlation function
is given by

Gρ̃ · · · ρ̃︸ ︷︷ ︸
r times

(k1,k2, . . . ,kr, t; x) :=
r∏
s=1

ρ̃(ks, t; x) . (46)

Analogously, the r-point correlation function for the spatial density G(q)
ρ̃···ρ̃ is

defined as the product over r Fourier space spatial densities. Note that these
products become convolutions upon performing an inverse Fourier transform.
Fortunately, we only need the density correlation functions in Fourier space
as our primary use of them is to extract the density power spectrum—which
likewise is a Fourier space object.

We close this subsection by defining general observables. Let O be any
function or distribution of x ∈ X and potentially some other parameters χ such
that O(χ; x) is a quantity of interest. The associated physical observable, i.e.,
the function O evaluated along the physical phase space trajectory is then

Õ(χ, t; x) = O(χ; φ̃(t; x)) = O

(
χ;

δ

i δJt(t)

)
Z[J; x]

∣∣∣∣
J=0

. (47)

Note that the replacement (36) in the last step requires that O is an analytic
function of x. Otherwise inserting a functional derivative into the function O

might not be well-defined.

2.2.2 Example: Harmonic Oscillator (II)

Let us briefly return to the harmonic oscillator as an example. Given its simplic-
ity, it admits an analytic solution φ̃ which can be found in equation (26). Thus,
its generating functional

Z[J; x] = exp
(∫

dt ′ J(t ′) · φ̃(t ′; x)
)

(48)

is an analytic function in J. There is little point in writing it down explicitly
here, but we emphasize that given the existence of such an analytic expression
the equations of the previous subsection are no longer purely formal for the
harmonic oscillator.

The focus of this subsection is instead to provide an example for the defini-
tion of the microscopic and macroscopic density fields defined above. We have
already prepared for this: By using normal faced symbols in subsection 2.1.5,
we reserved bold faced symbols for a composite system made up from N in-
dependent harmonic oscillators. The mathematical objects and equations in
subsection 2.1.5 can then be regarded as describing any one of them.

The full system has phase space X = XN, i.e., its state is simply given as an
N-tuple of states in X. The physical evolution of the composite system is

φ̃(t; x) =
((
φ̃

(q)
1 (t; x), . . . , φ̃(q)

N (t; x)
)

,
(
φ̃

(p)
1 (t; x), . . . , φ̃(p)

N (t; x)
))

. (49)
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Note that in general the physical evolution of, e.g., the first component φ̃1
depends on the initial state of the full composite system x. Here, we assumed
the harmonic oscillators to be independent, hence φ̃1 actually only depends on
the initial state of the first component x1.

The independence between the components is also reflected by the form of
the Hamiltonian which is simply a sum over the component Hamiltonians

H(x) =

N∑
j=1

Hj(xj) =

N∑
j=1

(x(p)j )2
2m

+
1

2
κ
(
x
(q)
j

)2 . (50)

Deriving Hamilton’s equations consequently yields N independent copies
of equation (25) from which analytic expressions for the component physical
evolutions φ̃j for all j can be derived. The generating functional of the combined
system simply is

Z[J; x] = exp
(∫

dt ′ J(t ′) · φ̃(t ′; x)
)

. (51)

The physical microscopic density of the jth component is given by

ρ̃j(x, t; x) = δD
(
x− φ̃j(t; x)

)
= δD

(
x−

δ

i δJtj(t)

)
Z[J; x] . (52)

One can write down an analogue expression for the combined system. This
yields the microscopic density of the system of N harmonic oscillators which
is non-zero at time t if and only if the argument x ∈ X matches the state of
the entire system φ̃(t; x). It can be regarded as the product of the component
microscopic densities. However, more important in applications, particularly if
the components are indistinguishable, is the macroscopic density of the system.
It is given as the sum over the component densities ρ̃j for all j. As an equation,
we obtain

ρ̃(x, t; x) =
N∑
j=1

δD

(
x−

δ

i δJtj(t)

)
Z[J; x] . (53)

Given initial conditions x and fixing a time t, it is a distribution on X,
i.e., on component phase space. The Dirac δ-functions give a contribution for
argument x if any of the harmonic oscillators is in state x as opposed to ρ̃j
which gives a contribution for this argument only if the jth harmonic oscillator
is in this state. The spatial version ρ̃(q) as well as expressions in Fourier space
can be obtained easily using the definitions above.

2.2.3 Classical Path Integrals

Above we introduced an important idea of KFT: Determine analytic expressions for
observables without explicitly solving the system. We showed that the generating
functional Z[J; x] can be used to analytically derive expressions for observ-
ables Õ from a single mathematical object. However, our definition of Z[J; x]
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in equation (28) explicitly involves the physical evolution map φ̃. This is con-
trary to our idea, because this means that in order to construct the generating
functional we first need to explicitly solve the system to find an expression
for φ̃.

In this subsection we manipulate our expression for the generating functional
in order to avoid explicit dependence on the solution of the equations of motion.
At least conceptually, this allows us to analytically find an expression for
the generating functional without first having to explicitly solve the system.
Such an expression could then be used to accomplish our aim of determining
observables without solving the equations of motion. In practice, finding an
analytic form for the generating functional is usually of similar difficulty
as finding an analytic form for the physical evolution. However, this is not
true for the expressions for many observables derived from the generating
functional, particularly in the case of statistical initial conditions. Thus, even if
the generating functional remains an abstract mathematical object, it provides
the basis of a formalism to explicitly determine observables.

Recall that the generating functional is defined as

Z[J; x] = exp
(
i

∫tf
ti

dt ′ J(t ′) · φ̃(t ′; x)
)

. (54)

It depends explicitly on the physical evolution map φ̃(t ′; x) and through it
also on the initial conditions x ∈ X. We can write the generating functional
equivalently in the form

Z[J; x] =
∫
Dφ δD[φ− φ̃(•; x)] exp

(
i

∫tf
ti

dt ′ J(t ′) ·φ(t ′)
)

. (55)

As usual, the • is a placeholder for the parameter of the function, in this case
the time t. It is required, given that the Dirac δ-functional is to be evaluated
on a function, not a number. Effectively, it encodes the condition φ = φ̃(•; x)
which is equivalent to φ(t) = φ̃(t; x) for all t ∈ R. The Dirac δ-functional thus
is a generalized version of the Dirac δ-function. Its defining properties are

δD[f] = 0 ∀ f ̸= 0 and
∫
DfG[f] δD[f] = G[0] ∀ functional G (56)

in perfect analogy to the defining properties of the Dirac δ-function.
The Dirac δ-functional’s key property of canceling path integrals yields the

equivalence of the two expressions for the generating functional above. Clearly,
the expression in equation (55) reduces to our original definition of Z[J; x] when
the path integral over φ is canceled by the Dirac δ-functional and thereby
replaces the evolution map φ by the physical evolution map φ̃(•; x).

Of course we did not make our expression more difficult without an ulterior
motive. Equation (55) allows us to interpret the generating functional as a math-
ematical object with the potential of receiving contributions from all possible
evolutions of the system, but then the Dirac δ-functional selects the classical
solution of the equations of motion as the unique path whose contribution
is taken into account. This is of course very reminiscent of the path integral
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approach to quantum mechanics, with the key difference that in the quantum
realm the contributions of all paths are relevant. The sharp Dirac δ-distribution
of classical mechanics is replaced by a smooth function exp

(
i
 hS[φ]

)
, where S is

the action.[36, chapter 20]
Apart from the similarities to the path integral formulation of quantum

mechanics, equation (55) provides an expression for the generating functional
which reminds of Hamilton’s principle of stationary action. This principle
implies that the phase space trajectory chosen by the Dirac δ-functional is the
one which extremizes the action. More specifically, recalling our discussion at
the end of subsection 2.1.4, this trajectory is the one along which the equations
of motion are satisfied. Therefore, the conditions

φ− φ̃(•; x) = 0 and E[φ] = 0 (57)

are equivalent once we demand separately that φ(ti) = x.
While the left-hand condition equation (57) is the one appearing in the

Dirac δ-functional in equation (55), the right-hand condition has the significant
advantage of not explicitly involving the physical evolution map φ̃. Hence,
we would like to replace the former condition by the latter and thereby get
rid of the explicit dependence of the generating functional on the solution of
the equations of motion. This would accomplish the first key idea of KFT we
have been working towards throughout this section. In order to achieve this,
we need to overcome two technical problems. Firstly, we need to separately
encode the condition φ(ti) = x. And secondly, we need to rigorously replace
the conditions in the Dirac δ-functional.

The first issue is quite minor. The path integral over all evolution maps φ in
general places no constraints on the boundary values φ(ti) and φ(tf). However,
such conditions frequently arise in practice, hence there exists the notion of
definite path integrals, i.e., path integrals subject to boundary conditions. Thus,
the condition φ(ti) = x can be accounted for via the replacement∫

Dφ 7→
∫
x

Dφ :=

∫
φ(ti)=x

Dφ , (58)

where the notation
∫
x is an abbreviation used throughout this thesis. The

resulting path integral is restricted to all phase space trajectories satisfying the
initial conditions which is exactly what we require.

The second problem is mathematically more involved. While it is true that

δD[φ− φ̃(•; x)] = 0 ⇔ δD[E[φ]] = 0 , (59)

the normalization condition in equation (56) needs to be checked, too, if we
intend to replace the left-hand Dirac δ-function by the right-hand one. Recall
that the multidimensional Dirac δ-function satisfies

δD(f(x)) =
∑

roots x̃

(
det
(
∂f

∂x
(x̃)

))−1

δD(x− x̃) (60)

under the assumption that the roots x̃ of the function f : Rd → Rd are isolated.
This equation can be generalized to the Dirac δ-functional by replacing the
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function f by a functional and the Jacobian matrix ∂f
∂x by its functional analogue.

In our case, it is

δD[E[φ]] =

(
det
(
δE

δφ
[φ̃(•; x)]

))−1

δD[φ− φ̃(•; x)] , (61)

using that the equations of motion are uniquely solved by the physical evo-
lution. Note that we assume here that the initial conditions are fixed via the
replacement (58).

Equation (61) requires us to compute the functional determinant of the func-
tional Jacobi matrix of the equations of motion E[φ]. Using that the equations
of motion are Hamilton’s equations (16), it is

δE

δφ
[φ̃(•; x)](t) =

δ

δφ(t)

(
d

dt ′
φ(t ′) − J

δH(φ(t ′))

δφ(t ′)

) ∣∣∣∣
φ(t)=φ̃(t;x)

(62)

=
d

dt ′
δD
(
t ′ − t

)
I2d − J

δ2H(φ̃(t; x))
δφ(t)δφ(t)︸ ︷︷ ︸

=:M(t)

. (63)

The quadratic derivative of the Hamiltonian H in the last line is the functional
Hessian and thus is a symmetric matrix. It can be shown via elementary linear
algebra that the product of a symplectic with a symmetric matrix has vanishing
trace, hence the second term in the last line is a traceless matrix M(t).

Following the treatment in [43], we can write the functional determinant as

det
(
δE

δφ
[φ̃(•; x)]

)
= det

(
d
dt

)
︸ ︷︷ ︸

=:C

det

(
I2d −

(
d
dt

)−1

M

)
. (64)

The first term C can be evaluated by using tools from functional analysis.
However, as it turns out, we do not need to actually evaluate it. The important
term is the second factor, which can be rewritten as

det

(
I2d −

(
d
dt

)−1

M

)
= exp

(
tr

(
ln

(
I2d −

(
d
dt

)−1

M

)))
(65)

= exp
(
−θ(0)

∫
dt tr(M(t))

)
. (66)

The second equality uses that the Heaviside function θ is a Green’s function for
the derivative operator d

dt . Applying the functional trace to a series expansion of
the logarithm, all higher order terms vanish due to properties of the Heaviside
function.

In [35, section 3.2], it is argued that in classical mechanics we ought to
set θ(0) = 0, such that the determinant in equation (65) is unity. We adopt
this convention and discuss the topic in more detail in section 2.3.1, where
we demand that in KFT Green’s functions need to be causal. In order for the
Heaviside function θ to qualify as a Green’s function, we thus need θ(t) = 0
for t ⩽ 0. Nonetheless, using the symplectic structure of Hamilton’s equations,
we have seen above that tr(M(t)) = 0 such that the determinant is unity even if
one were to adopt the more common choice θ(0) = 1

2 .
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Making use of the identity

δD[E[φ]] = CδD[φ− φ̃(•; x)] (67)

established by the detailed discussion above, we can rewrite the generating
functional as

Z[J; x] =
∫
Dφ δD[φ− φ̃(•; x)] exp

(
i

∫tf
ti

dt ′ J(t ′) ·φ(t ′)
)

(68)

= C−1

∫
x

Dφ δD[E[φ]] exp
(
i

∫tf
ti

dt ′ J(t ′) ·φ(t ′)
)

. (69)

This achieves a main goal set out above: The generating functional is no longer
explicitly dependent on the solution of the equations of motion. Using a func-
tional Fourier transform of the Dirac δ-functional, we obtain a fully analytic
expression for the generating functional

Z[J; x] = C−1

∫
x

Dφ

∫
Dχ exp

(
i

∫tf
ti

dt ′
(
χ(t ′) · E[φ](t ′) + J(t ′) ·φ(t ′)

))
. (70)
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2.3 free evolution and interactions

In a slight shift of style, let us introduce this section by referencing a subtle and
instructive question: Newton’s second law implies that for vanishing force there is no
acceleration—why then is Newton’s first law needed? One could even elaborate and
deduce the equation for uniform motion of a point-particle from the vanishing
of the second derivative of its position. Why does this not show that Newton’s
first law is implied by his second law?

The answer is connected to two important concepts in physics: Firstly, a
deviation is only ever well-defined provided a reference. Interactions are always
to be considered relative to free evolution. This is the basis for any perturbative
treatment of a physical system. Secondly, one might wonder what happens if
one were to abandon Newton’s first law. Clearly, the second law would need to
be adjusted depending on the chosen reference motion. This freedom of choice
can be regarded as an example of gauge freedom.

Whenever we refer to free evolution in a physical system, we presume that
this implies simplicity. Interactions make a system complicated, while free
evolution usually can be solved exactly. In order to formalize this idea, we
introduce Green’s functions in the first subsection below. We require their
existence for the free system to ensure it can be solved. Based on this, we
perform a split in the equations of motion of the system in a free and an
interaction part.

In subsection 2.3.2 we investigate the freedom in choosing the free motion.
We refer to a choice of split in the equations of motion as splitting gauge
and introduce a few natural gauge choices. The most important of these is
Newtonian gauge which reproduces Newton’s first law of motion. We briefly
discuss an approach to formalize the gauge freedom and gauge transformations.

The Harmonic Oscillator serves yet again as an example. We consider the
splitting of its equations of motion in the various gauge choices introduced
in subsection 2.3.2. Regardless of gauge choice, the physical evolution can be
obtained by taking the sum of free evolution and the interactions as evaluated
along the physical evolution. We confirm this explicitly for the Harmonic
Oscillator.

The final and by far longest subsection of this section investigates the effect
of splitting the equations of motion on the generating functional. After a series
of manipulations we obtain one of the central equations of KFT which takes the
form

Z[J; x] = exp
(
i

∫tf
ti

dt ′
δ

i δK(t ′)
· EI
[
δ

i δJt

]
(t ′)

)
exp

(
i

∫tf
ti

dt ′
∫t ′
ti

dt ′′ Jt(t ′)G(t ′, t ′′)
(
δD(t

′′ − ti) x−K(t
′′)
)) ∣∣∣∣∣

K=0

(71)

and thus achieves a split of the generating functional. The argument of the first
exponential is the so-called interaction operator, while the second exponential
contains the free evolution.

Subsequently we perform simplifications of this expression. In particular,
we are able to remove the auxiliary field K from the formalism. We remark
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that all manipulations performed in this section are exact. This accomplishes
the second key idea of KFT: Split free evolution from interactions while keeping the
description exact.

The splitting of the equations of motion is central to KFT, especially in the perturbative
treatment of interactions. Thus it is present in the works of [23, 24] and most of the
later literature in the field. To the best of my knowledge, the removal of the field K was
first presented in [1], though a slight inaccuracy is corrected here. The splitting freedom
is discussed in [1], but more details are presented here. Unfortunately, I cannot recall
who first mentioned the brilliant question regarding Newton’s laws to me.

2.3.1 Green’s Functions

The easiest classical physical systems are those for which we can solve the initial
value problem consisting of the equations of motions E[φ] = 0 and the initial
conditions φ(ti) = x. We usually say that we analytically solved such an initial
value problem if we can find an explicit expression for the physical evolution
map φ̃(t; x). However, there is a somewhat stronger notion of having solved
the system which the discussion in this section relies on: a Green’s function or
propagator.

Given an equation of motion E[φ] = 0 we say that G̃ is a Green’s function if

E[G̃(•, t ′)](t) = δD(t− t ′) I2d (72)

for all t, t ′ ∈ [ti, tf]. Mathematically, the Green’s function can be regarded as a
map G̃ : R × R → M2d×2d(R), i.e., yields real square matrices given two real
parameters. Using that X = R2d by definition, we can consider the Green’s
function as a map

G̃(t, t ′) : X→ X with x 7→ G̃(t, t ′) x (73)

given arbitrary, but fixed parameters t, t ′ ∈ [ti, tf]. The action of G̃ on x is by
standard matrix multiplication.

In order to make equation (72) well-defined, we need to specify how E

acts on objects in M2d×2d(R). In case E is a linear (differential) operator, i.e.,
the action of E is by right-multiplication, E[φ] = Eφ, the generalization is
trivially E[G̃] = EG̃. Otherwise, we demand that E acts column-wise which
coincides with the mentioned right-multiplication in the linear case.

In this thesis we consider classical physical systems. In particular, the equa-
tions of motion describe deterministic and causal physical evolution. Therefore,
we restrict ourselves to causal Green’s functions which incorporate these prop-
erties. In order to qualify as causal, we demand that a Green’s function G̃
satisfies

G̃(t, t ′) = 0 for t, t ′ ∈ [ti, tf] with t ⩽ t ′ . (74)

This condition ensures causality in the sense that the map G̃(t, t ′) : X→ X gives
a non-zero contribution only if time-ordering t > t ′ is obeyed. We see below
more specifically that otherwise causality can be violated.
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Finding a (causal) Green’s function is a stronger notion of solving a dif-
ferential equation than determining the solution φ̃, because the latter can be
obtained from the former. Indeed, provided that the initial value problem has a
unique solution, it is

φ̃(t; x) = G̃(t, ti) x . (75)

Inserting this expression for the physical evolution map into the equations of
motion one obtains E[φ̃(•; x)](t) = δD(t− ti) x. Clearly, this implies that the
equations of motion are satisfied for t > ti, but they appear to be violated at
initial time ti. However, this is only a technicality: Generically Green’s functions
give the fundamental solution to a differential equation, so in order to apply
the formalism to initial value problems, we treat the initial value x as a source
at initial time ti. While this means that we cannot use equation (75) for t ⩽ ti,
it provides a simple and correct expression for t > ti.

We emphasize that it is rare for a general differential equation to allow for a
Green’s function. In fact, commonly they are only defined for linear differential
equations, where they usually exist7 and are a standard tool. Our reason for
introducing Green’s functions here is their very useful property of providing a
solution not only to a given differential equation, but also to inhomogeneous
modifications of it. Specifically, assuming that G̃ is a Green’s function for a
differential equation E[φ] = 0, then

φ̃K(t; x) = G̃(t, ti) x−
∫t
ti

dt ′ G̃(t, t ′)K(t ′) (76)

is the solution of the inhomogeneous equation E[φ] +K = 0 with initial value x.
Note that if the Green’s function would not satisfy equation (74), the upper
integral boundary would need to be tf instead of t and φ̃K would receive
acausal contributions. Indeed, φ̃K at time t would then depend on the behavior
of K(t ′) for t ′ > t. We further remark that setting K(t) = −δD(t− ti) x one
obtains precisely the source term for the initial conditions x we implicitly used
above to apply the Green’s function formalism to initial value problems.

The key benefit of the just described property is that if finding a Green’s
function for the equation E[φ] = 0 is difficult or impossible, then we may try
to find a Green’s function for the equation E[φ] +K = 0 instead. Then φ̃K
as defined in equation (76) for the Green’s function of the latter equation is a
solution for the original equation. To reiterate in words, in order to solve an
equation of motion we may modify it by addition of a function of time.

The additional flexibility of adding a function of time to the equations of
motion is of course somewhat useful, but the main difficulty in finding solu-
tions and Green’s functions for non-trivial equations of motion is a non-linear
dependence on the evolution map φ. Clearly, this issue cannot be remedied via
adding a function of time to the equations of motion. While this is true in the

7 We are deliberately vague here in order to avoid a lengthy and irrelevant discussion. However,
it should be mentioned that the question of the existence of Green’s functions for a linear
differential operator is different from the question of its existence for an initial (or boundary)
value problem.
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literal sense, within the formalism of KFT it is in fact possible to use a function
of time to split off terms which depend on the evolution map φ. However, this
splitting happens in the generating functional, not directly in the solution.

On a conceptual level, KFT thus provides a framework in which non-linear
differential equations can be solved with Green’s functions. Firstly, the equations
of motion need to be split into a (usually linear) part which admits a Green’s
function and another term which may depend not only on the time parameter,
but also on the evolution map. We usually refer to the former as the free part of
the equations of motion E0 and the latter as the interaction part EI. Secondly,
this splitting of the equations of motion provides a splitting in the generating
functional which can, thirdly, be exploited in the calculation of observables.
The remainder of this section is dedicated to a detailed description of this
procedure.

Separating a free—or background—evolution from interactions is a key
concept in many areas of physics and is strongly related with perturbation
theory. Granted, such a separation does not necessarily need to be treated
perturbatively. In principle, it is possible to describe the deflection of a particle
from a straight path exactly even if the deflection is large. However, assuming
that this deflection from free motion is small often allows for a significant
simplification, terms which depend quadratically on the deflection can be
neglected. Of course, this comes at the price that the solution obtained is only
ever an approximation of the exact solution. This approximation can become
arbitrarily inaccurate if the perturbation becomes large—a common feature in
non-linear systems where often the error increases quickly with time. Unless
the perturbation series can be resummed to recover the exact solution, care has
to be taken with the validity of a perturbative treatment.

While we intend to treat interactions perturbatively in this thesis, in this
chapter we merely perform a splitting in the equations of motion and investigate
its effects on the generating functional and observables. No approximation
is performed and thus the resulting expressions provide an exact physical
description of the classical system we consider. This is the second key idea of
KFT: Split free evolution from interactions while keeping the description exact.

Following the description above, let us assume that the equations of motion
split into a free part E0 and an interaction part EI, i.e., the equations of motion
read

E[φ] = E0[φ] + EI[φ] = 0 . (77)

We demand that the free equation E0[φ] = 0 admits a causal Green’s functionG.
The only demand on EI is to be analytic, i.e., admitting a convergent series
expansion in φ, hence there are infinitely many ways of performing such a split.
We investigate this splitting freedom in more detail in the following subsection.
For now, it is sufficient to assume that there is at least one such splitting.
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There is one additional assumption on the free equation E0[φ] = 0. In order
for some manipulations performed below to be mathematically rigorous, we
need to demand that

det
(

dE0
dφ

[φ̄(•; x)]
)

= det
(

dE
dφ

[φ̄(•; x)]
)

(78)

Here, φ̄(•, t) is the solution of the initial value problem given by E0[φ] = 0
with φ(ti) = x. We refer to it as the free physical evolution map φ̄ : R ×X→ X8.
Recalling equation (64), this is equivalent to the demand that the functional
determinant above equals C = det

( d
dt

)
.

It follows immediately from the discussion in section 2.1.4 that the condi-
tion (78) is satisfied if E0[φ] = 0 are Hamilton’s equations. Hence, the easiest
way of conforming to this technical demand is to consider a split in the Hamil-
tonian which induces the separation of the equations of motion in the form of
equation (77). Let

H = H0 +HI (79)

be such a splitting and suppose that E0[φ] = 0 are Hamilton’s equations for H0.
Specifically, this means that

E0[φ](t) =
d
dt
φ(t) − J

δH0(φ(t), t)
δφ(t)

and (80)

EI[φ](t) = −J
δHI(φ(t), t)
δφ(t)

(81)

for all t ∈ [ti, tf]. We still have to explicitly require that the free equation
admits a Green’s function and that the interaction part is analytic in φ, but
the condition on the functional determinant in equation (78) is automatically
satisfied.

Our guiding idea is to use the Green’s function of the free equation to express
the solution of the full equations of motion. Ideally, we would like to obtain an
equation similar to (76). In analogy, we have the relationship

φ̃(t; x) = G(t, ti) x−
∫t
ti

dt ′G(t, t ′)EI[φ̃(•; x)](t ′) . (82)

This expression does solve the equations of motion E0[φ](t) + EI[φ](t) = 0

for t > ti as can be confirmed easily. However, due to the self-referential nature
of this expression, its practical use is somewhat limited. Nonetheless, it provides
a natural approximation scheme for φ̃.

The first term in equation (82) is the free physical evolution map φ̄ defined
above. In fact, we may consider the relationship

φ̄(t; x) = G(t, ti) x (83)

8 The notation with an overset bar φ̄ in contrast to the overset tilde φ̃ for the (full) physical
evolution map is inspired by the fact that for many systems the free evolution map does indeed
describe a straight path in phase space while the path described by the physical evolution has a
more complicated shape.
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as its definition. If interactions are very small, the free evolution can be an
approximation for the physical evolution, albeit not a very sophisticated one.
However, as a slightly improved approximation, we can replace the argument
of EI in equation (82) by the free evolution. This yields the well-known Born
approximation

φBorn(t; x) = φ̄(t; x) −
∫t
ti

dt ′G(t, t ′)EI[φ̄(•; x)](t ′) . (84)

While in equation (82) the deviation from the free evolution is given by the in-
teractions evaluated along the true physical evolution, the Born approximation
evaluates them along the free physical evolution. This way, the expression is no
longer self-referential and thus can be evaluated in a straightforward manner.

If interactions are sufficiently small, the Born approximation describes a phase
space trajectory which is close to the physical evolution. This is exploited, e.g., in
classical scattering problems with high impact parameter and similar physical
systems. In such cases, it usually performs best for a single scattering. For a
particle which is scattered multiple times, the second and subsequent scatterings
are highly affected by the error incurred by the approximate treatment in the
first scattering. This is especially true if the time interval between scatterings is
large, as then a small difference in scattering angle severely affects the impact
parameter for the subsequent scattering.

One can attempt to remedy this, by performing a so-called iterative Born
approximation. Its second iteration evaluates the interactions along φBorn which
itself is considered as the first iteration. In turn, evaluating the interactions
along the resulting second iteration yields the third iteration and so forth. We
compare the Born approximation to the perturbative treatment of interactions
in KFT in subsection 3.2.2.

2.3.2 Splitting Freedom

In this subsection, we investigate the freedom of performing a split of the
equations of motion into a free and an interaction part in more detail. The
focus is in particular on the question how we can find admissible splits of the
equations of motion. Ideally, one would be able to completely parameterize
the splitting freedom and leave the split arbitrary for as long as possible. In
a final expression one could then choose the “optimal splitting” which, e.g.,
minimizes approximation errors.

Before diving into the mathematics of parameterizing the splitting freedom,
let us return to the discussion of Newton’s laws in the introduction of this
section. There, the question about free motion is answered by Newton’s first law.
His second law tells us the acceleration relative to this free motion. However,
if we are describing physics in an accelerated reference frame, inertial motion
corresponds to an accelerated trajectory in that frame. Newton’s first law does
not hold in the accelerated frame. As a consequence, Newton’s second law
needs modification in the form of fictitious forces.

The splitting of the equations of motion into a free and an interaction part in
KFT is somewhat analogous. The difference is that we might deliberately regard
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a more complicated evolution as free, in hopes that the deviation relative to it
remains small. In many areas of physics, such a choice is referred to as gauge
freedom. The term does have a more precise definition in some areas compared
to others. Here, we use it quite liberally without, e.g., demanding that the
freedom of choice can be parametrized by a gauge group.

In an ideal case, we would regard the physical evolution φ̃ as free motion
such that there are no deviations from it due to interactions at all. We refer
to this choice as solution gauge. Unfortunately, this gauge choice is only rarely
admissible due to the condition of the existence of a Green’s function for the
free equation of motion E0 = 0. For the remainder of this section we focus on
admissible gauge choices.

A gauge choice which is always possible for systems described by a Hamilto-
nian H is stationary gauge. This is the choice of splitting Hamilton’s equations
as

E0[φ](t) =
d
dt
φ(t) and EI[φ](t) = −J

δH(φ(t), t)
δφ(t)

, (85)

i.e., the Hamiltonian is split as H0 = 0 and HI = H. In stationary gauge,
free evolution is given by φ̄(t; x) = x for all t ∈ [ti, tf]. We regard a constant
trajectory in phase space as free evolution. The corresponding Green’s function
isG(t, t ′) = θ(t− t ′) I2d. This is a poor gauge choice in most situations, because
even the standard kinetic term is considered as an interaction.

The most natural gauge choice for systems described by a Hamiltonian H

which contains a standard kinetic term K = 1
2mφ

(p) ·φ(p) is Newtonian gauge.
The kinetic term is regarded as the free Hamiltonian H0 = K and the remainder
of the Hamiltonian acts as interactions. This choice is admissible, because the
free equation of motion

E0[φ](t) =
d
dt
φ(t) − J

δK(φ(t), t)
δφ(t)

=
d
dt
φ(t) −

(
1
mφ

(p)

0

)
(86)

admits the Green’s function

G(t, t ′) :=

(
θ(t− t ′) Id

1
m(t− t ′) θ(t− t ′) Id

0 θ(t− t ′) Id

)
. (87)

Newtonian gauge can be regarded as an implementation of Newton’s first law.
Given the physical importance of Newtonian gauge and our preferred use of

it throughout this thesis, let us confirm that G is indeed a Green’s function in
the sense of equation (72). Using that the equations above can be written as a
linear differential equation of the form(

d
dt

−

(
0 1

m Id

0 0

))
φ(t) = 0 , (88)
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the linear differential operator in the round brackets can be applied to the
Green’s function. This yields(

d
dt

−

(
0 1

m Id

0 0

))
G(t, t ′)

=

(
δD(t− t

′) Id
1
m

(
θ(t− t ′) + (t− t ′) δD(t− t

′)
)

Id

0 δD(t− t
′) Id

)

−

(
0 1

m θ(t− t
′) Id

0 0

)
(89)

= δD(t− t
′) I2d , (90)

where we used (t− t ′) δD(t− t
′) = 0 in the last equality.

In a cosmological setting, the optimal choice of gauge might be Zel’dovich
gauge. As described in detail in appendix B of [35], this choice of free motion
already incorporates the part of the large-scale gravitational force into free
motion. It has been suggested in [34] that the interactions in Zel’dovich gauge
can be described by a purely φ(q)-dependent Yukawa potential. In this context,
the “improved Zel’dovich trajectories” proposed in [44] might also be of interest.
Given that Zel’dovich gauge is specifically adapted to N-body systems, we
provide a few remarks on it in section 3.3.

Having introduced a few possible gauge choices, we return to a more concep-
tual viewpoint. Our aim is to study how the gauge freedom can be parametrized.
The obvious answer of a gauge transformation

E0 7→ E0 + Eg and EI 7→ EI − Eg (91)

is not satisfactory, because even if E0 and Eg admit Green’s functions, respec-
tively, it is not clear how to construct a Green’s function for their sum.

A more promising approach is based on the fact that it is easy to construct a
Green’s function for a product of differential operators. Indeed, let G and Gg
be Green’s functions for linear operators E0[φ] = E0φ and Eg[φ] = Egφ, then

G∗(t, t ′′) :=
∫∞
−∞dt ′′Gg(t, t ′′)G(t ′′, t ′) (92)

is a Green’s function for the linear differential operator E∗[φ] = E0Egφ. Using
this, we have the gauge freedom

E0 7→ E0Eg and EI 7→ EI + (I2d − E0)Eg (93)

for any linear differential operator Eg which admits a Green’s function.
In principle, any possible transformation E0 7→ E? can be realized by setting

Eg[φ](t) :=

∫∞
−∞dt ′G(t, t ′)E?[φ](t

′) (94)

in the gauge transformation (93). However, without providing a Green’s func-
tion for Eg we cannot claim that our naive prescription above incorporates the
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entire gauge freedom. It would be an interesting subject of further research to
formalize the ideas presented here and study the splitting freedom in more
detail. Provided such a formalism, one might then be able to study the effect
of gauge choices on the expressions obtained from the perturbative treatment
presented in the following chapter with the aim of minimizing the truncation
error by optimal choice of gauge.

2.3.3 Example: Harmonic Oscillator (III)

The harmonic oscillator is an idealized example for the splitting of the equa-
tions of motion because it admits a Green’s function for its equations of mo-
tion E[φ] = 0. We consider here a single one-dimensional harmonic oscillator
as introduced in subsection 2.1.5. Indeed, a Green’s function for the equations
of motion (25) is given by

G̃(t, t ′) =

 cos
(√

κ
m(t− t ′)

)
1√
κm

sin
(√

κ
m(t− t ′)

)
−
√
κm sin

(√
κ
m(t− t ′)

)
cos
(√

κ
m(t− t ′)

)
 (95)

for t ′ < t and t, t ′ ∈ (ti, tf]. One can easily confirm that the analytic solution
in equation (26) is recovered via φ̃(t; x) = G̃(t, ti) x. This corresponds to the
solution gauge choice of the splitting. There are no interactions relative to φ̃.

Newtonian gauge corresponds to the splitting

E0[φ](t) =
dφ
dt

(t) −

(
1
mφ

(p)(t)

0

)
and EI[φ](t) =

(
0

κφ(q)(t)

)
(96)

of the equations of motion induced by setting H0 = K = 1
2mφ

(p)(t) ·φ(p)(t)

and HI = κ
2φ

(q)(t) ·φ(q)(t). The Green’s function for E0 is the one given in
equation (87). Free evolution is now

φ̄(t; x) = G(t, ti) x =

(
x(q) + 1

mx
(p)(t− ti)

x(p)

)
(97)

just as Newton’s first law would suggest.
According to equation (82) the physical evolution of the harmonic oscillator

satisfies

φ̃(t; x) = G(t, ti) x−
∫t
ti

dt ′G(t, t ′)EI[φ̃(•; x)](t ′) . (98)
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The right-hand side of the equation can be simplified by inserting our expres-
sions for G and EI. We obtain

φ̃(t; x) =

(
x(q) + 1

mx
(p)(t− ti)

x(p)

)

−

∫t
ti

dt ′
(
θ(t− t ′) Id

1
m(t− t ′) θ(t− t ′) Id

0 θ(t− t ′) Id

) (
0

κ φ̃(q)(t ′; x)

)
(99)

=

(
x(q) + 1

mx
(p)(t− ti)

x(p)

)
−

∫t
ti

dt ′
(
1
m(t− t ′) κ φ̃(q)(t ′; x)

κ φ̃(q)(t ′; x)

)
(100)

=

x(q) + 1
mx

(p)(t− ti) −
∫t
ti

dt ′ 1m(t− t ′) κ φ̃(q)(t ′; x)

x(p) −
∫t
ti

dt ′ κ φ̃(q)(t ′; x)

 . (101)

Using the expression for φ̃ in equation (26) we can evaluate the integrals. It is∫t
ti

dt ′ κ φ̃(q)(t ′; x) = −φ̃(p)(t; x) + φ̃(p)(ti; x) and (102)∫t
ti

dt ′
κ

m
(t− t ′)φ̃(q)(t ′; x) =

[
−
(t− t ′)

m
φ̃(p)(t ′; x)

]t
ti

−

∫t
ti

dt ′
1

m
φ̃(p)(t ′; x) (103)

=
t− ti
m

φ̃(p)(ti; x) − φ̃(q)(t; x) + φ̃(q)(ti; x) (104)

as one can either obtain by performing the integrals explicitly or by using
Hamilton’s equations (25). Inserting the expressions for the integrals into the
equation above we obtain the tautology φ̃ = φ̃.

The physical meaning of this result is that the interactions evaluated along
the physical evolution provide a deviation from the free evolution φ̄ to exactly
match the physical evolution φ̃ itself. Here, we confirmed this explicitly for
the harmonic oscillator in Newtonian gauge, but the result holds true for any
gauge choice. In fact, equation (82) is trivially fulfilled in solution gauge due
to EI = 0.

In stationary gauge free motion is constant in phase space, φ̄(t; x) = x. The
interaction part of the equations of motion are induced the entirety of the
Hamiltonian H and are thus given by

EI[φ](t) = −J
δH(φ(t), t)
δφ(t)

=

(
− 1
mφ

(p)(t)

κφ(q)(t)

)
. (105)

The deviation from free evolution according to equation (82) turns out to be∫t
ti

dt ′G(t, t ′)EI[φ̃(•; x)](t ′) =

(
−φ̃(q)(t; x) + φ̃(q)(ti; x)

−φ̃(p)(t; x) + φ̃(p)(ti; x)

)
(106)

and thus exactly recovers φ̃ from φ̄. This follows to a calculation analogous to
the one in Newtonian gauge. Observe that the deviation in position is bounded
here, while it is unbounded in Newtonian gauge. Including the kinetic term
into HI instead of H0 makes free motion a better approximation at large times t,
though it worsens the approximation for small times t ≈ ti.
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2.3.4 Splitting of Generating Functional

The aim of this subsection is to obtain an expression for the generating func-
tional in terms of the Green’s function. Our starting point is equation (70) which
provides the expression

Z[J; x] = C−1

∫
x

Dφ

∫
Dχ exp

(
i

∫tf
ti

dt ′ (χ · E[φ] + J ·φ)
)

(107)

for the generating functional. Here and in some of the following expressions
we do not explicitly write down the time-dependencies for compactness. Using
the splitting in equation (77) we can rewrite this as

Z[J; x] = C−1

∫
x

Dφ

∫
Dχ exp

(
i

∫tf
ti

dt ′ (χ · E0[φ] + χ · EI[φ] + J ·φ)
)

(108)

= C−1

∫
x

Dφ

∫
Dχ exp

(
i

∫tf
ti

dt ′ χ · EI[φ]
)

exp
(
i

∫tf
ti

dt ′ (χ · E0[φ] + J ·φ)
)

. (109)

To achieve a proper splitting of interactions and free evolution we want to
position the exponential factor containing EI in front of the path integrals. This
would allow us to perform them and to express the resulting expression in
terms of the free physical solution. Indeed, it is

Z0[J; x] := C−1

∫
x

Dφ

∫
Dχ exp

(
i

∫tf
ti

dt ′ (χ · E0[φ] + J ·φ)
)

(110)

= C−1

∫
x

Dφ δD[E0(φ)] exp
(
i

∫tf
ti

dt ′ J ·φ
)

(111)

=

∫
Dφ δD[φ− φ̄(•; x)] exp

(
i

∫tf
ti

dt ′ J ·φ
)

(112)

= exp
(∫tf
ti

dt ′ J(t ′) · φ̄(t ′; x)
)

. (113)

We have followed the exact same manipulations we performed on the generating
functional in section 2.2.3. We refer to the Z0 as the free generating functional.

It is worthwhile to point out the condition in equation (78) is sufficient to
perform the manipulations above. It is not necessary to demand that these
determinants have a specific value C = det( d

dt). Indeed, by defining

C ′ := det
(

dE
dφ

[φ̄(•; x)]
)

(114)

and replacing C 7→ C ′ in all equations above, the final form for Z0 would have
been the same. The fact that in Hamiltonian mechanics C ′ = C does merely
allow to easily choose splittings of the equations of motion while satisfying
equation (78).

Given our conditions on the splitting of the equations of motion, the free
solution is obtainable analytically and hence the free generating functional
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is given as a simple function of known quantities. Therefore, expressions for
observables generated from Z0 can be evaluated completely. For example, the
phase space trajectory, obtained as an observable from the free generating
functional by taking the functional derivative with respect to J, is simply the
free physical evolution. Similarly, the density obtained from Z0 is a sum of
Dirac δ-functions depending on φ̄ instead of φ̃.

If we can manipulate our expression for the generating functional in equa-
tion (109) such that the exponential containing EI is positioned in front of the
path integrals, the remaining expression is just the free generating functional.
For the path integral over φ this can be achieved by replacing

EI[φ] 7→ EI

[
δ

i δJt

]
. (115)

This is analogous to the replacement used in the definition of observables in
section 2.2.1.

The explicit dependence on χ can be removed by the same idea. This requires
us to introduce an additional source field K for χ. Doing so, we obtain the
expression

Z[J; x] = C−1

∫
x

Dφ

∫
Dχ exp

(
i

∫tf
ti

dt ′
δ

i δK
· EI
[
δ

i δJt

])
exp

(
i

∫tf
ti

dt ′ (χ · E0[φ] + χ ·K+ J ·φ)
) ∣∣∣∣
K=0

(116)

for the generating functional. Note that we recover the expression in equa-
tion (109) upon performing the functional derivatives in the first line. Having
replaced the explicit dependence on φ and χ by the corresponding functional
derivatives, it is now possible to exchange the order of the integrals and the
exponential factor in the first line of the equation above.

The resulting expression has the form of a functional derivative operator
acting on a functional of J and K. Afterwards, the function K is set to zero,
while the function J remains to be acted upon by observables. The functional
of J and K almost has the form of the free generating functional defined in
equation (110), but features additionally the function K which is coupled to χ.
Generalizing the free generating functional Z0, we define

ZK[J; x] := C−1

∫
x

Dφ

∫
Dχ exp

(
i

∫tf
ti

dt ′ (χ · (E0[φ] +K) + J ·φ)
)

(117)

= C−1

∫
x

Dφ δD[E0(φ) +K] exp
(
i

∫tf
ti

dt ′ J ·φ
)

(118)

=

∫
Dφ δD[φ− φ̄K(•; x)] exp

(
i

∫tf
ti

dt ′ J ·φ
)

(119)

= exp
(
i

∫tf
ti

dt ′ J(t ′) · φ̄K(t ′; x)
)

. (120)

From the first to the second line we evaluated the path integral over χ obtaining
a Dirac δ-functional. In the third line we replaced the condition in this Dirac
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δ-function from the inhomogeneous free equation of motion E0 +K = 0 by its
solution

φ̄K(t; x) = G(t, ti) x−
∫t
ti

dt ′G(t, t ′)K(t ′) . (121)

Note that the upper integral boundary in this expression follows form the fact
that G is causal, analogously to equation (76). This replacement of arguments
of the Dirac δ-functional comes with a functional determinant which is equal
to the one in equation (78) and thus cancels the factor C.

Using the definition of ZK[J; x], we obtain the expression

Z[J; x] = exp
(
i

∫tf
ti

dt ′
δ

i δK
· EI
[
δ

i δJt

])
ZK[J; x]

∣∣∣∣
K=0

(122)

for the generating functional. We have thus achieved our aim of splitting the
generating functional into parts encoding the interactions and free evolution,
respectively. We refer to the argument of the exponential

ŜI :=

∫tf
ti

dt ′
δ

i δK(t ′)
· EI
[
δ

i δJt

]
(t ′) (123)

as the interaction operator. By acting with its exponential on ZK[J; x], it adjusts
the system’s evolution from being a solution to the free equation E0 = 0 to
solving the full equations of motion E = E0 + EI = 0.

As a final step in this subsection, we evaluate the functional derivatives with
respect to K in equation (122). For this purpose, we first observe that

δ

i δK(t)
ZK[J; x] = −

∫tf
t

dt ′ Jt(t ′)G(t ′, t)ZK[J; x] , (124)

where the term JtG is to be understood as a matrix product. The form of the
integral boundaries t ⩽ t ′ ⩽ tf follow from the causality structure induced
by equation (121). Unfortunately, it is not quite straightforward to replace the
functional derivative in the interaction operator ŜI with the expression on the
right-hand side of this relationship. The problem is that this expression depends
on the function J with respect to which the interaction operator contains a
functional derivative. Therefore, care has to be taken with the order in which
the derivatives are taken.

Let us consider explicitly the action with the interaction operator on ZK[J; x]
to investigate this issue in detail. It is

ŜIZK[J; x] =
∫tf
ti

dt ′
δ

i δK(t ′)
· EI
[
δ

i δJt

]
(t ′)ZK[J; x] (125)

= −

∫tf
ti

dt ′ Et

I

[
δ

i δJt(t ′)

] ∫tf
t ′

dt ′′Gt(t ′′, t ′) J(t ′′)ZK[J; x] (126)

= −

∫tf
ti

dt ′ tr
(
Gt(t ′, t ′)

1

i
∇tEI

[
δ

i δJt

]
(t ′)

)
ZK[J; x]

−

∫tf
ti

dt ′
∫tf
t ′

dt ′′ Jt(t ′′)G(t ′′, t ′)EI

[
δ

i δJt

]
(t ′)ZK[J; x] . (127)
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The last equality requires some further explanation and investigation. Firstly,
the derivatives inside EI are to be understood in terms of a power series of EI.
Schematically, for functions ϵ, ζ : R → R, the last equality thus has the form

ϵ(∂k) k ζ(k) =

∞∑
n=0

ϵ(n)(0)

n!
∂nk k ζ(k) (128)

= k ζ(k) +

∞∑
n=1

ϵ(n)(0)

n!
(
n∂n−1k ζ(k) + k∂nk ζ(k)

)
(129)

= ϵ ′(∂k) ζ(k) + k ϵ(∂k) ζ(k) . (130)

In the second equality there are n choices for which derivative acts on the
single factor of k as well as the option of none of the derivatives acting on
it. Upon relabeling n 7→ n+ 1 the first term in the second line is then simply
the series expansion of the first derivative of the function ϵ. Secondly, in the
actual calculation we have to keep track of the tensorial contractions of the
various quantities. Promoting the functions ϵ and ζ to maps ϵ : Rd → Rd

and ζ : Rd → R, respectively, and performing the same calculation yields

(ϵ(∂k) · k) ζ(k) = (∇tϵ)(∂k) ζ(k) + k · ϵ(∂k) ζ(k) . (131)

Note that the first term is the Jacobian matrix of ϵ, not its divergence. This
is already of very similar form to the calculation of ŜIZK above, except for
the Green’s function as well as the time dependencies and integrals. The
contraction with the Green’s function has the role of the scalar product in our
toy calculation. For the left-hand side and the second term on the right-hand
side of the equation above, this replacement is straightforward. The only slightly
more difficult term is the divergence of ϵ in the first term on the right-hand
side of the equation. Its analogue is the full contraction of the Jacobian with the
Green’s function which is achieved via the trace in equation (127).

In the first line of equation (127) there is a factor Gt(t ′, t ′). Recalling that the
Green’s function G is assumed to be causal and thus satisfies the condition in
equation (74), this factor and with it the entire term vanishes. Consequently, we
are left with the result

ŜIZK[J; x] = −

∫tf
ti

dt ′
∫tf
t ′

dt ′′ Jt(t ′′)G(t ′′, t ′)EI

[
δ

i δJt

]
(t ′)ZK[J; x] . (132)

Upon expanding the exponential in equation (122) into a power series, we
obtain terms containing multiple copies of the interaction operator. We have
seen above how an individual operator ŜI acts on the functional ZK. However,
the action of multiple such operators is of course significantly more complicated.
It is instructive to explicitly consider the case of two copies of the interaction
operator acting on the functional ZK. This might be thought of as the second
order term in a series expansion of the exponential in equation (122).
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Using the result in equation (132), we have

Ŝ2I ZK[J; x] = −

∫tf
ti

dt ′2 EI

[
δ

i δJt

]
(t ′2) ·

δ

i δK(t ′2)[∫tf
ti

dt ′1

∫tf
t ′1

dt ′′1 J
t(t ′′1 )G(t ′′1 , t ′1)EI

[
δ

i δJt

]
(t ′1)ZK[J; x]

]
(133)

=

∫tf
ti

dt ′2 E
t

I

[
δ

i δJt

]
(t ′2)

(∫tf
ti

dt ′1

∫tf
t ′1

dt ′′1 J
t(t ′′1 )G(t ′′1 , t ′1)

EI

[
δ

i δJt

]
(t ′1)

) ∫tf
t ′2

dt ′′2 G
t(t ′′2 , t ′2) J(t

′′
2 )ZK[J; x] . (134)

Note that in the last expression the factor Et

I in the first line is contracted with
the factor Gt J in the second line across the term in the round brackets. While
the functional derivative with respect to K could be moved to the right to act
on ZK, the term resulting from it cannot immediately be moved back past
the term in the round brackets due to the functional derivative with respect
to J(t ′1).

Once more, causality of the Green’s function yields a significant simplifica-
tion. For this purpose, we adjust the integration boundaries such that all four
integrals are over the full range [ti, tf]. This is possible because the additional
contributions are zero due to the two Green’s functions, respectively, in the
same way as in equation (132). This yields

Ŝ2I ZK[J; x] =
∫tf
ti

dt ′1

∫tf
ti

dt ′′1

∫tf
ti

dt ′2

∫tf
ti

dt ′′2 E
t

I

[
δ

i δJt

]
(t ′2)

(
Jt(t ′′1 )G(t ′′1 , t ′1)

EI

[
δ

i δJt

]
(t ′1)

)
Gt(t ′′2 , t ′2) J(t

′′
2 )ZK[J; x] , (135)

though we keep in mind that contributions are non-zero only if t ′1 < t
′′
1 and t ′2 <

t ′′2 . We now split the integral over t ′2 into two contributions: For t ′2 ⩽ t ′1 the
applying functional derivative with respect to J(t ′2) to Jt(t ′′1 ) yields zero due
to the resulting factor G(t ′2, t ′1). Therefore, in this case the term in the round
brackets can be moved to the left EI in the first line. Conversely, if t ′2 ⩾ t ′1,
applying the functional derivative with respect to J(t ′1) to J(t ′′2 ) in the second
line yields zero due to the resulting factorGt(t ′1, t ′2). In that case, this functional
derivative can thus only act directly on ZK and we can move the factor Gt J in
the second line to the left of the term in the round brackets.

We have shown that the expression for Ŝ2I ZK can be written as the sum of
the two contributions∫tf

ti

dt ′1

∫tf
ti

dt ′′1

∫t ′1
ti

dt ′2

∫tf
ti

dt ′′2

(
Jt(t ′′1 )G(t ′′1 , t ′1)EI

[
δ

i δJt

]
(t ′1)

)
Et

I

[
δ

i δJt

]
(t ′2)G

t(t ′′2 , t ′2) J(t
′′
2 )ZK[J; x] and (136)∫tf

ti

dt ′1

∫tf
ti

dt ′′1

∫tf
t ′1

dt ′2

∫tf
ti

dt ′′2 E
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I

[
δ

i δJt

]
(t ′2)G

t(t ′′2 , t ′2) J(t
′′
2 )(

Jt(t ′′1 )G(t ′′1 , t ′1)EI

[
δ

i δJt

]
(t ′1)

)
ZK[J; x] . (137)
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In the second contribution, the condition t ′2 ⩾ t ′1 is encoded via the integral
boundaries of t ′2. Equivalently, it can be encoded via the integration boundaries
of t ′1 by replacing the upper limit by t ′2. This change of course also necessitates
exchanging the ordering of the integrals making the second contribution an
exact copy of the first up to relabeling 1↔ 2. We conclude

Ŝ2I ZK[J; x] = 2
∫tf
ti

dt ′2

∫tf
t ′2

dt ′′2 J
t(t ′′2 )G(t ′′2 , t ′2)EI

[
δ

i δJt

]
(t ′2)∫t ′2

ti

dt ′1

∫tf
t ′1

dt ′′1 J
t(t ′′1 )G(t ′′1 , t ′1)EI

[
δ

i δJt

]
(t ′1)ZK[J; x] , (138)

where we adjusted the integral boundaries for t ′′1 and t ′′2 in accordance with
causality of the Green’s function.

For the sake of compactness, we introduce the quantity

L̂I(t) := −

∫tf
t

dt ′′ Jt(t ′′)G(t ′′, t)EI

[
δ

i δJt

]
(t) . (139)

It allows us to write the results obtained above compactly as

ŜI ZK[J; x] =
∫tf
ti

dt ′1 L̂I(t
′
1)ZK[J; x] , (140)

Ŝ2I ZK[J; x] = 2
∫tf
ti

dt ′2

∫t ′2
ti

dt ′1 L̂I(t
′
2) L̂I(t

′
1)ZK[J; x] . (141)

This pattern continues to hold for higher powers of the interaction operator ŜI.
The general case can be proven by induction. For this we assume the identity

ŜnI ZK[J; x] = n!
∫tf
ti

dt ′n

∫t ′n
ti

dt ′n−1 · · ·
∫t ′2
ti

dt ′1 L̂I(t
′
n) · · · L̂I(t ′1)ZK[J; x] (142)

to hold for n ∈ N. Abbreviate N := n+ 1. Adding another factor ŜI on the
left-hand side results in the expression

ŜNI ZK[J; x] = n!
∫tf
ti

dt ′N E
t

I

[
δ

i δJt

]
(t ′N)

(∫tf
ti

dt ′n

∫t ′n
ti

dt ′n−1 · · ·
∫t ′2
ti

dt ′1

L̂I(t
′
n) · · · L̂I(t ′1)

) ∫tf
t ′N

dt ′′NG
t(t ′′N, t ′N) J(t

′′
N)ZK[J; x] . (143)

The integral over t ′N can be split into N = n+ 1 contributions relative to the
variables (t ′1, . . . , t ′n). For any such contribution the factor Et

I can be moved to
the right past factors of L̂I(t ′j) with t ′j ⩾ t

′
N. Indeed, the functional derivative

with respect to J(t ′N) acting on the factor J(t ′j) would yield a vanishing Green’s
function G(t ′N, t ′j). Conversely, the factor Gt J can be moved to the left past fac-
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tors of L̂I(t ′j) with t ′j ⩽ t
′
N for analogous reasons. We obtain thus contributions

of the form

n!
∫t ′j
t ′j−1

dt ′N

∫tf
ti

dt ′n

∫t ′n
ti

dt ′n−1 · · ·
∫t ′2
ti

dt ′1 L̂I(t
′
n) · · · L̂I(t ′j−1)

Et

I

[
δ

i δJt

]
(t ′N)

∫tf
t ′N

dt ′′NG
t(t ′′N, t ′N) J(t

′′
N) L̂I(t

′
j−1) · · · L̂I(t ′1)ZK[J; x] (144)

= n!
∫tf
ti

dt ′n · · ·
∫t ′j+1
ti

dt ′j

∫t ′j
t ′j−1

dt ′N

∫t ′j
ti

dt ′j−1 · · ·
∫t ′2
ti

dt ′1

L̂I(t
′
n) · · · L̂I(t ′j−1) L̂I(t ′N) L̂I(t ′j−1) · · · L̂I(t ′1)ZK[J; x] (145)

for all j ∈ N with 1 ⩽ j ⩽ n. The condition t ′N ⩾ t ′j−1 can be encoded via the
upper integration boundary of t ′j−1 instead of the lower integration boundary
of t ′N. Relabeling integration variables then yields the expression on the right-
hand side of equation (142) for n 7→ N except for the prefactor. However, since
we have a total of N such contributions, the prefactor of their sum is Nn! = N!.
This concludes the proof of equation (142) by induction over n.

Recall from equation (122) that the generating functional can be written in
the compact form

Z[J; x] = exp
(
i ŜI
)
ZK[J; x]

∣∣
K=0

. (146)

Using a series expansion of the exponential in combination with the expression
we obtained in equation (142) we can rewrite this formula as

Z[J; x] =
∞∑
n=0

in

n!
ŜnI ZK[J; x]

∣∣∣∣
K=0

(147)

=

∞∑
n=0

in
∫tf
ti

dt ′n · · ·
∫t ′2
ti

dt ′1 L̂I(t
′
n) · · · L̂I(t ′1)ZK[J; x]

∣∣∣∣∣
K=0

(148)

= Texp
(
i

∫tf
ti

dt ′ L̂I(t ′)
)
Z0[J; x] . (149)

In the last line we introduced the time-ordered exponential Texp which is
defined by the series expansion in the line above. Note the absence of the
factor n! which would usually appear in the series expansion of an exponential
function.

We remark that in [1] it was claimed that

Z[J; x] = exp
(
i

∫tf
ti

dt ′ L̂I(t ′)
)
Z0[J; x] . (150)

This is based on an incorrect procedure of recombining time-ordered integrals
outlined in footnote 3 of that article. Instead, the expression is only correct if
one demands that functional derivatives act towards both the left and right
in a series expansion of the exponential. Equivalently, as described at the
introductory paragraph of section IV of [1], all functional derivatives should
be thought of positioned to the left of all factors of J—which, fortunately, is
the interpretation on which the results of the article are based. In either case,
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causality of the Green’s function then yields the time-ordered expression above.
In this thesis, we refrain from using this equation to avoid possible confusion.

The final result of this (sub-)section is the expression

Z[J; x] = Texp
(
i

∫tf
ti

dt ′ L̂I(t ′)
)
Z0[J; x] with (151)

L̂I(t
′) = −

∫tf
t ′

dt ′′ Jt(t ′′)G(t ′′, t ′)EI

[
δ

i δJt

]
(t ′) and (152)

Z0[J; x] = exp
(
i

∫tf
ti

dt ′ Jt(t ′)G(t ′, ti) x
)

. (153)

We emphasize that this is a fully general result and does not rely on any approx-
imations. The only assumptions made are that the equations of motion E[φ] = 0
can be split into a free and an interaction parts, E[φ] = E0[φ] + EI[φ], and the
free part E0[φ] admits a Green’s function G. Moreover, we require that the
functional determinants

det
(

dE
dφ

[φ̃(•; x)]
)

and det
(

dE0
dφ

[φ̄(•; x)]
)

(154)

are equal.
While most of the discussion above was quite general and is valid for any

equations of motion as long as they satisfy the conditions mentioned, we are
considering Hamilton’s equations in this thesis. Assuming that the split in
the equations of motion is induced by a split of the Hamiltonian in the form
of equation (79), the technical conditions on the functional determinants are
automatically fulfilled.
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2.4 initial values

The last of the three key ideas of KFT presented in the introductory chapter is
to determine observables given a stochastic initial state. In the previous sections,
our initial conditions x ∈ X were exactly specified. Consequently, all quanti-
ties considered—the generating functional, the physical evolution and other
observables—had an explicit dependence on x. As such, our system and the
derived observables were discretized.

In this section, we briefly discuss a standard method of obtaining smooth
observables from a discretized system. Forming the convolution of an observ-
able with a smoothing kernel yields a smooth function even if the observable
is a distribution. We apply this specifically to the macroscopic density of gen-
eral composite systems as well as for a system of N independent harmonic
oscillators.

In subsection 2.4.3 we introduce probability distributions of initial values.
These provide a stochastic initial state in accordance with the key idea refer-
enced above. Using once more that our classical physical system is described
by the Hamiltonian formalism of mechanics, we express expectation values of
observables at time t ⩾ ti as averages over initial conditions.

As in previous sections, the newly introduced concepts are applied to the
harmonic oscillator. We pick a probability distribution of initial values with a
Gaussian distribution of position and vanishing momentum. The expectation
value of the physical evolution is shown to coincide with the peak of the
distribution of initial positions. We then consider the phase space density and
obtain its expectation value which yields the probability distributions of the
state of the system at all times.

Subsection 2.4.5 considers expectation values of r-point correlation functions
of the macroscopic density. In this context, we discuss in detail two limits which
can be taken by sending the component number N to infinity. This leads to a
discussion of shot noise terms and a prescription of how they can be avoided.
Finally, we define the density fluctuation power spectrum which is an important
observable in applications to cosmology.

Most of the constructions, discussions and results of this section are based on [1] which
in turn heavily relies on [23, 24].

2.4.1 Smoothed Macroscopic Description

Up until now we have considered a classical physical system with phase space X
which given an initial state x ∈ X at ti follows a physical evolution φ̃(t; x)
for t > ti. This physical evolution map is the unique solution of the equations
of motion E[φ] = 0 given the initial value φ(ti) = x. We have shown how to
create a functional Z[J; x] for such a system which generates expressions for
observables O via suitable functional derivatives.
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As an example for such an observable we have defined the macroscopic
density, given by

ρ̃(x, t; x) =
N∑
j=1

δD
(
x− φ̃j(t; x)

)
, (155)

where we assumed that the system is made up from N equal components
such that X = XN. The key example for such a system is an N-body system
consisting of N interacting point-particles. In the limit of N ≫ 1 we usually
think of the macroscopic density of such a system as a smooth field, rather
than as a sum of Dirac δ-functions. While this is an approximation, it is a vast
conceptual simplification. Indeed, it often allows us to work with relatively
simple macroscopic field equations to describe the evolution of a system with a
huge number of microscopic degrees of freedom.

It should be emphasized that describing the evolution of such systems via
macroscopic field equations necessarily is approximate. Fundamentally, in a
system of point-particles the microscopic density is discretized. At any instance
of time, the system occupies one single state in phase space X. Projected on
the component phase space X this yields a distribution, not a smooth field.
Macroscopic field equations are in general unable to take such distributions as
an input or produce them as an output.

Instead, most macroscopic descriptions introduce some kind of smoothing
process by which a state x ∈ X yields a continuous field. A naive implementa-
tion of such a smoothing is to convolve the macroscopic density with a so-called
smoothing kernel K : X→ R. The smoothed density field then is given by

ρ̃K(x, t; x) :=
∫

dy ρ̃(x− y, t; x)K(y) =
N∑
j=1

K
(
x− φ̃j(t; x)

)
. (156)

We can see that for the macroscopic density specifically the contribution of each
component is now not given by a Dirac δ-function, but by the smoothing kernel.
Consequently, if K is a smooth field, the density ρ̃K becomes a smooth field,
too. In the case of an N-body system, we can think of the smoothing procedure
as replacing each point particle by a density peak of the shape K.

To preserve normalization, the smoothing kernel needs to satisfy the condi-
tion ∫

dxK(x) = 1 , (157)

where the main contribution to this integral should come from a neighborhood
around the origin. The probably most commonly encountered type of kernel
is a normalized Gaussian peak centered around the origin. The width of this
peak determines the smoothing scale and should be larger than the distance
between neighboring particles. This ensures that the gradient of the smoothed
density ρ̃K is dominated by the particle positions rather than by the rate of
change of the kernel associated to the nearest particle.

While our discussion of smoothing takes the macroscopic density as a key
example, it can of course also be performed for other observables. In the context
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of interacting N-body systems, the most commonly smoothed quantities are
the spatial and velocity densities as well as, in a certain sense, the gravitational
force. This gives rise to a hydrodynamic description, where the system of point-
particles is considered as a fluid with spatially varying density. Fluid elements
move according to the velocity field and source the gravitational potential.

2.4.2 Example: Harmonic Oscillator (IV)

In this subsection, we apply the smoothing procedure outlined above to the
macroscopic density of a collection of N independent one-dimensional har-
monic oscillators. For the definitions we rely on subsection 2.2.2. Our discussion
is quite brief, because in the framework of KFT smoothing is usually replaced
by working with expectation values as explained in the following subsection.

Let us consider a Gaussian smoothing kernel in one dimension

K(q) =
1√
2πσ2

exp
(
−
q2

2σ2

)
. (158)

This kernel can be used to transform the spatial macroscopic density of our
collection of oscillators

ρ̃(q)(q; x) =
N∑
j=1

δD
(
q− φ̃j(t; x)

)
(159)

into a smooth function. The analytic form of ρ̃(q) is given in equation (26),
though we remark that in more complicated examples it would have to be
obtained from the generating functional or an approximation thereof.

Following the prescription in equation (156), the smoothed spatial macro-
scopic density field is given by

ρ̃
(q)
K (q, t; x) =

∫
dq ′ ρ̃

(q)
( q− q ′, t; x)K(q ′) =

N∑
j=1

K
(
q− φ̃

(q)
j (t; x)

)
(160)

=

N∑
j=1

1√
2πσ2

exp

−

(
q− φ̃

(q)
j (t; x)

)2
2σ2

 . (161)

Note that the smoothed version of the macroscopic phase space density can be
obtained by omitting the superscripts •(q) and employing a two-dimensional
Gaussian. While the smoothed density ρ̃(q)K is a smooth function as desired,
it still is explicitly dependent on the initial conditions x. However, for large
particle numbers N and if the variance σ2 is sufficiently larger than mean
nearest neighbor distance of the particles

1

N

N∑
j=1

min
ℓ ̸=j

∥∥∥x(q)j − x
(q)
ℓ

∥∥∥ , (162)

the dependence on individual particle positions x(q)j is small.



2.4 initial values 59

2.4.3 Expectation Values

Above we have described how we can convolve a discretized observable with
a smoothing kernel to obtain a smoothed version of that observable. Within
the formalism of KFT, such a procedure of smoothing would happen as a final
step in the calculation. Indeed, the convolution is formed with the observable
evaluated at the final state of the system which thus needs to be known.
However, there are alternative smoothing procedures which—conceptually—
take place earlier in the calculation.

So far, we assumed that the classical physical system under consideration
occupies one single state x in phase space at initial time ti. Given this initial
value, the evolution is deterministic and yields a unique state φ̃(t; x) at a
later time t > ti. The smoothing procedure described above corresponds to
replacing this final state by a probability distribution of final states, though this
replacement is hidden and not unique.

In contrast, there are two ways of obtaining a well-defined probability dis-
tribution of final states. The first of these is to work with stochastic evolution
equations, i.e., equations of motion containing inherent noise. In certain phys-
ical systems such a description might be adequate due to a high degree of
complexity or an environmental coupling. The second way of obtaining a
stochastic final state is to start out with a stochastic initial state, i.e., the initial
value x is replaced by a distribution of initial values.

In KFT, we work with the latter of these options. In fact, it is the third
and final key idea of KFT we encounter in this chapter: Determine observables
given a stochastic initial state. Its importance is not primarily due to allowing
us to obtain smoothed versions of observables. It is due to the significant
simplification stochastic initial conditions provide. Especially in the presence of
symmetries, the averaging of an observable over a probability distribution of
initial values often yields a simpler expression. Therefore we not only allow for,
but actually demand that the system is prepared with initial conditions subject
to a probability distribution.

Conceptually, the mentioned simplification results from the fact that the final
state of the system does not need to be found explicitly, but only stochastically.
When subject to a probability distribution with sufficient symmetry, much
of the complexity in the microscopic description cancels out. This is in spirit
similar to a hydrodynamic approximation, but with the advantage that the
microscopic evolution equations are still fully satisfied.

In order to formally implement the outlined ideas, we need to define proba-
bility distributions on phase space. These are maps

P : X→ R with
∫

dxP(x) = 1 , (163)

where we in particular demand that the integral is well-defined in an appropri-
ate sense. Physically, such a probability distribution usually encodes incomplete
knowledge of the state of a system and may be the result of sampling a density
field. In accordance with our discussion above, we focus on the case where the
initial state of the system is subject to such a probability distribution.
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Given a probability distribution of initial states and deterministic equations
of motion, we naturally obtain a probability distribution for all times t > ti.
Indeed, for any possible initial value x, the physical evolution map φ̃ yields
a state y = φ̃(t; x) at a time t > ti. The probability of finding the system in
state y at time t is then precisely P(x). Note that this works because of phase
space trajectories cannot cross in classical mechanics and thus it is not possible
that different initial states yield the same final state.

Written as an equation, the probability distributions at initial and later time,
P(x) and Pt(x), are related via

P(x) = Pt(y) with y = φ̃(t; x) . (164)

This equation relies on the fact that the Jacobi determinant associated to the
change of variables y 7→ x satisfies

det
(

dy
dx

)
= det

(
dφ̃(t; x)

dx

)
= 1 (165)

by equation (15). Otherwise Pt(y) would not be normalized and thus could not
be regarded as a probability distribution in y.

This relationship in equation (164) is crucial for the calculation of expectation
values for observables. Recall that we defined a classical observable O as a
map depending on the state of the system y at time t ⩾ ti (and potentially
additional parameters χ). Given the probability distribution Pt(y) at this time,
the expectation value of O is

⟨O⟩(χ, t) :=
∫

dyPt(y)O(χ;y) . (166)

Note that the integration is over the sate y of the system at time t.
The definition of the expectation value provided above is of little use in prac-

tice, because the probability distribution Pt is difficult to determine. However,
using equation (164) as well as the fact that the physical observable is given by

Õ(χ, t; x) = O (χ; φ̃(t; x)) , (167)

we can obtain the expectation value of the physical observable via an integral
over the initial state,

⟨Õ⟩(χ, t) =
∫

dxP(x) Õ(χ, t; x) . (168)

This expression follows from the definition of the expectation value above via
the identification y = φ̃(t; x). Equation (168) provides an expression for the
expectation value of an observable without direct dependence on the phase
space trajectory of the system. This combines the first and third key ideas of
KFT we mentioned.

It is possible to perform the averaging on the generating functional instead of
for observables. This exploits the commutativity of the integration over x with
functional derivatives with respect to J. Specifically, the averaged generating
functional can be defined as

⟨Z⟩[J] =
∫

dxP(x)Z[J; x] . (169)
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In much of the KFT literature this approach is followed and ⟨Z⟩ is taken as the
central object of the theory.[23, 32] In this thesis, we work in the spirit of [1]
which places more emphasis on systems with explicit initial conditions in the
construction of KFT. The averaged generating functional can be used to directly
extract expectation values

⟨Õ⟩(χ, t) = O

(
χ;

δ

i δJt(t)

)
⟨Z⟩[J]

∣∣∣∣
J=0

, (170)

though it should be mentioned that performing the averaging in equation (169)
explicitly is infeasible in most situations such that in practice the averaging
over x is usually performed as a final step in calculations anyway.

2.4.4 Example: Harmonic Oscillator (V)

In this subsection, we determine expectation values for the harmonic oscillator.
In order to do so, we first have to choose a probability distribution of initial
values P(x). In applications, such a probability distribution is usually given due
to imperfect knowledge of the initial state of the system. This can be caused
by experimental or observational uncertainties or because the initial state is
obtained via sampling of a macroscopic field. We refer to our applications in
chapter 4 for specific examples.

The first choice of a probability distribution of initial values we consider
is a perfectly sharp distribution P(x) = δD(x− x0). It corresponds to the case
of perfect knowledge of the initial state of the system and accordingly, the
expectation value for any observable is ⟨Õ⟩(t) = Õ(t; x0) for all times t ∈ [ti, tf].
While this distribution may seem artificial, in some application it may happen
that part of the initial conditions are exactly known and others have uncertainty.
For our example we pick precisely such a distribution and set

P(x) = δD

(
x(p)
) 1√

2πσ2
exp

(
−

(
x(q)
)2

2σ2

)
. (171)

The initial momentum is fixed to x(p) = 0, while the initial position is distributed
according to a symmetric Gaussian distribution. In fact, this Gaussian is exactly
the smoothing kernel K(q) we defined in subsection 2.4.2.

Let us pick the physical evolution map of the one-dimensional oscillator
as our first observable, i.e., Õ(t; x) = φ̃(t; x). Being a very simple system, the
harmonic oscillator admits an analytic expression for its physical evolution as
given in equation (26). Given any explicit initial condition x = (x(q), x(p)) ∈ X,
this formula yields the phase space position of the harmonic oscillator at
time t ∈ [ti, tf]. Its expectation value is

⟨φ̃⟩(t) =
∫

dx P(x) φ̃(t; x) (172)

=

∫
dx(q)

1√
2πσ2

exp

(
−

(
x(q)
)2

2σ2

)(
cos
(√

κ
m(t− ti)

)
x(q)

−
√
κm sin

(√
κ
m(t− ti)

)
x(q)

)
(173)
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The integrals are clearly zero, thus ⟨φ̃⟩(t) = 0 for all times t.
For a more non-trivial result, consider the microscopic phase space density

Õ(t; x) = ρ̃(y, t; x) = δD(y− φ̃(t; x)) . (174)

In order to determine its expectation value, we ought to solve the integral

⟨ρ̃⟩(y, t) =
∫

dx P(x) δD(y− φ̃(t; x)) . (175)

For initial time t = ti this is simple, because we can use φ̃(ti; x) = x and
obtain ⟨ρ̃⟩(y, ti) = P(y). This exposes that probability distribution of initial
values simply corresponds to the phase space density of the system at initial
time.

For times t > ti solving the integral seems more difficult. However, using
that equation (26) provides a solution for t < ti, too, it is

δD(y− φ̃(t; x)) =
1

det
(

dφ̃(t;x)
dx

)δD(x− φ̃(2ti − t;y)) . (176)

The determinant is unity by Liouville’s theorem (or by direct calculation) and
we thus obtain the result

⟨ρ̃⟩(y, t) = P(φ̃(2ti − t;y)) (177)

= δD

(
φ̃(p)(2ti − t;y)

) 1√
2πσ2

exp

(
−

(
φ̃(q)(2ti − t;y)

)2
2σ2

)
. (178)

Introducing scaled polar coordinates in phase space given by

r =

√
κm

(
y(q)

)2
+
(
y(p)

)2 and θ = arctan
(√

κmy(q)

y(p)

)
(179)

One can show that our result can be rewritten as

⟨ρ̃⟩(y, t) = δD

(
θ−

√
κ

m
(t+ ti)

)
1

r
√
2πκmσ2

exp
(
−

r2

2κmσ2

)
. (180)

Given the interpretation of the expectation value of the microscopic phase
space density as a probability distribution, ⟨ρ̃⟩(x, t) could be used to set initial
conditions for a harmonic oscillator for any value of t. Unless θ = 0, the
resulting probability distribution of initial values does not factorize into a
product of distributions for x(q) and x(p), respectively. Instead, we are faced
with correlations between position and momenta. If we were to take a sample
form such a distribution, the likelihood function for the momentum would
be dependent on the position and vice versa. Such correlations may also exist
between the different components of a composite system.

2.4.5 Density Correlation Functions

For the applications of the KFT framework considered in this thesis, the relevant
observables are Fourier space density r-point correlation functions. These were
defined in section 2.2.1 as

Gρ̃ · · · ρ̃︸ ︷︷ ︸
r times

(k1, . . . ,kr, t; x) =
r∏
s=1

N∑
js=1

exp

(
−iks ·

δ

i δJtjs(t)

)
Z[J; x]

∣∣∣∣∣
J=0

, (181)
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where the Fourier space macroscopic density ρ̃(k, t; x) is recovered for r = 1.
Recall that in constructing these objects we assumed that the phase space of the
system factorizes X = XN, i.e., the system is made up from N components with
identical component phase space X. In particular, the Fourier transform we use
here is of dimension 2d

N . Abbreviating this faction via the definition D := d
N , it

is ks ∈ R2D ∼= X for all s. Note that D is the dimension of X(q). In case of an
N-body system, it is the number of spatial dimensions in which the particles
move.

In our applications the macroscopic phase space density is usually of less
interest than the macroscopic spatial density ρ̃(q)(k, t; x) and its correlation
functions. The wave-vector k appearing as its argument is an element of RD,
because the 2D-dimensional Fourier transform is replaced by a D-dimensional
one. Its correlation functions are given by

G
(q)

ρ̃ · · · ρ̃︸ ︷︷ ︸
r times

(k1, . . . ,kr, t; x) =
r∏
s=1

N∑
js=1

exp

−iks ·
δ

i δ
(
J
(q)
js

)
t

(t)

Z[J; x]
∣∣∣∣∣∣∣
J=0

(182)

with G(q)
ρ̃ = ρ̃(q). Given the similarity of the expressions for Gρ̃···ρ̃ and G(q)

ρ̃···ρ̃,
we consider only the latter in this subsection. The translation into the phase
space version requires only the removal of all superscripts •(q), understanding
that the dimension of the wave-vectors doubles.

In the spirit fo the third key idea of KFT discussed above, we indent to
consider expectation values of the correlation functions. Given a probability
distribution of initial values P, we have〈

G
(q)
ρ̃···ρ̃

〉
(k1,k2, . . . ,kr, t) =

∫
dxP(x)G(q)

ρ̃···ρ̃(k1,k2, . . . ,kr, t; x) (183)

in accordance with the definitions above. This expression can be used in a
setting where the number of components N is finite.

One of the nice features of the KFT framework is that one can often formally
take the limit N → ∞ in calculations. This continuum or hydrodynamic limit
allows us to consider systems which have infinite volume V or sidestep issues
related to finite resolution. Specifically, there are two limits:

• The limit of infinite component number N → ∞ and volume V → ∞
under constant mean density ρ̄ = N

V . This limit is allows the description
of an infinitely extended distribution of point masses.

• The limit of infinite component numberN→ ∞ and vanishing component
mass m → 0 under constant total mass M = Nm. This limit yields a
continuous mass distribution.

Both limits can also be taken simultaneously to obtain the description of
an infinitely extended continuous mass distribution. An investigation of the
mathematical well-definedness of these limits is beyond the scope of this thesis.

In applications, the first of these limits can often be taken as a final step
in a calculation. The second limit is sometimes useful when obtaining initial
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conditions from a continuous mass distribution. In many cases, the component
mass can be absorbed into physical constants or a reparametrization of time.
It is then possible to avoid explicit dependence of results on the component
mass such that the second of the limits rarely needs to be taken explicitly. We
comment more on these limiting procedures in our applications.

Here, the relevant piece of information is that our density correlation func-
tions may describe a system with an infinite number of components. In this
case, there is an issue with so-called shot noise terms. Essentially, we attempt
to describe a continuous system with a particle-based approach and acquire
certain relics of the discretization. To exemplify this, consider the two-point den-
sity correlation function at initial time t = ti for an uncorrelated homogeneous
system, i.e., P(x) = V−N P(p)(x(p)). Here, P(p) is any normalized momentum
distribution. According to our definitions above, it is〈

G
(q)
ρ̃ρ̃

〉
(k1,k2, ti)

=

∫
dxP(x)

N∑
j1,j2=1

exp

−ik1 ·
δ

i δ
(
J
(q)
j1

)
t

(ti)
− ik2 ·

δ

i δ
(
J
(q)
j2

)
t

(ti)

Z[J; x]
∣∣∣∣∣∣∣
J=0

(184)

=
1

VN

N∑
j1,j2=1

∫
dx(q) exp

(
−ik1 · x

(q)
j1

− ik2 · x
(q)
j2

)
. (185)

We have used that φ̃(ti; x) = x and have already evaluated the integrations
over x(p). The integrations over x(q)ℓ for ℓ ̸= j1, j2 can be evaluated, too, and
cancel a number of copies of V . Depending on whether j1 = j2 either one or
two of these factors remain and are paired with a factor N each coming from
the sum over component indices. Using N(N− 1) ≈ N2 in the limit N → ∞
and introducing the mean density ρ̄(q) = N

V , we obtain〈
G

(q)
ρ̃ρ̃

〉
(k1,k2, ti) = (2π)DδD(k1 + k2)ρ̄

(q) + (2π)2DδD(k1)δD(k2)
(
ρ̄(q)

)2. (186)

The second term is the expected result〈
G

(q)
ρ̃ρ̃

〉
(k1,k2, ti) = ⟨ρ̃(q)⟩(k1, ti)⟨ρ̃(q)⟩(k2, ti) (187)

= (2π)2D δD(k1) δD(k2)
(
ρ̄(q)

)2 , (188)

where we emphasize that the first equality is valid only if the state is uncorre-
lated, i.e., knowledge of the state of component j does not provide any infor-
mation on the state of any other components. The first term in equation (186)
should thus not be present. Its appearance stems from the case j1 = j2, i.e., it
is an auto-correlation of a discrete component. Evidently, this is a relic of the
discretization and characteristic of shot noise. In the continuum limit N→ ∞,
specifically the second of the two limits discussed above, such terms are irrele-
vant.

Generalizing the example, any terms arising from sums over identical compo-
nents are shot noise terms. In order to remove these ultimately irrelevant terms
for systems subject to a continuum limit N → ∞, only a slight modification
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of our definitions is needed: In our definition of G(q)
ρ̃···ρ̃ in equation (182) we

remove the terms with identical indices from the sum

G
(q)

ρ̃ · · · ρ̃︸ ︷︷ ︸
r times

(k1, . . . ,kr, t; x) =
r∏
s=1

N∑
js=1
js ̸=jt∀t

exp

−iks ·
δ

i δ
(
J
(q)
js

)
t

(t)

Z[J; x]
∣∣∣∣∣∣∣
J=0

(189)

=

N∑
{j1,...,jr}
js ̸=jt∀s,t

exp

−iks ·
δ

i δ
(
J
(q)
js

)
t

(t)

Z[J; x]
∣∣∣∣∣∣∣
J=0

(190)

and similarly for the equations in section 2.2.1. For further details on shot noise
in this context, we refer to [1, 23, 24].

As a final task in this section, we consider density correlation functions
in a statistically homogeneous and isotropic setting. However, in contrast
to the calculation above, we allow for correlation between the components.
Nonetheless, the form of

〈
G

(q)
ρ̃ρ̃

〉
remains quite constrained. Indeed, homogeneity

and isotropy imply that the expectation value of the macroscopic density field is
invariant under translations and rotations in X(q). This implies that its position
space two-point correlation function—which is the inverse Fourier transform
of
〈
G

(q)
ρ̃ρ̃

〉
—can only depend on the norm of the distance between any two

points.
As the Fourier transform of a function in a single one-dimensional variable,

the (Fourier space) density two-point correlation function
〈
G

(q)
ρ̃ρ̃

〉
likewise can

be written in terms of a single wave-number. In very similar fashion to the
calculation above, we obtain the well-known result〈

G
(q)
ρ̃ρ̃

〉
(k1,k2, t) = (2π)D δD(k1 + k2)P

(q)
ρ̃ (k1, t) . (191)

Here, the function P(q)ρ̃ is the density power spectrum. Given that it is not

apparent from our notation, we point out that P(q)ρ̃ (k1, t) = P
(q)
ρ̃ (∥k1∥ , t), i.e.,

the power spectrum is a function of the norm of k1 only. Note that provided
equations of motion which are invariant under translations and rotations,
statistical homogeneity and isotropy are conserved during evolution. Therefore,
if the probability distribution of initial values P(x) satisfies these properties,
then equation (191) is valid for all t ∈ [ti, tf].

Compared to equation (186), the absence of a term proportional to the
product δD(k1) δD(k2) in equation (191) might be surprising at first glance. This
apparent inconsistency is explained by the fact that due to the non-vanishing
expectation value of the density

⟨ρ̃(q)⟩(k, t) = (2π)D δD(k) ρ̄
(q) (192)

its power spectrum acquires a term proportional to ρ̄(q) δD(k1). For this and
other reasons it is common in the field of cosmic structure formation to consider
the power spectrum of the spatial density contrast

δ(q)
(
q; x
)
:=
ρ(q)

(
q; x
)
− ρ̄(q)

ρ̄(q)
(193)
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instead. The spatial macroscopic density ρ appearing here has been defined in
equation (43) and ρ̄(q) is its expectation value provided a statistically homoge-
neous and isotropic probability distribution of initial values.

Evaluating the density contrast along the physical evolution φ̃ and perform-
ing a Fourier transform yields

δ̃(q)
(
k, t; x

)
:=
ρ̃(q)

(
k, t; x

)
ρ̄(q)

− (2π)D δD(k) . (194)

and thus its (Fourier space) two-point correlation function is related to G(q)
ρ̃ρ̃ via

the equation

δ̃(q)
(
k1, t; x

)
δ̃(q)
(
k2, t; x

)
=
(
ρ̄(q)

)−2
G

(q)
ρ̃ρ̃(k1,k2, t; x) + (2π)2D δD(k1) δD(k2)

−
ρ̃(q)

(
k1, t; x

)
ρ̄(q)

(2π)D δD(k2) −
ρ̃(q)

(
k2, t; x

)
ρ̄(q)

(2π)D δD(k1) . (195)

Taking the expectation value over a homogeneous and isotropic probability
distribution of initial values of this equation, we obtain〈

G
(q)
ρ̃ρ̃

〉
(k1,k2, t) = (2π)2D δD(k1) δD(k2)

(
ρ̄(q)

)2
+ (2π)D δD(k1 + k2)P

(q)

δ̃
(k1, t) , (196)

where we defined the density fluctuation power spectrum as〈
δ̃(q)
(
k1, t; x

)
δ̃(q)
(
k2, t; x

)〉
= (2π)D δD(k1 + k2)P

(q)

δ̃
(k1, t) . (197)

This is well-defined because invariance under translations and rotations of
its expectation value is inherited from the spatial macroscopic density to the
density contrast.

Equation (196) is an important result of this subsection. It shows that the
density fluctuation power spectrum can be obtained from the two-point cor-
relation function of the spatial macroscopic density as the prefactor of the
term (2π)D δD(k1 + k2). The function P(q)

δ̃
is a very important observable in

cosmological applications. Its computation for an interacting N-body system is
the main goal of section 4.2.
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3.1 perturbative treatment

In the previous chapter we introduced the formalism of Kinetic Field Theory
(KFT). We have defined the generating functional as the central mathematical
object and have shown that it can be written as

Z[J; x] = Texp
(
−i

∫tf
ti

dt ′
∫tf
t ′

dt ′′ Jt(t ′′)G(t ′′, t ′)EI

[
δ

i δJt

]
(t ′)

)
exp

(
i

∫tf
ti

dt ′ Jt(t ′)G(t ′, ti) x
)

(198)

by performing a split of the equations of motion into a free and an interaction
part. From the generating functional we can derive observables. Provided a
probability distribution of initial values, these observables acquire expectation
values.

It is possible to proceed in different ways to further evaluate the expression
for the generating functional above. One of them is the so-called mean field
approximation for which we refer to [34] and the references within. In this
thesis we follow the perturbative approach proposed in the original proposal of
KFT [23]. It is based on a series expansion of the first exponential in the above
equation.

Below we perform such a series expansion and study in detail the low order
contributions. We utilize a formalism involving operators and commutators
inspired by Quantum Mechanics. It soon becomes clear that the main difficulty
in the series expansion is of combinatorial nature. Every functional derivative
with respect to J has plenty of options which factors of J to act on which needs
to be accounted for by appropriate product rules.

In subsection 3.1.2 we translate the series expansion of the generating func-
tional into a series expansion for observables. By replacing the source field J
by functional derivatives with respect to the free evolution φ̄ and functional
derivatives with respect J by the free evolution itself, we are able to derive the
formula

Õn(χ, t; x) = in
∫tf
ti

dt ′n · · ·
∫t ′2
ti

dt ′1 Γ̂I(t
′
1) · · · Γ̂I(t ′n)O(χ; φ̄(t; x)) (199)

for the nth order contribution to the observable Õ. Importantly, the operators Γ̂I
are defined solely in terms of the free evolution and functional derivatives with
respect to it. No reference to the field J or the generating functional remain.

We apply the perturbative expression for observables to the physical evolu-
tion φ̃ of the harmonic oscillator in subsection 3.1.3. Working in Newtonian
Gauge we determine the contributions φ̃n up to second order n ⩽ 2. The
resulting expressions are Taylor approximations of the analytical solution given
in equation (26), though their order is different for the position and momentum
parts.

Except for the idea of performing a series expansion in the interactions, the entirety of
this section is original work. To the best of my knowledge, equation (252) referenced
above is the simplest mathematical expression for the nth order contribution to a general
observable in the KFT literature.
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3.1.1 Expansion in Interactions

The main result of the previous chapter is the expression

Z[J; x] = Texp
(
i

∫tf
ti

dt ′ L̂I(t ′)
)
Z0[J; x] with (200)

L̂I(t
′) = −

∫tf
t ′

dt ′′ Jt(t ′′)G(t ′′, t ′)EI

[
δ

i δJt

]
(t ′) and (201)

Z0[J; x] = exp
(
i

∫tf
ti

dt ′ J(t ′) · φ̄(t ′; x)
)

. (202)

for the generating functional given in equation (151). It separates free motion
given by the free physical evolution φ̄(t; x) = G(t, ti) x from the interactions
encoded in EI. Observables and their expectation values can be obtained from
the generating functional via functional derivatives with respect to the field J.
For this procedure to be facilitated in practice, one would prefer the functional
derivatives in Z[J; x] to be evaluated explicitly. Ideally, we would have a closed
form for the generating functional as a functional of J.

As explained in the introduction to this section, it is in general not feasible to
achieve this. On a technical level, a central problem is that the operators L̂I(t)
at different times t do not commute for non-trivial interactions EI. As a result,
in a series expansion of the time-ordered exponential the higher order terms
acquire substantial combinatorial complexity which impedes a resummation of
the resulting expression. This suggests a perturbative treatment of interactions
based on a truncation of such an expansion.

Without resigning yet to the inevitable need for an approximate treatment,
let us attempt to explicitly evaluate the functional derivatives with respect to J
in our expression for the generating functional. As a preparatory step, consider
the action of a single operator L̂I on the free generating functional. Recalling
our assumption that EI is a convergent analytic power series in its argument
and abbreviating ĒI(t ′; x) := EI[φ̄(•; x)](t ′), it is

EI

[
δ

i δJt

]
(t ′)Z0[J; x] = ĒI(t ′; x)Z0[J; x] and hence (203)

L̂I(t
′)Z0[J; x] = −

∫tf
t ′

dt ′′ Jt(t ′′)G(t ′′, t ′) ĒI(t ′; x)Z0[J; x] . (204)

As we can see, the functional derivatives merely get replaced by the free physical
evolution. This is completely analogous to the action of classical observables
on the generating functional discussed in subsection 2.2.1. For compactness of
notation in the following, let us abbreviate

L̄I(t
′; x) := −

∫tf
t ′

dt ′′ Jt(t ′′)G(t ′′, t ′) ĒI(t ′; x) (205)

such that L̂I(t ′)Z0[J; x] = L̄I(t ′; x)Z0[J; x]. In analogy to the path integral for-
mulation of Quantum Field Theory (QFT), we may think of L̄I as the vacuum
expectation value of the operator L̂I, though we refrain from using this ter-
minology to avoid confusion with expectation values of classical observables
defined in subsection 2.4.3.



3.1 perturbative treatment 70

While it was almost trivial to determine the action of a single operator L̂I on
the free generating functional, the aforementioned combinatorial complexity at
higher orders becomes apparent already when considering the action of two
such operators. Indeed, it is

L̂I(t
′
2) L̂I(t

′
1)Z0[J; x] = L̄I(t

′
2; x) L̄I(t ′1; x)Z0[J; x] +

[
L̂I(t

′
2), L̂I(t

′
1)
]
Z0[J; x] (206)

for t ′1 ⩽ t
′
2. In this expression we use the standard commutator given by[

L̂I(t
′
2), L̂I(t

′
1)
]
= L̂I(t

′
2) L̂I(t

′
1) − L̂I(t

′
1) L̂I(t

′
2) . (207)

Equation (206) follows from causality of the Green’s function which implies

L̂I(t
′
1) L̂I(t

′
2)Z0[J; x] = L̄I(t

′
2; x) L̄I(t ′1; x)Z0[J; x] . (208)

Indeed, acting with L̂I(t ′1) on the factor Jt(t ′′2 ) inside L̂I(t ′2) yields a vanishing
factor G(t ′1, t ′2) due to t ′1 ⩽ t ′2. Hence, the only non-zero contribution comes
from both these operators acting directly on Z0.

There are two interesting avenues of investigation suggested by equation (206).
Firstly, the action of the commutator on the free generating functional should
be determined. Secondly, the generalization to higher numbers of operators
needs to be obtained. Independently of these, we remark that the non-zero
commutator in this equation is indeed the source of complexity as claimed
above.

As a first task, let us obtain an explicit expression for the commutator acting
on the free generating functional. For this purpose, we need to calculate the
action of the interaction part of the equations of motion EI on L̄I. The result is

EI

[
δ

i δJt

]
(t ′2) L̄I(t

′
1; x)Z0[J; x]

= − EI

[
δ

i δJt

]
(t ′2)

∫tf
t ′1

dt ′′1 J
t(t ′′1 )G(t ′′1 , t ′1) ĒI(t

′
1; x)Z0[J; x] (209)

=
(
Ēt

I(t
′
1; x)Gt(t ′2, t ′1) i∇t

)
EI

[
δ

i δJt

]
(t ′2)Z0[J; x]

−

∫tf
t ′1

dt ′′1 J
t(t ′′1 )G(t ′′1 , t ′1) ĒI(t

′
1; x)EI

[
δ

i δJt

]
(t ′2)Z0[J; x] (210)

= Ēt

I(t
′
1; x)Gt(t ′2, t ′1) i∇t ĒI(t

′
2; x)Z0[J; x] + L̄I(t ′1; x) ĒI(t ′2; x)Z0[J; x] , (211)

in analogy to the calculation performed in equation (127). In particular, the
appearance of the Jacobian of EI is explained in equation (128).

If we replace the factor EI by L̂I(t ′2) in the calculation above, the second term
in equation (211) coincides with the one in equation (208). Consequently, it
cancels with the second term of equation (207) when calculating the commutator.
As a result, we obtain

[
L̂I(t

′
2), L̂I(t

′
1)
]
Z0[J; x] = −

∫tf
t ′2

dt ′′2 J
t(t ′′2 )G(t ′′2 , t ′2)(

Ēt

I(t
′
1; x)Gt(t ′2, t ′1) i∇t

)
ĒI(t

′
2; x)Z0[J; x] . (212)
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While it is possible to fully evaluate the functional derivatives with respect to J,
the resulting expression is somewhat complicated in structure. Note that the
term in the round brackets and thus also the entire term is a scalar quantity as
it should be.

The obtained form of the commutator
[
L̂I(t

′
2), L̂I(t

′
1)
]
Z0[J; x] is similar to

the form of L̄I(t ′2) in that it is linear in J(t ′2) which is contracted via a Green’s
function with the term involving EI. However, the this term is no longer just EI
itself, but a certain derivative operator applied to it. Given that this derivative
cannot act on either J or G, we can write more compactly[

L̂I(t
′
2), L̂I(t

′
1)
]
Z0[J; x] = Ēt

I(t
′
1; x)Gt(t ′2, t ′1) i∇t L̄I(t

′
2; x)Z0[J; x] . (213)

It is worthwhile to comment on the derivative operator ∇ here. We have
used it somewhat symbolically so far, understanding that it is supposed to
provide us with the Jacobian matrix of EI when it is regarded as a function of its
argument. However, given that EI is a functional, ∇ is technically a functional
derivative

∇t ĒI(t
′
2; x) =

δ

δφ̄t(t ′2; x)
EI[φ̄(•; x)](t ′2) . (214)

Evaluating the functional at the same time parameter as the functional deriva-
tive is unusual, hence it is natural to reintroduce the integration over t ′′1 . This
transforms equation (213) into[

L̂I(t
′
2), L̂I(t

′
1)
]
Z0[J; x] = −

∫tf
t ′1

dt ′′1 Ē
t

I(t
′
1; x)Gt(t ′′1 , t ′1)(

δ

i δφ̄t(t ′′1 ; x)
L̄I(t

′
2; x)

)
Z0[J; x] . (215)

Conveniently, the action of the functional derivative with respect to the free
physical evolution φ̄ on the free generating functional yields a factor of iJ.
Specifically, it is

−

∫tf
t ′1

dt ′′1 Ē
t

I(t
′
1; x)Gt(t ′′1 , t ′1)

δ

i δφ̄t(t ′′1 ; x)
Z0[J; x] = L̄I(t ′1; x)Z0[J; x] . (216)

This allows us to combine the two terms on the right-hand side of equation (206)
and we obtain

L̂I(t
′
2) L̂I(t

′
1)Z0[J; x] = −

∫tf
t ′1

dt ′′1 Ē
t

I(t
′
1; x)Gt(t ′′1 , t ′1)

δ

i δφ̄t(t ′′1 ; x)
L̄I(t

′
2; x)Z0[J; x] . (217)

The functional derivative acts on all terms to its right here such that the two
terms are recovered via a product rule. Given that the factor L̄I(t ′2; x) is adjacent
to Z0, we can replace its factor J by a functional derivative, too. Doing so yields
the important identity

L̂I(t
′
2) L̂I(t

′
1)Z0[J; x] = Γ̂I(t

′
1) Γ̂I(t

′
2)Z0[J; x] with (218)

Γ̂I(t
′) := −

∫tf
t ′

dt ′′ Ēt

I(t
′; x)Gt(t ′′, t ′)

δ

i δφ̄t(t ′′; x)
. (219)
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Note that while on the left-hand side of equation (218) the functional derivatives
are the argument of EI, they appear as an independent factor on the right-hand
side. Effectively, we have replaced(

J(t),
δ

i δJt(t)

)
7→
(

δ

i δφ̄t(t; x)
, φ̄(t; x)

)
(220)

in going from L̂I to Γ̂I. This works because of their dual nature in Z0.
As our second task, consider the case of three operators L̂I acting on the free

generating functional Z0. Suppose that t ′1 ⩽ t
′
2 ⩽ t

′
3. Using the definition of the

commutator, we have simply

L̂I(t
′
3) L̂I(t

′
2) L̂I(t

′
1)Z0[J; x]

= L̂I(t
′
3) L̂I(t

′
1) L̂I(t

′
2)Z0[J; x] + L̂I(t

′
3)
[
L̂I(t

′
2), L̂I(t

′
1)
]
Z0[J; x] (221)

= L̂I(t
′
1) L̂I(t

′
2) L̂I(t

′
3)Z0[J; x] +

[
L̂I(t

′
3), L̂I(t

′
1) L̂I(t

′
2)
]
Z0[J; x]

+
[
L̂I(t

′
2), L̂I(t

′
1)
]
L̂I(t

′
3)Z0[J; x] +

[
L̂I(t

′
3),
[
L̂I(t

′
2), L̂I(t

′
1)
]]
Z0[J; x] . (222)

Alternatively, the same result is obtained by applying the product rule. Let us
consider the four terms individually. The first one is clearly the easiest, because
the reversed time-ordering allows to act with all three operators directly on Z0.
This yields

L̂I(t
′
1) L̂I(t

′
2) L̂I(t

′
3)Z0[J; x] = L̄I(t

′
3; x) L̄I(t ′2; x) L̄I(t ′1; x)Z0[J; x] , (223)

where on the right-hand side the ordering can be exchanged.
The remaining terms in equation (222) are the ones which enable the simplic-

ity of the first one. Indeed, the commutators are the price to pay for ordering
the operators such that their functional derivatives do not interfere with each
other. Considering this calculation in terms of product rules, it is the term in
which all functional derivatives act directly on Z0. From this point of view, the
terms involving commutators are the ones for which derivatives act on the
factors of J contained in the L̂I.

Let us consider the second term of equation (222) next. It can be simplified
using a commutator identity or, equivalently, a product rule, to yield[

L̂I(t
′
3), L̂I(t

′
1) L̂I(t

′
2)
]
Z0[J; x] = L̂I(t ′1)

[
L̂I(t

′
3), L̂I(t

′
2)
]
Z0[J; x]

+
[
L̂I(t

′
3), L̂I(t

′
1)
]
L̂I(t

′
2)Z0[J; x] . (224)

Using causality of the Green’s function and our calculation of the Green’s
function above, the first of the resulting terms yields

L̄I(t
′
1; x) Ēt

I(t
′
2; x)Gt(t ′3, t ′2) i∇t L̄I(t

′
3; x)Z0[J; x] . (225)

The other term is more complicated, because the functional derivative in L̂I(t ′3)
can act on the factor Jt(t ′′2 ) in L̂I(t ′2). This necessitates yet another use of the
product rule and we obtain two contributions

Ēt

I(t
′
2; x)Gt(t ′3, t ′2)

(
Ēt

I(t
′
1; x)Gt(t ′3, t ′1) i∇t

)
i∇t L̄I(t

′
3; x)Z0[J; x]

+ L̄I(t
′
2; x) Ēt

I(t
′
1; x)Gt(t ′3, t ′1) i∇t L̄I(t

′
3; x)Z0[J; x] (226)



3.1 perturbative treatment 73

for the second term. Note that a second derivative of the interaction part of the
equations of motion EI appears in the first of the two contributions.

The third term of equation (222) is simpler again, because the largest time
coordinate t ′3 appears on the right. Therefore, we get[

L̂I(t
′
2), L̂I(t

′
1)
]
L̂I(t

′
3)Z0[J; x]

= L̄I(t
′
3; x) Ēt

I(t
′
1; x)Gt(t ′2, t ′1) i∇t L̄I(t

′
2; x)Z0[J; x] , (227)

where we moved L̄I(t
′
3; x) to the left to make clear that the derivative acts

exclusively on L̄I(t ′2; x).
Finally, the forth term more complicated as it contains two nested commuta-

tors. However, we can use that the inner commutator can be rewritten as the
right-hand side of equation (213). This leaves only a single factor of J to be
acted upon by L̂I(t ′3). The resulting expression is[

L̂I(t
′
3),
[
L̂I(t

′
2), L̂I(t

′
1)
]]
Z0[J; x]

= Ēt

I(t
′
1; x)Gt(t ′2, t ′1) i∇t Ēt

I(t
′
2; x)Gt(t ′3, t ′2) i∇t L̄I(t

′
3; x)Z0[J; x] , (228)

where each of the derivatives ∇t acts only on the object to their immediate
right.

Combining the results above, we have

L̂I(t
′
3) L̂I(t

′
2) L̂I(t

′
1)Z0[J; x]

= L̄I(t
′
3; x) L̄I(t ′2; x) L̄I(t ′1; x)Z0[J; x]

+ L̄I(t
′
1; x) Ēt

I(t
′
2; x)Gt(t ′3, t ′2) i∇t L̄I(t

′
3; x)Z0[J; x]

+ L̄I(t
′
2; x) Ēt

I(t
′
1; x)Gt(t ′3, t ′1) i∇t L̄I(t

′
3; x)Z0[J; x]

+ L̄I(t
′
3; x) Ēt

I(t
′
1; x)Gt(t ′2, t ′1) i∇t L̄I(t

′
2; x)Z0[J; x]

+ Ēt

I(t
′
2; x)Gt(t ′3, t ′2)

(
Ēt

I(t
′
1; x)Gt(t ′3, t ′1) i∇t

)
i∇t L̄I(t

′
3; x)Z0[J; x]

+ Ēt

I(t
′
1; x)Gt(t ′2, t ′1) i∇t Ēt

I(t
′
2; x)Gt(t ′3, t ′2) i∇t L̄I(t

′
3; x)Z0[J; x] (229)

under the assumption t ′1 ⩽ t
′
2 ⩽ t

′
3. Again, in the spirit of the replacement (220),

we can combine these terms and obtain

L̂I(t
′
3) L̂I(t

′
2) L̂I(t

′
1)Z0[J; x] = Γ̂I(t

′
1) Γ̂I(t

′
2) Γ̂I(t

′
3)Z0[J; x] . (230)

By studying the action of small numbers of operators L̂I on the free generating
functional, we have gained a few important insights:

• The main complexity appearing in a series expansion is due to the non-
vanishing commutator

[
L̂I(t

′
2), L̂I(t

′
1)
]
. At higher orders the number of

these terms increases rapidly. There does not appear to be a way to
perform a resummation of these terms without reintroducing functional
derivatives.

• For any order n ∈ N, the terms not involving commutators are of the
form L̄I(t

′
n) · · · L̄I(t ′2) L̄I(t ′1)Z0[J; x] and thus can be resummed yielding

Texp
(
i

∫tf
ti

dt ′ L̄I(t ′)
)
Z0[J; x] = exp

(
i

∫tf
ti

dt ′ L̄I(t ′)
)
Z0[J; x] . (231)

However, in absence of a resummation of the terms involving commuta-
tors, such a partial resummation might be difficult to justify.
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• It is possible to replace J and functional derivative with respect to it by
functional derivatives to φ̄ and by φ̄, respectively. In fact, the replace-
ment (220) can be applied directly on the interaction operator ŜI, and we
obtain the equality

Z[J; x] = Texp
(
i

∫tf
ti

dt ′ Γ̂I(t ′)
)
Z0[J; x] with (232)

Γ̂I(t
′) = −

∫tf
t ′

dt ′′ Ēt

I(t
′; x)Gt(t ′′, t ′)

δ

i δφ̄t(t ′′; x)
. (233)

We denoted the reverse time-ordered exponential by Texp. It appears
because the direction in which the derivatives act is effectively reversed
be the replacement.

We remark that the exponential given in equation (232) is better suited to
an expansion of the exponential. The main advantage is that the commutator
satisfies[

Γ̂I(t
′
1), Γ̂I(t

′
2)
]
ζ[φ̄(•; x)] =

(
Γ̂I(t

′
1) Γ̂I(t

′
2)
)
ζ[φ̄(•; x)] (234)

for any functional ζ. The round bracket on the right-hand side indicates that the
derivative inside Γ̂I(t ′1) only acts on Γ̂I(t ′2) instead of on all terms to its right. The
fact that the commutator can be expressed in terms of contractions of Γ̂I itself
provides a more straightforward way to obtain the results in equation (229).

To demonstrate the advantage using Γ̂I, let us repeat the calculations for the
second and third order terms in the series expansion. It is

Γ̂I(t
′
1) Γ̂I(t

′
2)Z0[J; x]

= L̄I(t
′
1; x) L̄I(t ′2; x)Z0[J; x] +

[
Γ̂I(t

′
1), L̄I(t

′
2; x)

]
Z0[J; x] , (235)

where neither term on the right-hand side retains derivatives acting on Z0. In
particular, the only appearances of J outside Z0 is in the factors of L̄I. The third
order term is

Γ̂I(t
′
1) Γ̂I(t

′
2) Γ̂I(t

′
3)Z0[J; x]

= Γ̂I(t
′
1) L̄I(t

′
2; x) L̄I(t ′3; x)Z0[J; x] + Γ̂I(t ′1)

[
Γ̂I(t

′
2), L̄I(t

′
3; x)

]
Z0[J; x] (236)

= L̄I(t
′
1; x) L̄I(t ′2; x) L̄I(t ′3; x)Z0[J; x] + L̄I(t ′1; x)

[
Γ̂I(t

′
2), L̄I(t

′
3; x)

]
Z0[J; x]

+ L̄I(t
′
2; x)

[
Γ̂I(t

′
1), L̄I(t

′
3; x)

]
Z0[J; x] + L̄I(t ′3; x)

[
Γ̂I(t

′
1), L̄I(t

′
2; x)

]
Z0[J; x]

+
[
Γ̂I(t

′
1),
[
Γ̂I(t

′
2), L̄I(t

′
3; x)

]]
Z0[J; x] , (237)

where the last term can be rewritten using the Jacobi identity[
Γ̂I(t

′
1),
[
Γ̂I(t

′
2), L̄I(t

′
3; x)

]]
=
[
Γ̂I(t

′
2),
[
Γ̂I(t

′
1), L̄I(t

′
3; x)

]]
+
[[
Γ̂I(t

′
1), Γ̂I(t

′
2)
]

, L̄I(t ′3; x)
]

. (238)

This recovers the result in equation (229). To facilitate a comparison we put
the terms in the same order here. Note that none of the six terms include any
derivatives acting on the free generating functional which justifies omitting Z0
in the last equation.
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We conclude this subsection by explicitly writing down a series expansion of
the generating functional in the interaction part of the equations of motion EI.
We can do so based on either L̂I or Γ̂I, obtaining

Z[J; x] =
∞∑
n=0

in
∫tf
ti

dt ′n · · ·
∫t ′2
ti

dt ′1 L̂I(t
′
n) · · · L̂I(t ′1)Z0[J; x] (239)

=

∞∑
n=0

in
∫tf
ti

dt ′n · · ·
∫t ′2
ti

dt ′1 Γ̂I(t
′
1) · · · Γ̂I(t ′n)Z0[J; x] , (240)

respectively. Instead of reversing the order of the factors Γ̂I, the reverse time-
ordered exponential can also be implemented by changing the integral bound-
aries. Here, we chose this convention such that the ordering t ′j ⩽ t

′
ℓ for j < ℓ is

valid in both cases.

3.1.2 Approximations for Observables

In the previous subsection we have investigated a series expansion of the
generating functional Z in the interaction part of the equations of motion EI.
While the generating functional is the central mathematical object of KFT,
in applications we are primarily interested in observables. Therefore, this
subsection is dedicated to investigate how a series expansion of the generating
functional yields suitable approximations for observables. Below we obtain
exact series expansions for observables, but the need to work with explicit
equations necessitates to truncate them. This introduces a truncation error
which under certain conditions can be small enough to provide approximations
to the physical observables.

Recall that we defined the physical observable associated to a function O

depending on the state of the system x as well as some parameters χ as

Õ(χ, t; x) = O(χ; φ̃(t; x)) = O

(
χ;

δ

i δJt(t)

)
Z[J; x]

∣∣∣∣
J=0

. (241)

Examples for an observable are the phase space trajectory or the density field.
The fact that the right-hand expression acts on the generation functional only
by functional derivatives with respect to J means that the factors of J in the
series expansions in the previous subsection are of prime importance. Moreover,
the function J being set to zero after the derivatives have been evaluated has a
few important implications. We study these in detail below.

Consider a generic observable acting on the series expansion of the generating
functional in terms of L̂I. It is

Õ(χ, t; x) =
∞∑
n=0

in
∫tf
ti

dt ′n · · ·
∫t ′2
ti

dt ′1

O

(
χ;

δ

i δJt(t)

)
L̂I(t

′
n) · · · L̂I(t ′1)Z0[J; x]

∣∣∣∣
J=0

. (242)

Focusing on the second line of this equation, the first key observation is that
the operator L̂I(t ′n) always contains a factor Jt(t ′′n) prior to the action of the
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functional derivatives in O. Due to product rules, the result of evaluating
the derivatives in O is a sum of terms of which in some the factor Jt(t ′′n) is
not acted upon. However, these terms vanish upon setting the J = 0 in the
end. The product rule involving Jt(t ′′n) thus trivializes in the sense that for a
non-vanishing result O must act on Jt(t ′′n).

The statement above can be generalized. For the same reason of obtaining a
vanishing term upon setting J = 0, the functional derivatives in O must act on
every factor J present in front of Z0. As an example of this assertion, consider
the second order term of the series expansion. We have found above that

Z2[J; x] = i2
∫tf
ti

dt ′2

∫t ′2
ti

dt ′1 L̂I(t
′
2) L̂I(t

′
1)Z0[J; x] (243)

=

∫tf
ti

dt ′2

∫t ′2
ti

dt ′1 i
2
(
L̄I(t

′
2; x) L̄I(t ′1; x) +

[
L̂I(t

′
2), L̂I(t

′
1)
])
Z0[J; x] (244)

=

∫tf
ti

dt ′2

∫t ′2
ti

dt ′1

∫tf
t ′1

dt ′′ iJt(t ′′)G(t ′′, t ′) ĒI(t ′; x)∫tf
t ′2

dt ′′ iJt(t ′′)G(t ′′, t ′) ĒI(t ′; x)Z0[J; x]

+

∫tf
ti

dt ′2

∫t ′2
ti

dt ′1

∫tf
t ′2

dt ′′2 iJ
t(t ′′2 )G(t ′′2 , t ′2)(

Ēt

I(t
′
1; x)Gt(t ′2, t ′1)∇t

)
ĒI(t

′
2; x)Z0[J; x] . (245)

We have denoted the second order contribution of the series expansion to the
generating functional by Z2. Note that this is not the second order approxima-
tion, i.e., the result of a truncation of the series after the second order term.
For that one would need to add Z0 +Z1 +Z2. We use this convention for the
remainder of the thesis.

For the second order contribution to the observable, we have to act with O

on Z2. For the sake of being specific, let the observable in this example be
the phase space trajectory O(y) = y for y ∈ X, i.e., Õ = φ̃. The second order
contribution to the phase space evolution map is then given by

φ̃2(t; x) =
δ

i δJt(t)
Z2[J; x]

∣∣∣∣
J=0

(246)

= 0+

∫t
ti

dt ′2

∫t ′2
ti

dt ′1G(t, t ′2)
(
Ēt

I(t
′
1; x)Gt(t ′2, t ′1)∇t

)
ĒI(t

′
2; x) . (247)

We used that Z0[0; x] = 1. The first term in Z2 contains two factors of J of
which only one can be removed by the functional derivative in O and thus
the term vanishes upon setting J = 0. To prevent this in the second term, the
functional derivative necessarily acts on the factor Jt(t ′′2 ) yielding δD(t− t ′′2 ).
Aside from replacing t ′′2 by t in the expression, this Dirac δ-function conspires
with the lower integration boundary t ′2 ⩽ t

′′
2 for the t ′′2 integration to yield an

upper integration boundary t ′2 ⩽ t for the t ′2 integration. Once more, causality
is obeyed as there are no contributions from times later than the one at which
the observable is evaluated t.
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The last statement about causality is generally true, given that we argued
above that there always is a factor J evaluated at the latest time variable t ′′n in
the contribution to the generating functional Zn of any order n ⩾ 1. At zeroth
order or if the observable contains higher powers of the functional derivative
with respect to J, it can act on the free generating functional Z0. Causality is
obeyed in this case, too, since the derivatives simply yield copies of φ̄(t; x).

For a general observable O we define its nth order contribution as

Õn(χ, t; x) := O

(
χ;

δ

i δJt(t)

)
Zn[J; x]

∣∣∣∣
J=0

with (248)

Zn[J; x] := in
∫tf
ti

dt ′n · · ·
∫t ′2
ti

dt ′1 L̂I(t
′
n) · · · L̂I(t ′1)Z0[J; x] . (249)

Here, the nth order contribution to the generating functional Zn appearing in
the first equality is defined via the second. It is the nth order term in the series
expansion of the generating functional in terms of L̂I which is consistent with Z2
introduced above and even with Z0. As mentioned above, an approximation
to the observable O can be obtained by a truncation of the series expansion. A
truncation to nth order results in the approximation

Õ(χ, t; x) ≈ Õ0(χ, t; x) + . . .+ Õn(χ, t; x) , (250)

where the first term on the right-hand side Õ0(χ, t; x) = O(χ; φ̄(t)) is the
observable evaluated along the free evolution.

Using the series expansion of the generating functional in terms of Γ̂I, we can
obtain slightly more compact expressions for the contribution to an observable
at given order n. Applying the replacement (220) to the observable itself, too,
one can show that

Õ(χ, t; x) =
∞∑
n=0

in
∫tf
ti

dt ′n · · ·
∫t ′2
ti

dt ′1 Γ̂I(t
′
1) · · · Γ̂I(t ′n)O(χ; φ̄(t; x)) . (251)

Here the causality condition t ′n ⩽ t emerges through the action of the derivative
with respect to φ̄(t ′′n; x) in Γ̂I(t ′n) on O(χ; φ̄(t; x)). Given that this is a central
equation, it demands a detailed explanation.

The key ideas for deriving equation (251) is the replacement (220) as well
as the observation that in equation (229) no derivatives remain acting on the
free generating functional. The latter statement is true for any order and is
somewhat of a tautology—after evaluating all functional derivatives, none
remain. Crucially, for any factor Γ̂I there are two possibilities: Either it acts via
a functional derivative with respect to φ̄ on some EI or it contains a factor J.
Suppose now that the observable acts on such an expression. The functional
derivative within it needs to act on all these factors of J because otherwise
the term vanishes upon setting J = 0. Effectively, this replaces the factors of J
by derivatives acting on the observable. Eventually, the observable reaches Z0
and the remaining functional derivatives are replaced by the free trajectory φ̄.
The derivatives in factors Γ̂I acting on it can now be written as functional
derivatives with respect to φ̄ and we can set J = 0 reducing Z0 to a factor of
unity. However, recall that the expression we consider emerged as one term in a
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series of product rules of derivatives acting on the free generating functional. In
each such term, the derivatives acting on other factors Γ̂I remained unchanged,
while the derivatives acting formerly on Z0 and yielded factors of J now act
on O(χ; φ̄(t; x)). Hence, the terms emerging from the product rules can be
recombined yielding equation (251).

The big advantage of equation (251) is its independence of the free gener-
ating functional Z0 and, simultaneously, of the auxiliary function J. For any
observable, it provides a series expansion of contributions which modify it from
being evaluated along the free evolution to being evaluated along the physical
evolution. Once more it is emphasized that we are considering any classical
physical system allowing for a split of its equations of motion into a free and
an interaction part, E0 and EI, respectively. Aside from a couple of technical
conditions on certain functional determinants, the main demands are that E0
admits a Green’s function G and EI is analytic in its argument.

Supposing the convergence of the series expansion in (251), one might expect
its truncations to provide approximations for observables. While in a slightly
different form, we recover the nth order contribution to the observable O

introduced in equation (248). Specifically, it is

Õn(χ, t; x) = in
∫tf
ti

dt ′n · · ·
∫t ′2
ti

dt ′1 Γ̂I(t
′
1) · · · Γ̂I(t ′n)O(χ; φ̄(t; x)) . (252)

Again, adding the contributions up to nth order yields an approximation for
the physical observable Õ(χ, t; x).

We conclude this subsection by transferring these results for approximations
of physical observables to their expectation values. Based on their definition in
equation (168), the nth order contribution to the expectation value is simply the
expectation value of the nth order contribution to the physical observable. In
the form of an equation, this amounts to

⟨O⟩n(χ, t) := ⟨On⟩ (χ, t) =
∫

dxP(x) Õn(χ, t; x) , (253)

where P is a probability distribution of initial values.
It is noteworthy that the dependence of Õn is exclusively via the free so-

lution φ̄(t; x) = G(t, ti) x. This seems to suggest to perform the averaging
not over the initial value x, but over y := φ̄(t; x). Constructing a probability
distribution of y from P(x) would be facilitated by the Hamiltonian nature of
the free equations of motion which ensure that the Jacobi determinant of the
transformation of integration variable is unity. Unfortunately, this approach
fails in this naive implementation due to the appearance of factors φ̄(t ′; x) with
different time arguments t ′ in Õn.
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3.1.3 Example: Harmonic Oscillator (VI)

We return to our recurring example, the harmonic oscillator. In Newtonian
gauge, its equation of motion splits into

E0[φ](t) =
dφ
dt

(t) −

(
1
mφ

(p)(t)

0

)
and EI[φ](t) =

(
0

κφ(q)(t)

)
(254)

The Green’s function for the free part of the equations of motion is

G(t, t ′) =

(
θ(t− t ′) 1

m(t− t ′) θ(t− t ′)

0 θ(t− t ′)

)
, (255)

corresponding to equation (87). Given these ingredients, we can determine
the perturbative approximations of the phase space trajectory φ̃ as given by
microscopic perturbation theory in the KFT framework. Here, we consider the
approximations to the phase space trajectory up to second order.

The zeroth order contribution to the phase space trajectory is simply given
by the free evolution of the system. Specifically, we have

φ̃0(t; x) = φ̄(t; x) = G(t, ti) x =

(
x(q) + 1

m(t− ti) x
(p)

x(p)

)
(256)

for t ∈ [ti, tf], i.e., free motion given the initial conditions x. Comparing to the
analytic expression of the trajectory given in equation (26), we observe that this
corresponds to a first order Taylor approximation of φ̃(q) in the position and a
zeroth order Taylor approximation of φ̃(p) in the momentum.

According to equation (252), the first order correction to is given by

φ̃1(t; x) =
∫tf
ti

dt ′1 iΓ̂I(t
′
1) φ̄(t; x) with (257)

iΓ̂I(t
′
1) = −

∫tf
t ′1

dt ′′1
(
0 κ φ̄(q)(t ′1; x)

) ( 1 0

1
m(t ′′1 − t ′1) 1

)
δ

δφ̄t(t ′′1 ; x)
. (258)

The second line follows from equation (219). Note that in the transpose of
the Green’s function we have omitted the Heaviside θ-functions as they are
automatically satisfied due to the integration boundaries for t ′′. Evaluating the
functional derivative yields∫tf
t ′1

dt ′′1

(
1 0

1
m(t ′′1 − t ′1) 1

)
δ

δφ̄t(t ′′1 ; x)
φ̄(t; x) =

(
1 0

1
m(t− t ′1) 1

)
θ(t− t ′1) (259)

and thus

φ̃1(t; x) = −

∫t
ti

dt ′1

(
κ
m(t− t ′1) φ̄

(q)(t ′1; x)

κ φ̄(q)(t ′1; x)

)
(260)

= −

∫t
ti

dt ′1

(
κ
m(t− t ′1) x

(q) + κ
m2 (t− t

′
1) (t

′
1 − ti) x

(p)

κ x(q) + κ
m(t ′1 − ti) x

(p)

)
(261)

=

(
− κ
2m(t− ti)

2 x(q) − κ
3!m2 (t− ti)

3 x(p)

−κ (t− ti) x
(q) − κ

2m(t− ti)
2 x(q)

)
. (262)
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The sum φ̃
(q)
0 + φ̃

(q)
1 is a third order Taylor approximation of φ̃(q), while

the sum φ̃
(p)
0 + φ̃

(p)
1 is a second order Taylor approximation of φ̃(p). A pattern

seems to emerge—a natural expectation for the result in second order KFT

perturbation theory would be to obtain a fifth order Taylor approximation in
position and a fourth order Taylor approximation in momentum.

The second order term φ̃2 contains only one contribution. Indeed, while it
may seem that there are two possible ways for Γ̂I(t ′2) to act in the equation

φ̃2(t; x) =
∫tf
ti

dt ′2

∫t ′2
ti

dt ′1 iΓ̂I(t
′
1) iΓ̂I(t

′
2) φ̄(t; x) , (263)

the factor φ̄(t; x) vanishes after is has been acted upon by Γ̂I(t ′1). This is a
special property of the physical evolution map. Let us determine the action
of Γ̂I on EI. We find∫t ′2

ti

dt ′1 iΓ̂I(t
′
1)E

t

I[φ̄(t
′
2; x)]

= −

∫t ′2
ti

dt ′1

∫tf
t ′1

dt ′′1
(
0 κ φ̄(q)(t ′1; x)

) ( 1 0

1
m(t ′′1 − t ′1) 1

)
δ

δφ̄t(t ′′1 ; x)

(
0 κ φ̄(q)(t ′2; x)

)
(264)

= −

∫t ′2
ti

dt ′1
(
0 κ φ̄(q)(t ′1; x)

) (0 κ

0 κ
m(t ′2 − t

′
1)

)
(265)

= −

∫t ′2
ti

dt ′1
(
0 κ2

m (t ′2 − t
′
1) φ̄

(q)(t ′1; x)
)

. (266)

Using this result as well as equation (259), it is

φ̃2(t; x) =
∫t
ti

dt ′2

∫t ′2
ti

dt ′1
(
0 κ2

m (t ′2 − t
′
1) φ̄

(q)(t ′1; x)
)( 1 0

1
m(t− t ′2) 1

)
(267)

=

∫t
ti

dt ′2

∫t ′2
ti

dt ′1

(
κ2

m2 (t− t
′
2) (t

′
2 − t

′
1) φ̄

(q)(t ′1; x)
κ2

m (t ′2 − t
′
1) φ̄

(q)(t ′1; x)

)
(268)

=

(
κ2

4!m2 (t− ti)
4 x(q) + κ2

5!m3 (t− ti)
5 x(p)

κ2

3!m(t− ti)
3 x(q) + κ2

4!m2 (t− ti)
4 x(p)

)
. (269)

In the last line we inserted the expression for φ̄(q)(t ′1; x) and performed the re-
sulting elementary integrals. The result matches our expectation, by adding φ̃2
to the lower order terms, we obtain a fifth and fourth order Taylor approxima-
tion of the physical evolution φ̃ in position and momentum, respectively.
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3.2 feynman rules

In the previous section we have introduced a perturbative treatment of inter-
actions in KFT based on a series expansion of the generating functional. This
induced series expansions for observables. We obtained approximations to
observables and their expectation values via truncation of this series. The con-
tributions at any order n are complicated due to the combinatorics of product
rules.

The construction of KFT via a path integral formalism already takes inspi-
ration from QFT. While the interaction operator in KFT is of unusual form
from the perspective of QFT, it nonetheless is worthwhile to take additional
inspiration from QFT for the evaluation of perturbative expressions. Indeed, the
combinatorial difficulty present in the contributions to observables Õn can be
dealt with in similar fashion as combinatorial difficulty is treated in QFT—via a
diagrammatic approach.

In subsection 3.2.1 we investigate this idea by defining vertices in terms of
the mathematical objects appearing in the expression for Õn. The action of
functional derivatives can then be symbolized by edges between vertices. The
various terms appearing from product rules correspond vaguely to all possible
ways of connecting vertices to edges.

We carefully study the construction of diagrams and constraints on their form.
Importantly, we find that all diagrams are trees, i.e., have a relatively simple
graph-theoretical form. The diagrammatic treatment facilitates an interpretation
of the perturbative contributions which we present in subsection 3.2.2. We
also perform a comparison to the iterative Born approximation and find that
microscopic perturbation theory in KFT adds interactions significantly slower.
Specifically, at any iteration n ⩾ 2, the iterative Born approximation contains
terms which appear at arbitrarily high order in KFT.

Subsection 3.2.3 further investigates the properties of Feynman diagrams
in KFT. We then outline an alternative notion of equivalence of diagrams.
By removing the time-ordering induced by the time-ordered exponential in
equation (151), some diagrams can be combined. More importantly, though, is
that it allows for a recursive computation of contributions to observables Õn.
The price to pay is the appearance of symmetry factors.

In the last subsection we consider the harmonic oscillator for a final time
in this thesis. We show how the contributions to its physical evolution φ̃

computed in subsection 3.1.3 can be expressed in terms of diagrams. Due to the
simple forms of the observable and the interactions of the harmonic oscillator,
only one diagram has a non-vanishing contribution at any order. Using the
aforementioned recursive formula, we obtain the contributions φ̃n for all n ⩾ 0
and are able to show that their sum exactly reproduces the Taylor series of the
exact solution φ̃.

The diagrammatic treatment of perturbations in this section is a generalization of the
treatment in [1] which in turn was inspired by the diagrams in [7]. A very limited
comparison to the Born approximation was performed in [7]. The recursive formula for
the nth order observable is a novel result.



3.2 feynman rules 82

3.2.1 Defining Diagrams

The results of the previous section form the basis for a perturbative treatment
of interactions in KFT. We have derived series expansions for the generating
functional, for observables and their expectation values. Truncating these ex-
pansions yields approximations for these quantities. However, such a strategy is
only viable if the contribution at any order n is significantly easier to determine
than the original expression.

The main complexity of the expressions in equations (151) and (232) for the
generating functional is the presence of functional derivatives in the argument of
the (reverse) time-ordered exponential function. This inhibits a direct evaluation
of the expressions. Fundamentally, the fact that, respectively, copies of L̂I(t)
and Γ̂I(t) with different time-arguments do not commute, prevents any naive
attempts of non-approximate treatment.

While there is no certainty that a truncation of a series expansion for the
generating functional and derived quantities is unavoidable, it definitely is a
daunting task. We remark that Resummed Kinetic Field Theory (RKFT) achieves
a resummation of the interactions in a statistical setting, but still requires so-
called macroscopic perturbation theory to determine expectation values of
observables.[41, 42] We note that in certain simple examples a complete resum-
mation is feasible. An example is the harmonic oscillator, cf. subsection 3.2.4.

The usefulness of a truncation of the series expansions is not only motivated
by the difficulty of an exact treatment. It is primarily suggested due to the
simplicity of the expressions for the contributions at individual orders n. As we
have seen in the previous section, it is possible to fully evaluate the functional
derivatives using product rules or commutators when evaluating the action of
n operators L̂I(t) or Γ̂I(t) on the free generating functional. The main remaining
difficulty is the combinatorics of which operator acts on which of the terms to
its right.

The aim of this section is to establish a diagrammatic treatment of expres-
sions appearing at nth order in series expansions in the interactions EI. This
is heavily inspired by Feynman’s diagrammatic scheme of visualizing and
facilitating calculations of probability amplitudes in QFT. Hence, we refer to our
diagrams likewise as Feynman diagrams and the dictionary to translate them
into mathematical equations provides Feynman rules.

The key equation for defining the Feynman diagrams and rules is equa-
tion (252) which can be written in the form

Õn(χ, t; x) =
∫tf
ti

dt ′1 i Γ̂I(t
′
1) · · ·

∫tf
t ′n−1

dt ′n i Γ̂I(t
′
n)O(χ; φ̄(t; x)) with (270)

i Γ̂I(t
′) = −

∫tf
t ′

dt ′′ Ēt

I(t
′; x)Gt(t ′′, t ′)

δ

δφ̄t(t ′′; x)
. (271)

Having redistributed the imaginary units, it is clear that for a real-valued
observable O the contributions at any order n are real-valued. Recall that we
defined ĒI(t ′; x) = EI[φ̄(•; x)](t ′), i.e., Γ̂I contains the interaction part of the
equations of motion evaluated along the free evolution of the system.
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Õn(χ, t; x) =

∫tf
ti

dt ′1 i Γ̂I(t
′
1)

∫tf
t ′1

dt ′2 i Γ̂I(t
′
2) · · ·

∫tf
tn−1

dt ′n i Γ̂I(t
′
n)O(χ; φ̄(t; x))

...

+

∫tf
ti

dt ′1 i Γ̂I(t
′
1)

∫tf
t ′1

dt ′2 i Γ̂I(t
′
2) · · ·

∫tf
tn−1

dt ′n i Γ̂I(t
′
n)O(χ; φ̄(t; x))

+

∫tf
ti

dt ′1 i Γ̂I(t
′
1)

∫tf
t ′1

dt ′2 i Γ̂I(t
′
2) · · ·

∫tf
tn−1

dt ′n i Γ̂I(t
′
n)O(χ; φ̄(t; x))

Figure 1: Schematic expression for the nth order contribution to the observable O. The
edges indicate on which term the functional derivative in Γ̂I(t ′1) acts. In total
this is a sum over n terms, the action of Γ̂I(t ′1) on Γ̂I(t ′j) for 3 ⩽ j ⩽ n− 1 is
not shown.

In the expression above, any factor Γ̂I can act on any of the terms to its right.
Using a product rule, this yields a total of n! terms which sum to Õn. These
correspond to the 1, 2 and 6 terms we found in our explicit calculations of Z1,
Z2 and Z3 in the previous section, respectively. Evidently, for higher orders n
the number of terms increases quite quickly. The terms themselves also become
more complex. While it is possible to keep the corresponding expressions
relatively compact using commutators like in equations (235) and (237), their
construction is not entirely trivial and the nested commutators are difficult to
decipher.

However, the underlying logic for the construction of the terms adding up
to Õn is quite simple. They are all n ways in which the factor Γ̂I(t ′1) can act on
the remainder of the expression—either by acting on any of the n− 1 factors
of Γ̂I or by acting directly on O(χ; φ̄(t; x)). This is schematically visualized
in figure 1 Of course, the remaining expression can be replaced by such a
schematic, too. Iteratively, this yields a tree with root O(χ; φ̄(t; x)).

We use terminology of elementary graph theory here: Vertices are connected
by edges forming graphs. In this context, we often refer to graphs synonymously
as diagrams. A path in a graph is a sequence of distinct vertices connected by
edges. A graph is called tree if any two vertices are connected by exactly one
path. Equivalently, a tree is a connected acyclic graph, i.e., there exists a path
between any two vertices and there do not exist any non-trivial paths from any
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vertex to itself. Any vertex in a tree can serve as its root. Once designated, the
root provides a tree with a natural start- or endpoint.

There is hardly any compactness gained by using mathematical expressions
as vertices in our diagrams. To remedy this, let us introduce the symbolic
abbreviations

j :=

∫tf
t ′j−1

dt ′j i Γ̂I(t
′
j) for j ∈ N and (272)

O := O(χ; φ̄(t; x)) (273)

for the vertices. We call the upper vertex type interaction vertex and the lower
one observable vertex. We set t ′0 = ti to make these expressions well-defined.
Using this notation, we can form diagrams from vertices and edges. As in
figure 1, the edges symbolize on which term the derivative in Γ̂I acts. As an
example, it is

1

2

3
O = i3

∫tf
ti

dt ′1

∫tf
t1

dt ′2

∫tf
t2

dt ′3

Γ̂I(t
′
2)
[
Γ̂I(t

′
1), Γ̂I(t

′
3)
]
O(χ; φ̄(t; x)) . (274)

This is one of the diagrams contributing to Õ3(χ, t; x). The diagram makes
clear how the expression on the right-hand side is to be interpreted—Γ̂I(t

′
1)

acts on Γ̂I(t ′3) while Γ̂I(t ′2) and Γ̂I(t ′3) act on O(χ; φ̄(t; x)). Two edges end at the
root, thus there are two functional derivatives acting on O. The third functional
derivative acts on the factor EI inside Γ̂I(t ′3).

In the diagram above we horizontally ordered the vertices in accordance to
their time-parameter. It reflects the time-ordering and provides a simple notion
of equivalence of diagrams. For example, the two diagrams

1

2 3
O and

1

2

3
O (275)

are topologically equivalent graphs, but encode different mathematical ex-
pressions. Specifically, they correspond to the second and third term in equa-
tion (229). Note that due to the time-ordering it is not possible to identify them
via a relabeling.

The issue of equivalence of diagrams is important, because ultimately we
intend to provide an algorithm for the computation of Õn for any n ⩾ 0 in
terms of diagrams. A natural attempt is to assert that Õn is given by the sum
of all trees formed from an observable vertex as root and n interaction vertices.
But this word “all” is well-defined only if a suitable definition of equivalence
of diagrams is agreed upon. As we have just observed, topological equivalence
of graphs is not a suitable definition of equivalence, but we need to also take
the labels into account.

While not all possible ways of labeling vertices are permitted due to time-
ordering, it is not necessary to explicitly demand that. Indeed, a graph like

2 1 O (276)
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is automatically zero due the appearance of a vanishing factor G(t ′1, t ′2). How-
ever, it would be quite inefficient to allow for a large number of vanishing
diagrams in our sum. Therefore, we want to restrict the labelings we consider
to abide to time-ordering. Unfortunately, this is slightly more complicated than
merely demanding that the labels should increase from the left to the right,
because this can be circumvented by the above exemplary tree via

2

1
O . (277)

This loophole can be prevented by an intrinsic definition. Instead of being
required to increase from left to right, the labels of the interaction vertices
should increase towards the root, i.e., the observable vertex.

The diagram in equation (277) is somewhat problematic for another reason.
While we have used undirected edges in our graphs, the action of the opera-
tors L̂I is fundamentally a directed operation. We have implicitly introduced
the convention that if two vertices are connected by an edge, the left vertex
acts on the right one. This convention does not work if there are two vertices
connected to the right of an interaction vertex. Again, an intrinsic definition
resolves this: Interaction vertices act towards the root.

While the intrinsic definitions of the action of operators and time-ordering of
labels are mathematically rigorous, additional clarity can be achieved by the
convention of vertex labels increasing from left to right. Given that we already
demand the increase of vertex labels towards the root, this convention implies
that vertices which are more distant from the root intrinsically are positioned
more distantly, too. We say that a tree is ordered if its root is the right-most
vertex and any two vertices connected by an edge are positioned such that the
path from the right-hand vertex to the root is shorter. Note that vertices in a
different branch may be positioned more to the left even if they have a smaller
intrinsic distance from the root, e.g., like for the first diagram in equation (275).
An ordered tree is time-ordered if, in addition, the labels of its interaction vertices
increase from the left to the right (and thus also towards the root).

Using this terminology, we can provide a well-defined algorithm for obtain-
ing Õn for any n ⩾ 0: It is given by the sum over all time-ordered trees formed
from an observable vertex as root and n interaction vertices. Trees are identified
by label-preserving topological equivalence, i.e., if two labeled trees can be
transformed into each other merely by moving the vertices and attached edges,
they appear only once in the sum. In practice, all diagrams of order n ⩾ 1

can be obtained from the ones of order n− 1 by increasing the labels of all
interaction vertices by one and then attaching an interaction vertex labeled by 1
from the left to any vertex. Each diagram of order n− 1 gives rise to n diagrams
of order n for a total of n! diagrams.

The diagrams are transcribed into mathematical expressions via the Feynman
rules given in equations (272) and (273). Given that exactly one edge leaves
each interaction vertex, part of the expression for the interaction vertex could
be assigned to the edge instead. In the specialized Feynman rules for N-body
systems constructed in subsection 3.3.4 we make use of this option.
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3.2.2 Physical Interpretation

The diagrams defined in the previous subsection do not only facilitate the cal-
culations of perturbative contributions to observables in KFT. They also provide
an easier physical interpretation of the series expansion in the interactions.
In this subsection we interpret the physical processes encoded by the various
diagrams. This also provides an interpretation of the many complicated terms
involving operators and commutators in the previous section.

Starting out, the zeroth order diagram

Õ0(χ, t; x) = O (278)

corresponds to the observable evaluated along the free evolution of the system.
Higher order contributions provide corrections to it, improving the approxima-
tion to the physical observable Õ—provided convergence of the sum over Õn.

The first order correction

Õ1(χ, t; x) = 1 O (279)

is a perturbation of the freely evolving system due to interactions. Specifically,
it yields a deviation from free evolution due to interactions as evaluated along
a freely evolving system. In case O = φ, i.e., if the observable is the phase
space trajectory, this yields exactly the Born approximation. In particular, the
full effect of this kind of interactions is taken into account. However, for other
observables this is not necessarily the case as becomes clear from the second
order contribution.

Indeed, while the first diagram of the second order contribution

Õ2(χ, t; x) = 1 2 O +
1

2
O (280)

seems to have a transparent interpretation, the second diagram is more difficult
to understand. Namely, the first diagram corrects the first order contribution to
(partially) take into account that the interactions need to be evaluated along the
actual physical evolution φ̃. A natural way to achieve this is by evaluating the
interactions along the first order evolution map φ̃0 + φ̃1.

However, the perturbation scheme of KFT is more subtle than this. The second
diagram contributing to Õ2 clearly shows that a singular interaction vertex
does not completely capture the effect of evaluating interactions along the free
evolution. It encodes a mathematical expression in which the interaction terms
are evaluated along the free evolution, with two functional derivatives acting
on the observable. For the phase space trajectory it is O = φ and thus this
second derivative vanishes. This diagram is zero in that case.
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We conclude that the diagrams of the form

1

2

. . .
n

O = O

(
χ;

δ

iδJt(t)

) ∫tf
ti

dt ′1 i L̄I(t
′
1; x) · · ·

· · ·
∫tf
t ′n−1

dt ′n i L̄I(t
′
n; x)Z0[J; x] (281)

which are part of the contribution Õn encode the interactions as evaluated
along the free evolution. However, for a general observable, the sum over all of
them is required. We can show this explicitly by resummation of the expressions
above. Indeed, it is

∞∑
n=0

∫tf
ti

dt ′1 i L̄I(t
′
1; x) · · ·

∫tf
t ′n−1

dt ′n i L̄I(t
′
n; x)Z0[J; x]

= exp
(
i

∫tf
ti

dt ′ L̄I(t ′; x)
)

exp
(
i

∫tf
ti

dt ′ J(t ′) · φ̄(t ′; x)
)

(282)

= exp

(
i

∫tf
ti

dt ′ J(t ′) ·

(
φ̄(t ′; x) −

∫t ′
ti

dt ′′G(t ′, t ′′) ĒI(t ′′; x)

))
, (283)

where in the last equality we relabeled t ′ ↔ t ′′ in the definition of L̄I. The
term in the brackets in the last line is the Born approximation as derived in
equation (84).

In the previous paragraph we have established the relationship

∞∑
n=0

1

2
. . .
n

O = O

(
χ;

δ

iδJt(t)

)
exp

(
i

∫tf
ti

dt ′ J(t ′) ·φBorn(t
′; x)

)
(284)

which shows that the interactions evaluated along the free evolution are con-
tributing at different orders in our perturbative series. It also shows that a
partial resummation of the expansion in interactions is possible. However, there
is no obvious justification for such a partial resummation in the KFT framework.
Instead, contributions to observables should be computed order by order in
powers of the interaction operator ŜI.

Returning to the first diagram contributing to Õ2 the same logic shows that
in order to evaluate the interactions along the first order trajectory φ̃0 + φ̃1 we
would have to perform a resummation

∞∑
n=0

1

2

. . .
n

N O . (285)

Importantly, this resummation ensures only that the term EI in Γ̂I(t
′
N) is

evaluated along the first order evolution. It is only one of infinitely many
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terms of this type contributing to the observable O, except for the special
case O = φ. In that particular case we actually obtain the second iteration in the
iterative Born approximation. For a general observable another resummation is
necessary.

We can see that the (iterative) Born approximation can be seen as a partial
resummation of the perturbative series expansion of interactions in KFT. The
Born approximation corresponds to the sum of all diagrams which have vertices
of distance of at most one from the root. The second iteration of the Born
approximation sums up all diagrams with vertices of distance of at most two
from the root. In contrast, in the KFT framework these diagrams can appear
at arbitrarily high orders because the number of interaction vertices and not
distances from the root determine the order.

3.2.3 Diagram Properties

In the present form, the Feynman diagrams and rules we defined above do
not resemble their ancestors from QFT much. This should not be too much
of a concern, given that we consider a fully general classical physical system
here. Feynman diagrams in QFT are specific to a chosen theory and depend on
the particle content and their interactions. Upon choosing a specific classical
theory, it is possible to refine our Feynman rules and obtain a formalism which
is somewhat closer to the QFT case. In section 3.3 we consider systems of
N classical point particles interacting via a pairwise interaction potential which
may be regarded as an example.

However, even in the general setting one can discuss some interesting prop-
erties of the diagrammatic treatment of interactions in KFT. The first main
observation is that each interaction vertex in a time-ordered diagram has ex-
actly one outgoing edge. As a consequence of that, the diagrams are trees.
Interestingly, the acyclicity does not rely on the time-ordering and thus does
not seem to be caused by the causal nature of classical physics. Instead, the
form of the operator Γ̂I featuring a single functional derivative is responsible
for this property.

Interestingly, even if the form of the operator Γ̂I was different—say, e.g.,
featuring two functional derivatives—acyclicity would be retained. In that case
it would indeed be causality which would prevent backward directed edges.
In this sense acyclicity is consistent with causality, but not implied by it. As
such, the structure of the diagrams should be seen as a consequence of the KFT

framework rather than as a physically meaningful property.
In QFT one tedious property of Feynman diagrams is often that they come

with symmetry factors. These combinatorial factors arise due to identification of
equivalent diagrams. In the formalism presented here, such symmetry factors
are absent. It was already observed in section IV.C of [1] that upon ordering of
the time-parameters, no symmetry factors need to be introduced. Here, the time-
ordering is already incorporated into the (reversed) time-ordered exponential
in equation (232) and we arrive at the same conclusion.
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Generally, the existence of symmetry factors is tightly connected to the notion
of equivalence of diagrams. Our deliberate definition which, e.g., distinguished
between the two diagrams in equation (275), was engineered to serve the
purpose of avoiding symmetry factors. However, in practical calculations it may
be preferential to adapt the definition of equivalence slightly. This comes at the
cost of reintroducing symmetry factors, but may be advantageous in terms of
computational complexity or efficiency.

Here, we demonstrate one such modification which allows for a simpli-
fied evaluation of diagrams in certain applications. The change is motivated
by the three almost equivalent diagrams which are part of the third order
contribution Õ3. These are the diagrams

1

2 3
O ,

1

2

3
O and

1 2

3
O . (286)

Let us relabel the vertices in the second and third diagrams such that the
lower vertex is assigned the label 1 and the left and right upper vertices are 2
and 3, respectively. This makes the mathematical expressions associated to
these diagrams identical up to time-ordering. The condition t ′1 ⩽ t ′2 ⩽ t ′3 is
encoded in the integration boundaries and changes due to the relabeling. For
the second diagram is becomes t ′2 ⩽ t

′
1 ⩽ t

′
3 and for the third is is t ′2 ⩽ t

′
3 ⩽ t

′
1.

We have the condition t ′2 ⩽ t
′
3 commonly to all three diagrams, but the range

of the parameter t ′1 is different. These ranges do not overlap (except on the
measure zero set {t ′2, t ′3}) and any value t ′1 ∈ [ti, tf] can be found on one of the
three ranges. Therefore, the sum of these three diagrams is equal to any one of
them with the condition on the time parameter of the lower vertex removed.
Schematically, it is∫tf

ti

dt ′2

∫tf
t ′2

dt ′3

∫t ′2
ti

dt ′1 . . .+
∫tf
ti

dt ′2

∫tf
t ′2

dt ′3

∫t ′3
t ′2

dt ′1 . . .+
∫tf
ti

dt ′2

∫tf
t ′2

dt ′3

∫tf
t ′3

dt ′1 . . .

=

∫tf
ti

dt ′2

∫tf
t ′2

dt ′3

∫tf
ti

dt ′1 . . . (287)

after the relabeling. Note that we transferred some ordering conditions from the
integrals over t ′2 and t ′3 to the integration boundaries of t ′1. The dots indicate
the mathematical expression common to all three diagrams.

We can formalize the idea underlying the combination of these three diagrams
into one. If we demand that time-ordering is not enforced universally, each of the
three diagrams above would give rise to the right-hand side of equation (287).
The condition t ′2 ⩽ t ′3 would still be implied by causality of the Green’s
function G(t ′3, t ′2). However, this term would then appear thrice instead of once.
This could either be compensated by a symmetry factor 13 or by identifying
topologically equivalent diagrams regardless of labels. Note that this change of
notion of equivalence does not affect the demand that all trees considered must
be time-ordered.

The change suggested in the previous paragraph does not modify the diagram

1 2 3 O (288)
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and its associated expression. The time-ordering encoded by the causal Green’s
functions ensures that the expression obtains the same integral boundaries
and there are no topologically equivalent graphs with three interaction vertices
which could be overcounted. However, the other two diagrams in third order,

1

2

3

O and
1

2
3 O , (289)

cause complications. While for these the change in our notion of equivalence
does have no effect, their associated mathematical expressions are affected by
the removal of universal time-ordering. Indeed, for the left-hand diagram the
integral boundaries for all three time parameters t ′1, t ′2 and t ′3 are now [ti, tf].
For the right-hand diagram the condition t ′1 ⩽ t

′
2 is removed.

Due to the relabeling symmetry of these two diagrams, (1, 2, 3) 7→ (2, 3, 1) and
(1, 2) 7→ (2, 1), respectively, the resulting expressions are simply multiples of
the expressions under the assumption of time-ordering. The left-hand diagram
is assigned a value six times, the right-hand a value two times its original one.
This can be compensated by corresponding symmetry factors to ensure that the
sum over all six diagrams remains unchanged.

In summary, removing the universal condition for time-ordering and replac-
ing the notion of equivalence to allow for relabeling reduces the number of
diagrams in third order from six to four. This comes at the cost of introducing
symmetry factors for some diagrams. While we do not adopt these changes for
our theoretical treatment here, we extensively use it in our calculations.

The main computational advantage of the modification of our Feynman rules
described in this subsection is that it allows iterative calculations of observables.
Consider equation (252) which states that the nth order contribution to the
observable Õ is given by

Õn(χ, t; x) = in
∫tf
ti

dt ′n · · ·
∫t ′2
ti

dt ′1 Γ̂I(t
′
1) · · · Γ̂I(t ′n)O(χ; φ̄(t; x)) . (290)

This almost allows for a recursive equation to calculate Õn from Õn−1, but the
time-ordering prevents it. Replacing the time-ordering by symmetry factors in
the way outlined above yields

Õn(χ, t; x) ∝ i
∫tf
ti

dt ′ Γ̂I(t ′) Õn−1(χ, t; x) , (291)

where the proportionality sign is a slight oversimplification. In practice, differ-
ent terms resulting from the right-hand side expressions may have different
symmetry factors. Nonetheless, provided an algorithm can be developed to ob-
tain the symmetry factors, this equation significantly reduces the computational
requirements for high order contributions.9

9 While the expression in equation (252) has a computational complexity which is exponential in
the order n due to the nested time-integrals, the recursive relation in equation (291) allows to
calculate the contributions to Õ in a computation time linear in the order n. In this naive estimate,
we ignored the number of terms appearing through product rules which scales exponentially
with order n in the most general case.
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3.2.4 Example: Harmonic Oscillator (VII)

We return to the one-dimensional harmonic oscillator for a final time in this
thesis. Our aim in this subsection is to translate the results of subsection 3.1.3
into Feynman diagrams and to generalize them. Exploiting certain special
properties of the harmonic oscillator, we are able to perform a complete resum-
mation of the interactions and recover the exact analytic solution derived in
subsection 2.1.5 from perturbative KFT.

Written as diagrams, the zeroth and first order contributions to the harmonic
oscillator are simply

φ̃0(t; x) = φ and φ̃1(t; x) = 1 φ . (292)

In second order there are two possible diagrams

φ̃2(t; x) = 1 2 φ +
1

2
φ . (293)

However, the second diagram vanishes because it is not possible to act more
than once with Γ̂I on φ̄. Evaluating the three diagrams for the respective orders
reproduces the expressions obtained in subsection 3.1.3.

In third order, we immediately omit diagrams for which more than one edge
ends at the observable vertex. Only two diagrams

φ̃3(t; x) = 1 2 3 φ +
1

2
3 φ . (294)

remain. However, the interaction part of the equations of motion EI[φ] for the
harmonic oscillator is linear in φ. Just like for the observable vertex it thus is not
possible for more than one edge ending at an interaction vertex. Consequently,
the value of the second diagram of φ̃3 is zero.

Given the severe restrictions on where edges can end, there is actually only
one possible diagram for any order n, namely

φ̃n(t; x) = 1 2 · · · n φ . (295)

Moreover, the value of this diagram can be determined via the recursive relation

φ̃n(t; x) =
∫tf
ti

dt ′ iΓ̂I(t ′) φ̃n−1(t; x) (296)

which is a special case of equation (291). This works in this particular case,
because all operators Γ̂I act on the object immediately to their right and the
causality of the Green’s function then ensures time-ordering. Alternatively, one
can also show that the symmetry factors of these types of diagrams are always
unity.

In any case, the recursive relation can be used to prove the formula

φ̃n(t; x) =

 (−1)nκn

(2n)!mn (t− ti)
2n x(q) +

(−1)nκn

(2n+1)!mn+1 (t− ti)
2n+1 x(p)

(−1)nκn

(2n−1)!mn−1 (t− ti)
2n−1 x(q) +

(−1)nκn

2n!mn (t− ti)
2n x(p)

 (297)
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via induction. Note that for n = 1, 2 the expressions derived in subsection 3.1.3
are recovered. It is easy to confirm that the sum of the contributions at all
orders n yields the analytic solution given in equation (26). Specifically,

φ̃(t; x) =
∞∑
n=0

φ̃n(t; x) (298)

is actually the Taylor series of φ̃(t; x) around initial time ti. This achieves
a complete resummation of the perturbative series of the one-dimensional
harmonic oscillator.
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3.3 self-gravitating systems

The introductory chapter of this thesis clearly states that the motivation for
the development of KFT was cosmic structure formation. Up until this point,
the construction of KFT and its microscopic perturbation theory has been kept
completely general in this thesis. The formalism presented above is applicable
to any classical physical system described by Hamilton’s equations of motion
and subject to a probability distribution of initial values.

In order to make a connection between our perturbative treatment and the
KFT literature and in preparation for the applications considered in the fol-
lowing chapter, we specialize to interacting N-body systems in this section.
Specifically, we assume a system of N indistinguishable point-particles interact-
ing via a position-dependent pairwise interaction potential. Moreover, we work
exclusively in Newtonian gauge.

In the first subsection below we show how N-body systems are a special case
of composite systems with identical components introduced in subsection 2.2.1.
We comment on the consequences of having indistinguishable particles both
with respect to the form of the Hamiltonian as well as the probability distribu-
tion of initial values.

In subsection 3.3.2 we specify the Hamiltonian to adhere to the aforemen-
tioned properties. Working in Newtonian Gauge, we perform a split of the
Hamiltonian and obtain a split of the equations of motion. Using the special
forms of the Green’s function and the interaction part of the equations of
motion we deduce a simplified expression for the operator Γ̂I.

In order to completely evaluate the functional derivatives with respect to φ̄
from the Feynman rules, we introduce a Fourier space description in subsec-
tion 3.3.3. Specifically, we express the interaction part of the equations of motion
in terms of the Fourier transform of the two-particle interaction potential. This
way derivatives can be replaced by multiplication with wave vectors.

This property is immediately exploited in a specialization of our Feynman
rules in subsection 3.3.4. Instead of assigning mathematical expressions exclu-
sively to vertices, we are able to assign part of the expressions to the edges.
This allows to reference both vertices which are connected by an edge in the
expression. Ultimately, through various means we obtain a set of specialized
Feynman rules to construct expressions for density correlation functions of an
N-body system.

The specialization to N-body systems recovers the diagrammatic description in [1].
However, an adjustment is made to split the difference of Kronecker δ-symbols assigned
to edges in [1]. Considering the two contributions independently has been suggested
independently by Shayan Hemmatyar in the work leading up to [1] as well as by [35].
The notation used here mimics the one in [35] for ease of comparison and to avoid the
parallel existence of significantly different symbolic notations.
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3.3.1 N-Body Phase Space

As mentioned repeatedly throughout the preceding sections, our main applica-
tions for the KFT framework and its microscopic perturbation theory areN-body
systems. In fact, the specialized construction of the framework for such systems
in [1] would have been sufficient for the applications in the following chapter.
There are of course good reasons for providing a generalized treatment here as
discussed, e.g., in the introductory chapter. Nonetheless, in order to facilitate
the application of KFT to cosmology, this section bridges the gap between the
general formalism introduced above and the specific applications below.

Of course the equations and Feynman rules of the general treatment remain
valid when considering a specific system. However, the specific system might
allow for significant simplifications. In the case of an N-body system the main
simplification is due to the factorization of phase space X = XN. Importantly, the
component phase space X = R2D is the same for all particles. The integer D is
the dimension of the space in which the N-body system evolves. In applications,
it is usually D = 3 given that our universe has three spatial dimensions, but for
toy models we occasionally permit D = 1.

We have discussed this kind of factorization already in subsections 2.2.1
and 2.4.5. There we explained how to construct macroscopic density fields and
their correlation functions. Recall that they can be thought as resulting from a
projection X→ X and are thus given as the sum over the microscopic densities
of the components. The latter are Dirac δ-functions such that the macroscopic
density field is the sum over Dirac δ-functions. In Fourier space, we obtain the
expression

ρ̃(k, t; x) =
N∑
j=1

exp

(
−ik · δ

i δJtj(t)

)
Z[J; x]

∣∣∣∣∣
J=0

. (299)

The construction of a macroscopic density field as an additional observable
is only one aspect of the benefits of specifying to an N-body system. The
factorization of phase space also has an effect on expectation values, evolution
of the system and the Feynman rules. In all these cases the underlying reason
is that the properties of each individual particle are the same as of any other
particle. This makes the particles indistinguishable and therefore any observable
must be invariant when changing the state of the system x by an exchange of
particles xj ↔ xk. Observables abiding to this principle are typically given as
sums over identical contributions from all particles. An example for this is the
macroscopic density field ρ̃(k, t; x).

In order for this invariance under particle exchange to be realized, both the
equations of motion and the initial conditions should respect this property, too.
Let us consider an N-body system with explicitly given initial conditions x. The
state x can of course not satisfy any kind of exchange symmetry on its own
unless all particles start out with the exact same initial position and momentum.
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Instead, the idea of invariance under particle exchange is implemented by the
requirement that

φ̃
(
t; (x1, . . . , xk︸︷︷︸

jth

, . . . , xj︸︷︷︸
kth

, . . . , xN)
)

=
(
φ̃1(t; x), . . . , φ̃k(t; x)︸ ︷︷ ︸

jth

, . . . , φ̃j(t; x)︸ ︷︷ ︸
kth

, . . . , φ̃N(t; x)
)

, (300)

i.e., the only effect of an exchange of particles in the initial conditions is an
exchange of particles after evolution of the system. In particular, the evolution
of all other particles is unaffected.

The condition in equation (300) implies that the equations of motion need
to be agnostic to particle indices. Usually, this property is realized by a Hamil-
tonian which is a sum over single-particle contributions Kj = K[φj] plus a
symmetric potential term Vjk = V[φj,φk]. As an equation, it is

H =

N∑
j=1

Kj +
1

2

N∑
j,k=1
j̸=k

Vjk (301)

with Vjk = Vkj. In this form, the Hamiltonian is invariant under the exchange
of particles.

Finally, we consider the exchange symmetry given a probability distribution
of initial values P(x). Let us define the probability distribution obtained through
the exchange of the jth and kth particles as

Pj↔k(x) := P
(
(x1, . . . , xk︸︷︷︸

jth

, . . . , xj︸︷︷︸
kth

, . . . , xN)
)

. (302)

If the condition in equation (300) is satisfied and the observable O(χ; x) is
invariant under exchange of particles, then

⟨Õ⟩(χ; t) =
∫

dx
1

2

(
P(x) + Pj↔k(x)

)
O(χ; x) . (303)

This implies that expectation values of admissible observables are unchanged
by the replacement

P(x) 7→ 1

N!

∑
σ∈SN

P
(
xσ(1), xσ(2), . . . , xσ(N)

)
, (304)

where SN is the group of all permutations of N elements. Therefore we may
assume without loss of generality that the probability distribution of initial
values is invariant under the exchange of particles.

3.3.2 N-Body Green’s Function

The Hamiltonian H defined above has the desired property of invariance
under exchange of particles. But the form of equation (301) implies significant
simplifications beyond this property. Indeed, there are no terms depending on
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three or more particles such that the interactions take a particularly easy form.
Moreover, the single-particle contributions Kj are all of the same form K[φj]

enabling simplifications when describing free motion. However, both these
aspects depend on the choice of splitting gauge.

Here, we consider the case where the single-particle contributions Kj are
the kinetic terms of the particles, while the potential term Vjk is induced by a
two-particle interaction potential v. It is

Kj =
1

2m(t)
φ

(p)
j (t) ·φ(p)

j (t) and (305)

Vjk = m(t) v
(
φ

(q)
j (t) −φ

(q)
k (t), t

)
(306)

where m is the (effective) mass of the particles. Anticipating for application to
expanding spacetimes in chapter 4 the effective mass may explicitly depend
on time. We allow also for a time-dependence of the two-particle interaction
potential v. The relationship Vjk = Vkj implies that v(−q, t) = v(q, t), i.e., the
potential v is symmetric.

The form of the Hamiltonian strongly suggests a particular choice of splitting
gauge. Recall that we discussed the freedom in splitting the equations of motion
into a free and an interaction part in subsection 2.3.2. This separation of free
motion and interactions can be induced by a splitting of the Hamiltonian into
a free part H0 and an interaction part HI. Here, we focus on the choice of
Newtonian gauge

H0 =

N∑
j=1

Kj and HI =
1

2

N∑
j,k=1
j̸=k

Vjk . (307)

In this gauge choice, the free part of the equations of motion reads

E0[φ](t) =
d
dt
φ(t) − J

δH0(φ(t), t)
δφ(t)

(308)

=

 d
dtφ

(q)(t) − 1
m(t)φ

(p)(t)

d
dtφ

(p)(t)

 . (309)

The particles are completely decoupled and each particle j evolves freely ac-
cording to the equations

d
dt
φ

(q)
j (t) =

1

m(t)
φ

(p)
j (t) and

d
dt
φ

(p)
j (t) = 0 . (310)

Given this simple structure, it is easy to construct a Green’s function for the
single-particle free equations of motion. Let

G(t, t ′) :=

(
θ(t− t ′) ID g(t, t ′) θ(t− t ′) ID

0 θ(t− t ′) ID

)
(311)

with

g(t, t ′) :=
∫t
t ′

dt ′′
1

m(t ′′)
. (312)
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On a static Euclidean spacetime, the effective mass is the particle rest mass m ∈
R and we recover the form of equation (87). A simple calculation analogous to
the one performed there shows that G satisfies equation (72).

The single-particle Green’s functions can be combined into a Green’s function
for the entire N-body system. The block-diagonal matrix

G(t, t ′) = diag
(
G(t, t ′),G(t, t ′), . . . ,G(t, t ′)

)
= IN ⊗G(t, t ′) (313)

serves as a Green’s function for the free equation E0[φ] = 0. In this sense the
factorization of phase space induces a diagonalization of the Green’s function
in Newtonian gauge.

The jth component of the interaction part of the equations of motion takes
the form

(EI)j[φ](t) = −

(
0 ID

−ID 0

)
δHI(φ(t), t)
δφj(t)

(314)

=

N∑
k=1
k̸=j

 0

m(t)∇v
(
φ

(q)
j (t) −φ

(q)
k (t), t

) (315)

for the case considered here. The potential terms Vjk only depend on φ(q) and
due to the symplectic matrix J this implies that EI only receives contributions
to E(p)I . Again, this conclusion is only valid in Newtonian gauge. Splitting the
Hamiltonian in a different way might yield a dependence of HI on φ(p).

Due to the structure of Hamilton’s equations, the vanishing of E(q)I always
occurs if the interactions only depend on particle positions. In such cases, the
operator Γ̂I can be simplified provided that only position-dependent observables
are considered. The single-particle contribution to Γ̂I is

i (Γ̂I)j(t
′) =

∫tf
t ′

dt ′′ (ĒI)t

j(t
′; x)Gt(t ′′, t ′)

δ

δφ̄t

j(t
′′; x)

(316)

in general. Recall that (ĒI)j = (EI)j[φ̄]. If neither ĒI nor the considered observ-
ables depend on φ̄(p), then the functional derivative in this expression can be
simplified to a functional derivative with respect to φ̄(q)

j . However, as we have

just seen, it is (EI)
(q)
j = 0 in that case, too. Therefore, contracting the functional

derivative and the interaction part of the equations of motion with the Green’s
function pics out only the qp-component and we obtain

i (Γ̂I)j(t
′) =

∫tf
t ′

dt ′′ g(t ′′, t ′) (ĒI)
(p)
j (t ′; x) · δ

δ
(
φ̄

(q)
j

)
t

(t ′′; x)
. (317)

3.3.3 Fourier Space Description

The diagrammatic scheme developed in the previous section is supposed to
facilitate obtaining the expressions for contributions to the generating functional,
to observables and their expectation values. However, in the present form, our
Feynman rules still involve functional derivatives. These are hidden in the
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operator Γ̂I inside the interaction vertex. Granted, all product rules are already
sorted out, but it would be preferable if the derivatives were already evaluated.

More importantly, the resulting expressions have a complicated dependence
on the free evolution map φ̄(•; x). Not only does it appear in the aforementioned
functional derivatives, but also inside the interaction part of the equations of
motion. This poses a difficulty when considering expectation values which
require integration over the initial values x.

Both problems can be remedied simultaneously by performing a suitable
Fourier transform. This way the derivatives become multiplications by a wave
vector and the free evolution map appears in Fourier phase factors which
are very suitable for integrations over x. The latter is especially true if the
observable under consideration is a density r-point correlation function which
likewise has the form of a Fourier phase factor.

However, the price to pay for the benefits outlined above is the appearance of
an integral over a wave vector for every interaction vertex. In some applications
this is not a worthwhile trade at all, but in others it is a necessity. In fact, our
two main applications are examples for either case. This should be kept in mind
while performing a series of seemingly counterproductive modifications for the
remainder of this subsection.

Let us start out from the inverse Fourier transform of the interaction part of
the equations of motion EI. For an N-body system with interactions given by a
position-dependent two-particle interaction potential, it is

(EI)
(p)
j [φ](t) =

N∑
ℓ=1
ℓ ̸=j

m(t)∇v
(
φ

(q)
j (t) −φ

(q)
ℓ (t), t

)
(318)

=

N∑
ℓ=1
ℓ ̸=j

∫
dk ′

(2π)D
im(t)k ′v(k ′, t) exp

(
ik ′ ·

(
φ

(q)
j (t) −φ

(q)
ℓ (t)

))
. (319)

Recall that our convention is to distinguish between a function and its Fourier
transform only via the arguments. The object v in the second line is the Fourier
transform of the two-particle interaction potential and is given by

v(k ′, t) =
∫

dq v(q, t) exp
(
−iq · k ′

)
. (320)

Using this form of the interaction part of the equations of motion, the action
of operators Γ̂I on each other becomes quite simple. Indeed, the action of a
functional derivative with respect to φ(q)

ℓ on (EI)
(p)
j yields simply

δ

δ
(
φ

(q)
j ′ (t

′)
)

t
(E

(p)
I )t

j [φ](t) =

N∑
ℓ=1
ℓ ̸=j

∫
dk ′

(2π)D
m(t) k ′(k ′)t v(k ′, t)

(
δj ′ℓ − δj ′j

)
δD(t− t

′) exp
(
ik ′ ·

(
φ

(q)
j (t) −φ

(q)
ℓ (t)

))
. (321)

Here, Kronecker δ-symbols appear which are unity for equal indices and zero
otherwise. The difference δj ′ℓ − δj ′j vanishes if ℓ = j such that we can omit the
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condition ℓ ̸= j from the sum. The object k ′(k ′)t is a D×D-dimensional matrix
which encodes the Fourier transform of the Hessian matrix of the potential v.

The form of the expression in equation (321) shows that using a Fourier
transform, the functional derivatives in Γ̂I can essentially be replaced by multi-
plication with wave vectors. However, this requires that the integrations over
these wave vectors are applied to the entire expression instead of inside a
factor EI. Moreover, this statement only applies to the action on other factors Γ̂I,
but not for the action on a general observable.

We mentioned above that for density correlation functions the formalism
in Fourier space is particularly useful. It is now evident in which sense this
statement is true: The Fourier space density correlation functions are of the
form (

Gρ̃ · · · ρ̃︸ ︷︷ ︸
r times

)
0
(k1, . . . ,kr, t; x) =

r∏
s=1

N∑
js=1

exp
(
−iks · φ̄js(t; x)

)
(322)

when evaluated along the free evolution φ̄. For details of the derivation, confer
subsections 2.2.1 and 2.4.5. Being expressed as exponential functions, the re-
placement of functional derivatives by wave vectors works in the same way as
for factors EI above. This allows us to obtain an expression for Γ̂I in terms of
the wave vector associated to the object acted upon.

The change proposed makes the combinatorial complexity even more impor-
tant as now even the form of Γ̂I depends on which object it acts on. Moreover,
the particle indices are an additional source of difficulty, especially due to the
difference of Kronecker δ-symbols appearing in equation (321). Nonetheless,
the resulting expressions are significantly simplified as they feature neither
functional derivatives, nor d-dimensional objects. To take full advantage of this,
we adapt our Feynman rules to the N-body case in the following subsection.

3.3.4 N-Body Feynman Rules

We introduced Feynman rules as a tool to keep track of the various ways the
operators Γ̂I can act in expressions of the form

Õn(χ, t; x) =
∫tf
ti

dt ′1 i Γ̂I(t
′
1) · · ·

∫tf
t ′n−1

dt ′n i Γ̂I(t
′
n)O(χ; φ̄(t; x)) . (323)

These expressions yield the nth order contribution to the observable O in
microscopic KFT perturbation theory and arise from a series expansion in the
interactions of the system.

As a first step in adapting these Feynman rules to N-body systems, let
us consider the effect of using the expression in equation (317) for Γ̂I. The
main difference to the general case is that we have separate contributions
for all particles j and have specified the interaction part of the equations of
motion to be given as in equation (314). In particular, this means that we
are restricting ourselves to classical N-body systems with pairwise position-
dependent interactions in Newtonian gauge.
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In order to investigate the effects of the changes in the case of N-body
systems, let us consider an example diagram. Recall that using the Feynman
rules defined above, one of the terms adding to the third order contribution of
an observable O is given by

1

2

3
O = i3

∫tf
ti

dt ′1

∫tf
t1

dt ′2

∫tf
t2

dt ′3

Γ̂I(t
′
2)
[
Γ̂I(t

′
1), Γ̂I(t

′
3)
]
O(χ; φ̄(t; x)) . (324)

This term arises from the general form of the third order contribution

Õ3(χ, t; x) = i3
∫tf
ti

dt ′1

∫tf
t1

dt ′2

∫tf
t2

dt ′3 Γ̂I(t
′
1) Γ̂I(t

′
2) Γ̂I(t

′
3)O(χ; φ̄(t; x)) (325)

by acting with Γ̂I(t ′1) on Γ̂I(t ′3) and with Γ̂I(t ′2) and Γ̂I(t ′3) on O(χ; φ̄(t; x)).
Combining equations (317) and (318), we can write Γ̂I as

i Γ̂I(t
′) =

N∑
j,ℓ=1
ℓ ̸=j

∫tf
t ′

dt ′′m(t ′)g(t ′′, t ′)

∇v
(
φ̄

(q)
j (t ′; x) − φ̄(q)

ℓ (t ′; x), t ′
)
· δ

δ
(
φ̄

(q)
j

)
t

(t ′′; x)
. (326)

As a direct consequence of only allowing for two-particle potential terms in
the Hamiltonian, cf. equation (301), this term only involves two particle in-
dices j and ℓ. Acting with the functional derivative on another factor Γ̂I yields
Kronecker δ-symbols which cancels one of the summations. More precisely,
we obtain a difference of two such Kronecker δ-symbols in analogy to equa-
tion (321).

Keeping the difference of Kronecker δ-symbols as part of our Feynman rules
is undesirable, because it hides qualitatively different contributions in the same
diagram. Instead, we want to distinguish whether the functional derivative in a
factor Γ̂I acts on φ̄(q)

ℓ or φ̄(q)
j in another factor Γ̂I. To enable this, we replace the

interaction vertex by

1 7→ 1 , (327)

where the large circle corresponds to the index j, while the small black circle
corresponds to the index ℓ. We refer to the large circle as the interaction vertex
and the small black circle as the associated density node. Their combination is
sometimes also referred to as interaction vertex. The diagram in our example
above thus splits into two contributions

1

2

3
O =

1

2

3

O +

1

2

3

O , (328)
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where the first diagram corresponds to the Kronecker symbol δj1j3 and the
second one to δj1ℓ3 . Given that the functional derivative in Γ̂I comes with index j,
each edge still starts from a large circle.

As a second step in adapting the Feynman rules constructed in subsec-
tion 3.2.1, we specialize the observable to be a density correlation function. As
mentioned above, this is particularly useful when we consider the expressions
in Fourier space. But it also enables a significant simplification in our diagrams
by replacing the observable vertex.

The r-point correlation function of the Fourier space macroscopic density, as
given in equation (322), is the product over r factors of

s, t :=

N∑
ℓs=1

exp
(
−iks · φ̄(q)

ℓs
(t; x)

)
. (329)

This is a density vertex and can be connected to from the left with edges coming
from interaction vertices via the small black circle. Observing that this small
black circle corresponds to the same factor as for the interaction vertex, we also
refer to it as density node.10

Using the definition of the density vertex above, the observable vertex factor-
izes into r density vertices,

O =

1, t
...

r, t

. (330)

This suggests the definition of multiplying connected components of diagrams
which we adopt in the following. Connected components play an important
role for density correlation functions because their diagrams are forests, i.e.,
collections of trees. Indeed, any interaction vertex only has one outgoing edge,
hence it is impossible for density vertices to end up connected in diagrams of
any order. In terms of equations, the functional derivative in Γ̂I can only act on
one of the exponential factors in the product.

Depending on the number r, our example diagram above splits into many
contributions. Even for r = 2, we have

1

2

3

O =
1

2

3

1, t

2, t
+

1

2

3

1, t

2, t

+

1

2

3 1, t

2, t
+

1

2

3 1, t

2, t
(331)

for the first contribution in equation (328) alone. However, it is of course
preferable to have this combinatorial complexity revealed by the diagrams

10 This is of course no coincidence. The interaction term of an N-body system can be written as a
convolution of the density with the interaction potential. This is very apparent in the formalism
of [23].
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rather than hidden in the observable vertex. Note that the diagrams on the
right-hand side can be constructed from the simple instruction of connecting
all edges ending at the observable index in all possible ways to the density
vertices.

The third step is to use the expressions for Γ̂I in Fourier space to define
more specialized Feynman rules. Recall, that according to the Feynman rules
constructed in subsection 3.2.1, we ought to assign mathematical expressions to
the vertices. However, as remarked there, we have some freedom in assigning
(part of) the expression to the edge leaving an interaction vertex instead.

The advantage of assigning expressions to edges is that we can refer to the
labels of both its endpoints. This is particularly useful to fully evaluate the
functional derivatives in factors Γ̂I. In fact, even the Kronecker δ-symbols and
the Dirac δ-function in equation (321) can be canceled against some of the sums
and integrals, respectively.

In accordance with the definition of the density vertex, we define the density
node as

s, t := exp
(
−iks · φ̄(q)

ℓs
(t; x)

)
and (332)

a := exp
(
−ik ′a · φ̄

(q)
ℓ ′a

(t ′a; x)
)

, (333)

respectively. The transparent backgrounds indicate that the expressions associ-
ated to

s, t := 1 and (334)

a := v(k ′a, t ′a) , (335)

respectively, are not included. Conversely, the transparent small circle indi-
cates that the factor coming from the density node is not included. Combined,
we obtain

s, t = exp
(
−iks · φ̄(q)

ℓs
(t; x)

)
and (336)

a = v(k ′a, t ′a) exp
(
−ik ′a · φ̄

(q)
ℓ ′a

(t ′a; x)
)

. (337)

It remains to state the Feynman rules for the edges. Comparing to equa-
tions (321) and (326), these need to include the propagator, scalar products of
wave vectors as well as a Fourier phase factor. We define

a s, t := −m(t ′a)g(t, t
′
a) k

′
a · ks exp

(
ik ′a · φ̄

(q)
ℓ ′b

(t ′a; x)
)

and (338)

a b := −m(t ′a)g(t
′
b, t ′a) k

′
a · k ′b exp

(
ik ′a · φ̄

(q)
ℓ ′b

(t ′a; x)
)

. (339)

Again, the transparent vertices are only there to indicate the relevant indices.
The remaining case of an edge ending at a large circle of an interaction vertex is
slightly more difficult. Here, the Kronecker symbol δj ′aj ′b identifies the index j ′a
with the index j ′b which is itself identified with indices due to the outgoing edge
of the vertex labeled b. This process might happen repeatedly until eventually
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an outgoing edge hits a small circle and the index j ′a is identified with its
index ℓ•. Following this description, we define

a b := m(t ′a)g(t
′
b, t ′a) k

′
a · k ′b exp

(
ik ′a · φ̄

(q)
ℓ•

(t ′a; x)
)

. (340)

Note that only the exponential phase factor is subject to this complication, while
the propagator and the scalar product of wave vectors are defined with respect
to the vertices which the edge connects to.

This defines the components of our diagrams, but there is one more rule
which applies to the entire diagrams. It concerns the integrations over time-
parameters and wave vectors which we have omitted in our Feynman rules.
The reason for this is that they need to be applied to the entire expression of a
diagram. Therefore, we finalize our N-body Feynman rules by stating that upon
having taken the product over all terms coming from vertices and edges Π, the
mathematical expression associated to the diagram is

N∑
ℓ1=1

. . .

N∑
ℓr=1

N∑
ℓ ′1=1

. . .

N∑
ℓ ′n=1

∫tf
ti

dt ′1 . . .
∫tf
t ′n−1

dt ′n

∫
dk ′1
(2π)3

. . .

∫
dk ′n
(2π)3

Π (341)

for a diagram with n interaction and r density vertices. Note that the integrals
over t ′′a and the sums over j ′a have been canceled by Dirac δ-functions and
Kronecker δ-symbols, respectively.

To demonstrate how these Feynman rules are to be used, let us consider the
first diagram in equation (331) which has the form

1

2

3

1, t

2, t
(342)

and thus is the product over two contributions coming from the two trees. The
contribution from the second tree is simply

2, t = exp
(
−ik2 · φ̄

(q)
ℓ2

(t; x)
)

. (343)

The first tree is more complicated. Using the Feynman rules above, we have

2

3

1, t
= m(t ′2)g(t, t

′
2) k

′
2 · k1 exp

(
ik ′2 ·

(
φ̄

(q)
ℓ1

(t ′2; x) − φ̄(q)
ℓ ′2

(t ′2; x)
))

m(t ′3)g(t, t
′
3) k

′
3 · k1 exp

(
ik ′3 ·

(
φ̄

(q)
ℓ1

(t ′3; x) − φ̄(q)
ℓ ′3

(t ′3; x)
))

v(k ′2, t ′2) v(k
′
3, t ′3) exp

(
ik1 · φ̄

(q)
ℓ1

(t; x)
)

. (344)

The first two lines are the contributions from the two edges combined with
the corresponding exponential factor coming from the interaction vertices,
respectively. In the last line we have the remaining contributions from the
vertices together with the factor coming from the density vertex. The third
interaction vertex together with the edge between vertices 1 and 2 supplies a
factor

m(t ′1)g(t
′
3, t ′1) k

′
1 · k ′3 v(k ′1, t ′1) exp

(
ik ′1 ·

(
φ̄

(q)
ℓ1

(t ′1; x) − φ̄(q)
ℓ ′1

(t ′1; x)
))

(345)
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because ℓ1 is the index associated to the small circle which is hit first when
following the edge between the interaction vertices 1 and 3 to the right. Taking
the product of the three expressions above and performing the integrations and
sums according to the prescription in equation (341), we obtain

1

2

3

1, t

2, t
=

N∑
ℓ1,ℓ2=1

N∑
ℓ ′1,ℓ ′2,ℓ ′3=1

∫tf
ti

dt ′1

∫tf
t ′1

dt ′2

∫tf
t ′2

dt ′3

∫
dk ′1
(2π)3

∫
dk ′2
(2π)3

∫
dk ′3
(2π)3

v(k ′1, t ′1) v(k
′
2, t ′2) v(k

′
3, t ′3)

m(t ′1)g(t
′
3, t ′1)k

′
1 · k ′3 exp

(
ik ′1 ·

(
φ̄

(q)
ℓ1

(t ′1; x) − φ̄(q)
ℓ ′1

(t ′1; x)
))

m(t ′2)g(t, t
′
2)k

′
2 · k1 exp

(
ik ′2 ·

(
φ̄

(q)
ℓ1

(t ′2; x) − φ̄(q)
ℓ ′2

(t ′2; x)
))

m(t ′3)g(t, t
′
3)k

′
3 · k1 exp

(
ik ′3 ·

(
φ̄

(q)
ℓ1

(t ′3; x) − φ̄(q)
ℓ ′3

(t ′3; x)
))

exp
(
−ik1 · φ̄

(q)
ℓ1

(t; x) − ik2 · φ̄
(q)
ℓ2

(t; x)
)

. (346)

Evidently, the dependence of this expression on the initial values x is of
special form. Indeed, by the definition of our Feynman rules any diagram
contributing to the r-point density correlation function depends on the initial
conditions x only via products of factors of the form

exp
(
−ik · φ̄(q)

j (a; x)
)
= exp

(
−ik · x(q)j

)
exp

(
−ig(t, ti) k · x

(p)
j

)
(347)

for certain wave-vectors k, time variables t and particle indices j. Note that
the time variables and wave-vectors can be integration variables. All particle
indices are being summed over.

For each diagram we can collect these terms by their particle index. Abbrevi-
ated the sum over all terms multiplying x(q)j by f(q)j and the sum over all terms

multiplying x(p)j by f(p)j , each diagram’s dependence on the initial values x thus
is of the form

N∏
j=1

exp
(
if

(q)
j · x(q)j

)
exp

(
if

(p)
j · x(p)j

)
=: exp(if · x) . (348)

Here, f(q)j is a sum over some set of wave-vectors with prefactors ±1, while f(p)j
is a sum over the same wave-vectors with prefactors ±g(t, ti) for some time
variable t.

For the nth order contribution to the r-point density correlation function
only r+n of the factors f(q)j are non-zero, and correspond to the density nodes

in the diagram. In fact, one can basically read off f(q)j (and f
(p)
j ) from the

diagrams: For the density node corresponding to index j, add to the negative
of the wave-vector (times the factor g) corresponding to its vertex all wave-
vectors (times the factor g) associated to all interaction vertices connecting to it,
including those which connect “through” another interaction vertex.
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4.1 standard model of cosmology

Given the complexity of the universe and its history, it is surprising yet for-
tunate that there is a simple model which describes it to high accuracy. The
Cosmological Standard Model (ΛCDM-model) depends only on 7 free parame-
ters while describing the history of the universe as a whole, down to scales
of roughly the size of galaxies.11 Of course, the ΛCDM-model relies on a lot of
implicit assumptions as pointed out in Table II of the excellent review [45]. As
an example, in the ΛCDM-model a flat universe is assumed effectively setting
a curvature parameter to zero which otherwise would enlarge the parameter
space. Let us list the parameters of the ΛCDM-model:

• CMB temperature TCMB = 2.72548± 0.00057K:
Temperature associated to the black body spectrum of the Cosmic Mi-
crowave Background (CMB) when averaged over the entire sky. It is related
to the radiation density parameter ΩR,0. The best measurement of this
quantity is still due to the FIRAS instrument on the WMAP satellite.[46]

• angular parameter 100θ∗ = 1.04101± 0.00029:
Size of the sound horizon at recombination. Determines the scale of the
baryonic acoustic oscillations and thus measured at high accuracy from
the locations of the acoustic peaks in the CMB anisotropy spectra.

• power spectrum slope ns = 0.9665± 0.0038:
Slope of the power spectrum of primordial density fluctuations. In the
probably popular scenario, these inhomogeneities in the early universe
density field are directly related to quantum fluctuations of a scalar field
driving an exponential spacetime expansion in the very early universe.

• power spectrum amplitude ln(1010As) = 3.047± 0.014:
Amplitude of the power spectrum of aforementioned primordial density
fluctuations.

• physical baryon density h2ΩBM,0 = 0.02242± 0.00014:
Amount of baryonic (= ordinary) matter in the universe, mostly in the
form of intergalactic gas.[47] Only about 5% of the current energy content
of the universe is baryonic matter.

• physical CDM density h2ΩDM,0 = 0.11933± 0.00091:
Cold Dark Matter (CDM) density in the universe, corresponding to a
current energy fraction of about a quarter. The remaining approximately
70% of the energy content is Dark Energy (DE). In the ΛCDM-model it is
described by a Cosmological Constant (Λ).

• reionization optical depth τ = 0.0561± 0.0071:
Associated to the formation of the first stars which reionized baryonic gas
in the universe.

11 Due to the precision of the measurement of TCMB, this parameter is sometimes taken as a
constant when estimating other parameters from data.
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We work with the values given in [16] based on observations of the CMB with
the Planck satellite and measurements of the Baryonic Acoustic Oscillations
(BAO).12 Combinations with other data sets would improve the precision of some
parameters. However, persistent tensions predominantly in, but not limited to,
the cosmic expansion rate complicate such combinations.

As for any model, there are many choices of parameterizing the ΛCDM-model.
The parameters given above are particularly suited to observations of the
CMB anisotropy power spectrum such as the one in [16]. Other frequently
encountered parameters like the present day expansion rate H0 or the cluster
number density σ8 can be derived from them.

In this section, we collect the necessary ingredients for the two applications
of Kinetic Field Theory (KFT) in the field of cosmology presented in this chapter.
Firstly, we introduce the dynamics of point particles on an expanding back-
ground in subsection 4.1.1. Important properties of cosmic neutrinos relevant
for section 4.3 are summarized in subsection 4.1.2.

In the final subsection, we provide some background on the CMB. In part,
this is to give slightly more context to one of the most important sources of
observational data for the ΛCDM-model. However, our main motivation is related
to the initial conditions for our application to cosmic structure formation in
section 4.2. These are set at the time of CMB release and their statistics are
directly related to the CMB anisotropy power spectra.

Subsection 4.1.1 is based on Appendix A of [1] which was originally written by Shayan
Hemmatyar. Subsection 4.1.2 takes inspiration from the introduction of [2] written by
Isabel M. Oldengott. Further details on the ΛCDM-model can be found in any recent
book on cosmology.

4.1.1 FLRW Metric

The ΛCDM-model is based on Einstein’s theory of general relativity. The spatially
homogeneous and isotropic solution to its field equations is known as the
Friedmann-Lemaître-Robertson-Walker metric (FLRW metric). Imposing spatial
flatness, it depends on a single function of cosmic time: the scale factor a(t).
This quantity encodes the expansion of spatial hypersurfaces over time. We
adopt the convention a(ttoday) = 1.

The scale factor is directly related to the redshifting of photons which were
emitted at a time t and are observed today

z(t) =
1

a(t)
− 1 . (349)

Since nearly all of our observations in cosmology are based on such photons,
this is a very important quantity especially when considering observational
data. In calculations, the monotonically decreasing dependence on cosmic
time t leads to some unnatural minus signs as we see below.

The evolution of scale factor and redshift with cosmic time is determined by
Friedmann’s equations. They follow from Einstein’s field equations under the

12 Specifically, we take the values and uncertainties from the last column of Table 2 of [16].
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aforementioned assumptions of spatial homogeneity and isotropy which not
only yield the simple FLRW metric, but also force the energy-momentum tensor
into the form of a perfect fluid. In the ΛCDM-model this perfect fluid is made up
from DE, Dark Matter (DM), baryonic matter and radiation. In this case, the first
Friedmann equation can be written as

H(t)2

H20
= ΩΛ,0 + (ΩDM,0 +ΩBM,0)a(t)

−3 +ΩR,0 a(t)
−4 . (350)

The left-hand side of this equation features the Hubble function which specifies
the expansion rate, while the right-hand side is a sum over the energy content
of the universe. They quantities appearing are

H(t) =
1

a(t)

da
dt

(t) , H0 = H(ttoday) and Ω•,0 =
8πGρ•

3H20
, (351)

for • = Λ, DM, BM,R for DE (in form of Λ), DM, baryonic matter and radiation
(including relativistic matter), respectively.

Inserting the parameters of the ΛCDM-model, equation (350) allows us to
determine the Hubble function. From it we obtain the scale factor as a function
of cosmic time which can be inserted into the FLRW metric. This fully specifies
the spacetime manifold M which we consider as fixed for both applications
provided in this chapter.

In both these applications, we consider the evolution of a set of N point-
particles on this background manifold subject to gravitational interactions. In
the context of General Relativity, this would require a dynamical metric. How-
ever, it is a common approximation in the field of cosmic structure formation
to describe the interactions of such systems via Newtonian gravity on the
expanding background manifold M.[21]

Adopting this approximation, the configuration space of our N-particle
systems is M =MN, the N-fold product manifold of identical components M.
We choose a global chart (U,ψ) given by comoving coordinates. These are defined
for each factor M of M via U =M and ψ : M→ R1,3 with(

t, x(q)1 , x(q)2 , x(q)3
)
= ψ(µ) :=

(
µ0,

µ1
a(t)

,
µ2
a(t)

,
µ3
a(t)

)
(352)

for µ ∈ M. Following the definitions and constructions of section 2.1, we
obtain a rigorously defined phase space X ∼= T∗M for our system. Note that as
described there, the time coordinate plays a special role and its simultaneous
use as a time parameter allows a description in 6N-dimensions.

Using this description, the Hamiltonian of a system of N point-particles with
rest masses m0 subject to a gravitational potential is

H(φ(t), t) =
1

2m0 a(t)2
φ(p)(t) ·φ(p)(t) +

N∑
j=1

m0 V
(
φ

(q)
j (t), t;φ(t)

)
.

(353)

Note that we allow for dependence of the potential on the state of the sys-
tem φ(t) as it may be sourced by the point-particles themselves. The potential
satisfies the comoving Poisson equation

∇2V(q, t;φ(t)) = 4πGa(t)2 ρ(q)(q, t;φ(t)) , (354)
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where the spatial density ρ(q) again might be sourced by the system itself or
can be external.

In our applications in the following sections, we use scale factor a and
redshift z as our time parameters, respectively. This induces a change in the
conjugate momentum and introduces a Jacobi determinant into the Lagrangian
due to the requirement of invariance of the action. Due to both of these effects,
the Hamiltonian changes its form slightly. A simple calculation yields

H(φ(a),a) =
φ(p)(a) ·φ(p)(a)

2m0 a3H(a)
+

N∑
j=1

m0 V
(
φ

(q)
j (a),a;φ(a)

)
aH(a)

and (355)

H(φ(z), z) = −
(1+ z)φ(p)(z) ·φ(p)(z)

2m0H(z)
−

N∑
j=1

m0 V
(
φ

(q)
j (z), z;φ(z)

)
(1+ z)H(z)

, (356)

respectively. We emphasized that despite the use of the same symbol, the
conjugate momenta φ(p) are not the same in the two cases.

In both cases, we have a time dependent factor in the kinetic term. This was
anticipated in equation (305) and the setup considered there is recovered by
setting

m(a) = 2m0 a
3H(a) and m(z) = −

m0H(z)

(1+ z)
, (357)

respectively. These can be regarded as effective masses for the particles and
absorb the effect of the spatial expansion. Using these definitions, the equations
and constructions from section 3.3 are directly applicable.

4.1.2 Cosmic Neutrino Background

According to the ΛCDM-model, the universe had been in thermodynamic equi-
librium during the first second of its existence. In part, this is due to the high
density and very low mean free paths, but as long as matter is relativistic its
energy density decreases as a−4 like radiation anyway. Only once the non-zero
rest mass of the particles is comparable to their kinetic energy, interactions are
needed to keep thermodynamic equilibrium. Electrons, protons and photons
are tightly coupled by electromagnetic interaction.

In contrast, neutrinos and neutrons are only coupled to the radiation bath
via the weak force. As long as the weak reaction rate Γw can keep up with
the expansion rate H, the neutrinos and neutrons stay in thermodynamic
equilibrium. However, once the condition

G2FT
5 ∝ Γw ≲ H ∝ G

1
2 T2 (358)

is reached, where GF and G are the Fermi and the gravitational constant, respec-
tively, the neutrons and neutrinos freeze out. This happens at a temperature T
corresponding to roughly 1MeV.[48]

While the neutrons either decay or combine with protons to form (mostly)
Helium, the neutrinos form the Cosmic Neutrino Background (CνB). Due to



4.1 standard model of cosmology 110

their very small interaction cross-section, these neutrinos propagate through
the universe almost entirely unaffected by major events in cosmic history like
Big Bang Nucleosynthesis (BBN), the release of the CMB and reionization. Aside
from potential gravitational wave measurements, the CνB is the earliest direct
probe of the universe’s history.

While in equilibrium, the neutrinos in the CνB have a relativistic Fermi-Dirac
distribution. Because the temperature has the same dependence on redshift as
the comoving momentum, this distribution is retained during cosmic evolution.
Only once the neutrinos become sufficiently affected by gravitational interac-
tions, this distribution may be altered. This happens once the mean velocity
of cosmic neutrinos becomes comparable to the escape velocity of galaxies.
Therefore, for any redshift prior to this, the CνB is spatially homogeneous and
its momentum distribution is

PFD

(
x
(p)
j

)
=

1

(2π  h)3

exp

c
∥∥∥x(p)j ∥∥∥
kB T0

+ 1

−1

, (359)

where T0 is the temperature of the CνB today. The integral over the distribution
yields the mean neutrino number density.[49]

The existence of the CνB has been confirmed indirectly via measurements of
light element abundances in BBN.[48, 50] Moreover, the measurement of the
number of effective relativistic degrees of freedom Neff through CMB observa-
tions provides additional confirmation.[16] However, a direct detection has not
been achieved and the current best observational constraint is an upper bound
on the CνB number density 11 orders of magnitude higher than the predicted
value.[51] Future experiments have been proposed, but it will be challenging to
reduce the bound by the required amount.[52, 53]

While detection of neutrinos generally is challenging, the very low tempera-
ture of the CνB provides an additional difficulty. Indeed, the temperature of the
CνB is even lower than the one of the CMB. This is because the neutrino freeze-
out happens prior to the annihilation of electron-positron-pairs.[48] Hence, this
process injects energy into the photon field, but not the CνB.

Specifically, the relative energy density between photons and neutrinos is
approximately altered from

Ων = 3 · 7
8
·Ωγ to Ων = 3 · 7

8
·
(
4

11

) 4
3

·Ωγ . (360)

The factors in these expressions might seem somewhat arbitrary, but actually
they can be understood quite easily. The number 3 corresponds to the three
neutrino species.13 Secondly, neutrinos are fermions which leads to a factor
of 78 when comparing energy densities in thermal equilibrium in the relativistic
limit. Finally, there is the factor of 4

11 to the power 43 . It arises from a constant-
entropy argument for the electron-positron annihilation which explains the
exponent upon recalling that entropy scales as ∝ T3. Moreover, the factor
of 114 = 1+ 7

8 + 7
8 encodes the change from having photons, electrons and

positrons to only photons.[48]

13 More precisely, the effective number of relativistic Neff should be used here.
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As a consequence, the expected temperature of the CνB today is

T0 =

(
4

11

) 1
3

TCMB ≈ 1.95K . (361)

While this low energy makes the detection of individual neutrinos in the CνB

very difficult, it also allows for an interesting effect affecting its detection:
neutrino clustering. It has been experimentally observed that neutrinos have
a non-zero rest mass.[54, 55] Hence, the cosmic neutrinos making up the CνB

become non-relativistic at some point in cosmic history due to redshifting and
can potentially be captured in gravitational potentials caused by galaxies.

Neutrino clustering leads to an increase of the local cosmic neutrino density
relative to the cosmological average. The larger the neutrino masses, the earlier
clustering starts and the higher is the local cosmic neutrino density in the
Milky Way. For very large overdensities, direct detection of the CνB could be
facilitated, though its information content about the early universe might be
more complicated to access.

Experimental and observational constraints rule out neutrino masses above
1 eV.[56, 57] Hence, the clustering of cosmic neutrinos starts at redshifts z < 3
as can be shown by comparing their average velocity to typical escape velocities
of galaxies.[49] As a consequence, late time clustering of cosmic neutrinos
increases the local CνB density by less than an order of magnitude.[49, 58]
Moreover, the Fermi-Dirac distribution given in equation (359) is valid at
redshifts z ⩾ 3.

4.1.3 Cosmic Microwave Background

Around redshift z ≈ 1600, free protons and electrons begin to combine into
hydrogen. The free electron fraction χe = ne

nH
defined via the number density

of free electrons ne relative to the one of hydrogen nuclei nH drops sharply
due to this process.[59] The scattering rate of photons is strongly dependent
on the free electron fraction and hence their mean free path becomes larger
as more electrons are captured into hydrogen atoms. Once the mean free path
is comparable to the size of the horizon scale, the photons effectively stream
freely—the universe becomes transparent.

This transition of course does not happen instantly, and in fact the photons
we observe today as the CMB radiation originate from a range of redshifts. The
often invoked surface of last scattering is not actually a surface, but rather a
spherical shell. The redshift range from which CMB photons originate peaks
at z ≈ 1090.[16] Given that the radiation and the baryonic matter had been
in thermal equilibrium prior to CMB release, the photons exhibit a thermal
distribution.[46]

Prior to decoupling, electromagnetic interactions between photons and
baryons supplied a pressure component counteracting gravitational collapse.
However, not partaking in these interactions, initial over-densities of CDM

already started to grow. As such, the photon-baryon-plasma found itself in
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Figure 2: Temperature anisotropy power spectrum DTTℓ = 1
2π ℓ(ℓ+ 1)C

TT
ℓ as measured

by the Planck satellite, where CTTℓ (ℓ) is the angular power spectrum. The blue
line is the prediction from the best-fit ΛCDM-model. Figure 1 of [16].

a (slightly) inhomogeneous gravitational potential. Under these conditions,
so-called BAO were sourced.[60]

These oscillations dominate the (slight) anisotropy of the CMB as shown in
figure 2. Note that the temperature fluctuations are of the order of 1 : 105. This
corresponds to the scale of density fluctuations at the time of the release of
the CMB. In fact, these fluctuations are so small that they are dominated by the
Doppler shift of the CMB monopole which therefore has been subtracted from
the data in figure 2.

The Doppler shift is due to the motion of Earth relative to the CMB rest frame.
This frame corresponds to an observer comoving with the cosmic density field.
It is for such observers that the universe described by a FLRW metric appears
homogeneous and isotropic. In fact, their proper time defines a cosmological
time coordinate we have been referring to throughout this section. For observers
moving relative to them, the universe is not isotropic due to the Doppler effect.

As such, any observer traveling along some rocky planet around a G-type star
in the outskirts of an ordinary spiral galaxy is expected to observe a Doppler
shift of the CMB monopole in the direction of her velocity relative to the CMB

rest frame. Coincidentally, our observations reveal a dipolar anisotropy in the
CMB. This CMB dipole is most naturally explained as the Doppler shift of the
CMB monopole.

Following this interpretation, our Solar System is moving with a velocity of
v = (369.82± 0.11) km s−1 relative to the CMB rest frame. It should be noted
that the quoted uncertainty does not include the systematic error due to the
possible presence of an intrinsic CMB dipole. Judging by the amplitude of
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smaller-scale fluctuations, this intrinsic dipole would be expected to be of the
order of about 1% of the observed dipole and point in an unknown direction
relative to the kinetic (Doppler) dipole.[61]

Returning to figure 2, we recall that the ΛCDM-model supposes that there
are small density inhomogeneities on top of the isotropic and homogeneous
background. These adiabatic and Gaussian fluctuations are described by a
near scale invariant spectrum, specified by the parameters As and ns. The
most prominent, but not exclusive, explanation for their origin are quantum
fluctuations which were stretched to cosmological scales by a process like
inflation.[62]

Regardless of their origin, these fluctuations gave rise to density inhomo-
geneities which in turn are responsible for temperature fluctuations observed
in the CMB. Observations of the CMB confirm the absence of primordial non-
Gaussianities.[63] Hence, the density fluctuations at redshift zi ≈ 1090 form a
Gaussian random field which is solely described by it power spectrum Pδ.

The measurement of the angular power spectrum of temperature fluctua-
tions of the CMB CTTℓ (ℓ) shown in figure 2 can be translated into the matter
fluctuation power spectrum Pδ(k, zi) at the redshift of CMB release. As shown
in Appendix B of [1], this in turn yields the power spectrum of the velocity
potential Pψ(k) at this redshift. Indeed, the comoving Poisson equation (354)
implies the relationship

κ2 k4 Pψ(k) = Pδ(k, zi) (362)

for a certain constant κ defined in equation (B9) of [1].
As a final aspect in this subsection, we want to show in which way the

temperature anisotropy spectrum constrains the parameters of the ΛCDM-model.
As mentioned above, the temperature of the CMB TCMB is measured through the
frequency spectrum of the CMB monopole. All other parameters can be inferred
through their effect on the temperature anisotropy power spectrum, as shown
in table 1.
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Parameter Interpretation Effect on DTTℓ (ℓ ⩽ 2500)

100θ∗ Size of the sound horizon at recom-
bination. Controls the position of
the acoustic peaks, with an increase
shifting their positions towards the
left.

500 1000 1500 2000 2500

2.×10-10

4.×10-10

6.×10-10

8.×10-10

+100σ / +300σ

ns Slope of the primordial fluctuations.
Determines the tilt in the power
spectrum with an increase lowering
the first acoustic peak and boosting
the high-ℓ tail.

500 1000 1500 2000 2500

2.×10-10

4.×10-10

6.×10-10

8.×10-10 +30σ / +100σ

ln(1010As) Amplitude of the primordial fluctu-
ations. Directly proportional to the
amplitude of the CMB anisotropy
power spectrum.

500 1000 1500 2000 2500

2.×10-10

4.×10-10

6.×10-10

8.×10-10

1.×10-9

1.2×10-9 +10σ / +30σ

h2ΩBM Baryonic matter density. Affects the
odd-even modulation of the acous-
tic peaks, with an increase exagger-
ating the modulation.

500 1000 1500 2000 2500

2.×10-10

4.×10-10

6.×10-10

8.×10-10

+30σ / +100σ

h2ΩCM DM density. Its increase reduces the
relative abundance of baryons and
thus decreases the acoustic peaks.

500 1000 1500 2000 2500

2.×10-10

4.×10-10

6.×10-10

8.×10-10 +30σ / +100σ

τ Optical depth. Affects the ampli-
tude of the CMB anisotropy power
spectrum and thus is degenerate
with As.

500 1000 1500 2000 2500

2.×10-10

4.×10-10

6.×10-10

8.×10-10 +10σ / +30σ

Table 1: Overview of the effects of changing the ΛCDM-model parameters on the tem-
perature anisotropy power spectrum. The black curve corresponds to the
parameters given in the introductory section and the red and orange ones are
obtained by increasing the respective parameter by multiples of their uncer-
tainty. Plots created using CLASS.[64]



4.2 large-scale structure 115

4.2 large-scale structure

In this section, we apply the formalism developed in the previous chapters to
cosmic structure formation, i.e., the study of the formation of the large-scale
structure in the universe. This has been the main application of KFT in the
literature.[23, 32]

The main difficulty in this application are the initial conditions. We describe
in detail how the sampling of particle positions and momenta from an initial
density and velocity field yields initial conditions for the system which are
correlated. This means that the probability distribution P(x) cannot be factorized
into probability distributions for the individual components. Moreover, the
functional form of P(x) is quite complicated.

To facilitate computations, we perform an expansion in the initial particle
correlations in subsection 4.2.2. By means of a series expansion of a Gaussian
exponential factor, we obtain expressions in which Fourier phase factors coming
from the initial correlations can be combined with those coming from our Feyn-
man rules. This allows an averaging of expressions of diagrams contributing to
r-point density correlation functions.

The averaged diagrams can themselves be expressed via Feynman rules as
we show in subsection 4.2.3. The newly constructed diagrams add correlation
vertices and correlation edges to the diagrams contributing to the observable. It
is shown that the mathematical expressions corresponding to these diagrams
factorize into a scale factor and a wave-vector dependent part which can be
constructed and evaluated independently. This reduces the computational
complexity of the numerical evaluation of remaining integrals significantly.

Finally, we reproduce the main result of [1] that the linear growth of the
cosmic density-fluctuation power spectrum is obtained from the contributions
which are linear in the initial correlations. We also given an outlook to ongoing
work in evaluating the contributions quadratic in the initial correlations.

This section is based on work presented in [1] as well as further investigations based
on it in a joint effort with Shayan Hemmatyar. The method of expanding in the initial
correlations was already applied in [23].

4.2.1 Correlated Initial Conditions

In order to describe the formation of structure in the universe with KFT, we
consider the matter as a collection of interacting point-particles on an expanding
spacetime. This is in analogy to the treatment in numerical N-body simulations,
where these point-particles often have masses comparable to the ones of galaxies
or even larger, gravitationally bound objects.[14] In our analytic treatment, we
leave the particle rest mass m0 arbitrary for the moment. It may correspond
likewise to galaxy-scale objects, but can also take the value of ultra-light DM

particles.
As described in subsection 4.1.3, through observations of the CMB we have

a precise statistical characterization of the cosmic density field at a redshift
of zi = 1090. We take this as the initial time of our N-body system and thus
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ought to set its initial conditions x at this instance. We remark that numerical
simulations usually use some form of hydrodynamic approximation to evolve
the cosmic density field to redshifts of up to z ≈ 10 (where the hydrodynamic
approximation starts to break down on relevant scales) and set their initial
conditions there.[65]

Unlike numerical simulations, we do not take a single sample of N point-
particles from the cosmic density field and evolve it. Instead, we construct
expectation values of observables based on a probability distribution of ini-
tial values. Conceptually, this corresponds to running an N-body simulation
infinitely often for different samplings and averaging over them. Given that
this is impossible in practice, one can instead a smoothing as described in
subsection 2.4.1 and study the statistics of the resulting density field. Modern
N-body simulations use much more sophisticated methods of course.[14]

One main difficulty with the sampling of the cosmic density field is that we
only know its statistics, but not its actual behavior. While conceptually this is
fine, given that we are likewise only interested in the statistics of the present
day cosmic density, it makes the description of the sampling somewhat more
complicated. Effectively, we have taken a sample density ρ(q) from a probability
distribution of initial cosmic density fields, as given through our knowledge of
their statistical behavior.

For each such sample, we then take a sample of N point-particles and average
over both sampling processes to obtain expectation values of observables.
Written as an equation, the probability distribution of initial values x is thus of
the form

P(x) =

∫
dρ(q)

 N∏
j=1

P
(
x
(q)
j | ρ(q)

)
P
(
x
(p)
j | ρ(q)

) P
(
ρ(q)

)
. (363)

Note that given the infinite dimensionality of ρ(q), the integral over it is to
be treated with caution. Fortunately, we are able to replace it by a finite-
dimensional integral below.

Two conditional probability distributions appear in equation (363). The first
of them is simple, because sampling N point-particles from a density field can
be done via the condition

P
(
x
(q)
j | ρ(q)

)
=
1

N
ρ(q)

(
x
(q)
j

)
(364)

for each particle j. However, the conditional probability distribution of the
momenta P

(
x
(p)
j | ρ(q)

)
requires additional discussion, because knowledge of

the spatial density seems insufficient to assign momenta to the particles.
Once more we compare to the procedure of obtaining initial values in nu-

merical simulations of cosmic structure formation. As mentioned above, there
a hydrodynamic approximation is used to obtain the cosmic density field at
some “initial” redshift. However, this hydrodynamic treatment provides not
only the spatial density field, but also a velocity field. In fact, it is arguably
the assumption of the existence of a well-defined velocity field which is the
Achilles’ heel of the hydrodynamic approximation—shell crossing occurring in
gravitational collapse violates this assumption.
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Nonetheless, at sufficiently early times and large enough scales, the existence
of a well-defined velocity field can be assumed. In order to be able to assign
initial momenta to our sample of N point-particles, we make this assumption
at initial redshift zi only. Note that this is more conservative than the treatment
for conventional N-body simulations which assume the existence of a velocity
field until lower redshifts, where initial conditions are sampled.

As described in subsection 4.1.3, the density and velocity fields can be
obtained from the velocity potential ψ. This allows us to rewrite equation (363)
as

P(x) =

∫
dψ

 N∏
j=1

P
(
x
(q)
j | ψ

)
P
(
x
(p)
j | ψ

) P(ψ) with (365)

P
(
x
(q)
j | ψ

)
=
ρ̄(q)

N

(
1− κ∇2ψ

(
x
(q)
j

))
and (366)

P
(
x
(p)
j | ψ

)
= δD

(
x
(p)
j −m(ai)∇ψ

(
x
(q)
j

))
. (367)

The effective mass m(a) has been defined in subsection 4.1.1 and accounts for
cosmic expansion. Here, it is evaluated at initial scale factor ai = (1+ zi)

−1.
The constant κ is introduced in equation (362).

The conditional probabilities given in equations (366) and (367) depend on
the velocity potential ψ only via the values of its gradient and Laplacian at the
positions x(q). Let us collect these in the vectors

∇2ψ :=
(
∇2ψ

(
x
(q)
1

)
,∇2ψ

(
x
(q)
2

)
, . . . ,∇2ψ

(
x
(q)
N

))
and (368)

∇ψ :=
(
∇ψ

(
x
(q)
1

)
,∇ψ

(
x
(q)
2

)
, . . . ,∇ψ

(
x
(q)
N

))
. (369)

This allows us to rewrite equation (365) as

P(x) =

∫
d∇2ψ

∫
d∇ψ

 N∏
j=1

P
(
x
(q)
j |∇2ψ

)
P
(
x
(p)
j |∇ψ

)P(∇2ψ,∇ψ
)

, (370)

featuring the joint probability P
(
∇2ψ,∇ψ

)
.

As discussed in subsection 4.1.3, the velocity potential at redshift zi is well-
described as a Gaussian random field. As such, it is characterized solely by its
power spectrum Pψ(k). Specifically, its values at points x(q)

ψ :=
(
ψ
(
x
(q)
1

)
,ψ
(
x
(q)
2

)
, . . . ,ψ

(
x
(q)
N

))
(371)

form a multivariate Gaussian distribution given by

P(ψ) =
exp

(
−12 ψ

t
(
Cψψ

)−1(
x(q)

)
ψ
)

√
(2π)N det

(
Cψψ

(
x(q)

)) with (372)

C
ψψ
jℓ

(
x(q)

)
=

∫
dk ′′

(2π)3
Pψ(k

′′) exp
(
−ik ′′ ·

(
x
(q)
j − x

(q)
ℓ

))
. (373)

A simple calculation reveals that〈
ψ
(
x
(q)
j

)
ψ
(
x
(q)
ℓ

)〉
=

∫
dψP(ψ)ψ

(
x
(q)
j

)
ψ
(
x
(q)
ℓ

)
= Cψψjℓ

(
x(q)

)
. (374)
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This expression can be used to obtain the two-point correlations of ∇2ψ
and ∇ψ. As a result we obtain an expression for the joint probability distribu-
tion

P
(
∇ψ,∇2ψ

)
=

exp

−12

(
∇2ψ
∇ψ

)t

C−1
(
x(q)

) (∇2ψ
∇ψ

)
√
(2π)4N det

(
C
(
x(q)

)) with (375)

Cjℓ

(
x(q)

)
=

 Cδδjℓ
(
x(q)

)
C
δp
jℓ

(
x(q)

)
−
(
C
δp
jℓ

)
t (
x(q)

)
C
pp
jℓ

(
x(q)

)
 (376)

=

∫
dk ′′

(2π)3

(
∥k ′′∥4 −i k ′′t ∥k ′′∥2

i k ′′ ∥k ′′∥2 k ′′k ′′t

)
Pψ(k

′′) exp
(
−ik ′′ ·

(
x
(q)
j − x

(q)
ℓ

))
. (377)

Inserting it and the conditional probability distributions given in equations (366)
and (367) into equation (370) yields an expression which can be immedi-
ately simplified significantly. Indeed, the Dirac δ-function in equation (367)
replaces ∇ψ by 1

m(ai)
x(p) by canceling the associated integral. This results in

P(x) =

∫
d∇2ψ 1

(m(ai))3N

 N∏
j=1

ρ̄(q)

N

(
1− κ∇2ψ

(
x
(q)
j

))
exp

− 1
2(m(ai))2

(
m(ai)∇2ψ

x(p)

)t

C−1
(
x(q)

) (m(ai)∇2ψ
x(p)

)
√
(2π)4N det

(
C
(
x(q)

)) (378)

=

∫
d∆

 N∏
j=1

ρ̄(q)

N

(
1−

κ

m(ai)
∆j

)
exp

− 1
2(m(ai))2

(
∆

x(p)

)t

C−1
(
x(q)

) ( ∆

x(p)

)
√
(2π)4N (m(ai))8N det

(
C
(
x(q)

)) , (379)

where in the second equality we defined ∆ := m(ai)∇2ψ for compactness.

4.2.2 Series Expansion of Correlations

Averaging observables over the probability distribution given in equation (379)
is a difficult task. The main problem is the non-trivial dependence of the cor-
relation matrix C on the initial particle positions x(q). However, using the
specialization of microscopic perturbation theory to N-body systems performed
in section 3.3, it is actually possible to make some progress. Recall, that this
comes with a restriction to systems which interact via a position-dependent pair-
wise interaction potential v and to the use of Fourier space density correlation
functions as observables.
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Under these conditions, we have shown that in any order n of the series
expansions in the interactions, the diagrams contributing to the r-point density
correlation function depend on the initial conditions x only through a factor
of the form exp(if · x), as shown in equation (348). The scalar product f · x has
contributions from only r+n terms, corresponding to the indices associated to
the density nodes in the diagrams.

In order to obtain the expectation values of r-point density correlation func-
tions, we need to average the expressions encoded by the diagrams contributing
to it over P(x). The preceding discussion implies that the result can be inferred
from averaging over the factor exp(if · x). This yields the so-called characteristic
function of the probability distribution P, given by

Φ(f) =

∫
dxP(x) exp(if · x) (380)

=

∫
dx

∫
d∆

 N∏
j=1

ρ̄(q)

N

(
1+

κ

m(ai)

∂

∂ξj

) exp(i (iξ) ·∆)

∣∣∣∣∣∣
ξ=0

exp

− 1
2(m(ai))2

(
∆

x(p)

)t

C−1
(
x(q)

) ( ∆

x(p)

)
√
(2π)4N (m(ai))8N det

(
C
(
x(q)

)) exp(if · x) (381)

=

∫
dx(q) exp

(
if(q) · x(q)

) N∏
j=1

ρ̄(q)

N

(
1+

κ

m(ai)

∂

∂ξj

)
exp

−
(m(ai))

2

2

(
iξ

f(p)

)t

C
(
x(q)

) ( iξ
f(p)

)∣∣∣∣∣∣
ξ=0

. (382)

The introduction of the auxiliary variable ξ allowed us to perform the 4N-
dimensional Fourier transform of the Gaussian.

While the evaluation of the integrations over ∆ and x(p) are significant
progress, the remaining expression remains very complicated. Even ignoring
that the actual expressions coming from diagrams contain additional factors
and integrals, the remaining integral over x(q) is on its own a major challenge.
While it is possible to make some further progress in simplifying it, a simpler
approach is to perform a series expansion in the correlation matrix C.

Specifically, we perform a series expansion of the Gaussian exponential. Our
aim is to work consistently in powers of the power spectrum Pψ(k), which can
be expressed in terms of the matter fluctuation power spectrum Pδ(k,ai) at
initial scale factor via equation (362). The main motivation for this is that the
components of the correlation matrixC depend on x(q) via Fourier phase factors.
Upon a series expansion, these can be combined with the factor exp

(
if(q) · x(q)

)
and the integral over x(q) yields Dirac δ-functions which subsequently remove
some of the integrals over wave-numbers.
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In preparation for the series expansion, let us consider the argument of the
Gaussian exponential factor in more detail. It is(

iξ

f(p)

)t

C
(
x(q)

) ( iξ
f(p)

)

= −

N∑
j,j ′=1

∫
dk ′′

(2π)3
Pψ(k

′′) exp
(
−ik ′′ ·

(
x
(q)
j − x

(q)
j ′

))
(∥∥k ′′∥∥2 ξj + k ′′ · f(p)j )(∥∥k ′′∥∥2 ξj ′ + k ′′ · f(p)j ′ ) . (383)

The factorization in the last line suggests treating the density-density-, density-
momentum- and momentum-momentum-correlations encoded in the correla-
tion matrix C as emergent from a product of two components representing
the density and the momentum. We use this in the definition of our correlated
Feynman rules in the following subsection. By acting with the products of
derivatives

N∏
j=1

ρ̄(q)

N

(
1+

κ

m(ai)

∂

∂ξj

)
(384)

onto this term and setting ξ = 0 afterwards, we obtain

−

(
ρ̄(q)

N

)N N∑
j,j ′=1

∫
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(2π)3
Pδ(k

′′,ai) exp
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1− δjj ′
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+
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κ
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1− δjj ′
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+
1

κ

k ′′ · f(p)j ′
∥k ′′∥2

 , (385)

where Kronecker δ-symbols take into account that derivatives with respect to
any index can only be taken once. We also replaced the power spectrum using
equation (362).

Recall that f(p)j = 0, if the index j does not appear in the expression for the
diagram which we average over. However, the term associated to the density
coming from the factor of ξj also vanishes in that case. Indeed, it comes with a
lone factor of exp

(
− ik ′′ · x(q)j

)
which yields δD(k ′′) upon integration over x(q)j .

Using that Pδ(0,ai) = 0, the entire term vanishes. This shows that the sum
over j and j ′ actually only runs over indices corresponding to density nodes in
the diagram under consideration. Note that this remains true at higher orders
in a series expansion of the exponential, where we obtain a product of sums of
this form.

Let us return to the factor exp
(
if(q) · x(q)

)
which was a major reason for per-

forming a series expansion. In mth order in a series expansion of the Gaussian
exponential, it can be combined with the Fourier phase factors coming from
the correlation matrix, yielding

exp

i N∑
j=1

f
(q)
j · x(q)j − i

m∑
t=1

k ′′t ·
(
x
(q)
jt

− x
(q)
j ′t

) , (386)
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where we gave an index t to the particle indices j, j ′ and wave-vectors k ′′ to
distinguish the different orders.

This is the only term retaining a dependence on x(q) such that we can perform
the integration over x(q) and obtain

N∏
j=1

(2π)3δD

(
f
(q)
j +

m∑
t=1

k ′′t

(
δjj ′t − δjjt

))
. (387)

Of course, only r+ n of these Dirac δ-functions—those with particle index j,
corresponding to a density node of the diagram under consideration—are non-
trivial. The remaining factors are (2π)3δD(0) and cancel N− (r+n) of the N
factors ρ̄

(q)

N .14 But there are also n+ r sums over particle indices in the diagram,
each of which yields a factor N, such that remaining prefactor is (ρ̄(q))r+n.

In the following, we assume that all indices ℓ• corresponding to density
nodes in diagrams are different. This effectively removes terms with equal
indices from the sum in equation (341) which have any pairwise equal indices.
These terms are shot-noise terms as discussed in subsection 2.4.5 in the context
of density correlation functions.

The two limits discussed in that subsection are also applicable now. The
remaining expressions do not have any dependence on the total particle num-
ber N, the volume V or the particle rest mass m0, though this becomes more
transparent through the Feynman rules we define in the following subsection.
As such, both these limits are trivial and leave the expressions completely
unchanged. They do, however, justify the removal of the shot noise terms
described above as these vanish in the limits.

4.2.3 Correlated Feynman Rules

In the previous subsection, we investigated the averaging of the contribution
of a diagram to the density r-point correlation function over correlated initial
conditions. Specifically, our initial conditions emerge from sampling the cosmic
density field at the time of the release of the CMB. Performing a series expansion
in the density-fluctuation power spectrum at the scale factor ai, the resulting
expression takes the form of a product of sums over contributions encoding
correlations between particles.

Physically it is clear that only correlations between particles actually present
in the diagram can contribute which manifests mathematically in having contri-
butions only for particle indices corresponding to density nodes in the diagram.
We can encode these contributions via the various ways of connecting a correla-
tion vertex to these black circles. Given the different nature of the contributions
from density- and momentum-correlations, it seems advisable to use two differ-
ent kinds of edges to symbolize them.

However, creating Feynman rules for expectation values also requires changes
to the elements of the diagrams which we already defined. Specifically, we have
performed the integrations over the initial conditions in our manipulations

14 This cancellation corresponds to the normalization condition of P(x(q)j ).
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in the previous subsection, by which the factor of exp(if · x)—part of the
expression of the diagram—got removed. Moreover, we want to make use of
the Dirac δ-functions obtained in equation (387) to remove the integrations over
wave-vectors.

In order to convert the Feynman rules presented in section 3.3.4 to expectation
values, recall that our definitions for vertices and edges were

s,a = exp
(
−iks · φ̄(q)

ℓs
(a; x)

)
, (388)

b = v(k ′b,a ′
b) exp

(
−ik ′b · φ̄

(q)
ℓ ′b

(a ′
b; x)

)
, (389)

b s,a = −m(a ′
b)g(a,a ′

b) k
′
b · ks exp

(
ik ′b · φ̄

(q)
ℓ ′s

(a ′
b; x)

)
, (390)

b c = −m(a ′
b)g(a

′
c,a ′

b) k
′
b · k ′c exp

(
ik ′b · φ̄

(q)
ℓ ′c

(a ′
b; x)

)
, (391)

b c = m(a ′
b)g(a

′
c,a ′

b) k
′
b · k ′c exp

(
ik ′b · φ̄

(q)
ℓ•

(a ′
b; x)

)
, (392)

where ℓ• is the particle index associated to the edge leaving vertex b. We have
replaced the time variables by scale factors, in accordance with the discussion
of subsection 4.1.1 and changed the labels of the interaction vertices to avoid
possible confusion. The nth order contribution to the r-point density correlation
function was given by the sum of all diagrams formed from r density and
n interaction vertices. The expression for each of these diagrams was given
by the product of the above mathematical expressions, integrated over scale
factors and wave-vectors and summed over particle indices as described in
equation (341).

Evidently, the first step in translating these Feynman rules to expectation
values is the removal of the exponential factors containing the free evolution
map φ̄. Secondly, the sums over particle indices are removed. Thirdly, the
prefactor (ρ̄(q))r+n can be reproduced by assigning a copy of ρ̄(q) to each
density and interaction vertex. We postpone the fourth step of replacing wave-
vectors using the Dirac δ-functions from equation (387) and the removal of the
corresponding integrals over wave-vectors.

The fifth and most complicated step is the introduction of the correlation
vertex and edges encoding the correlations. We define the correlation vertex as

t =
1

2
Pδ(k

′′
t ,ai) (393)

and include overall integrations over k ′′t for all k = 1, 2, . . . ,m as well as a factor
of 1
m! coming from the series expansion of the Gaussian exponential. We refer

to the number m of correlation vertices as the correlation order of the expectation
value of the diagram.

Each correlation vertex comes with two edges which connect its upper and
lower corners with density nodes of the diagrams. We introduce two types of
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edges and refer to them as density edges and momentum edges, respectively. The
density edge is defined via

t s,a := 1 , (394)

t b := 1 (395)

and the momentum edge encodes the expression

t s,a :=
m(ai)

κ ∥k ′′t ∥
2
k ′′t · f(p)ℓa , (396)

t b :=
m(ai)

κ ∥k ′′t ∥
2
k ′′t · f(p)

ℓ ′b
. (397)

Like in the other Feynman rules, the transparent vertices mean that the vertex
factor is not included here. The expressions for edges beginning at the top of
the correlation vertex are the same, though they are associated to the two terms
with opposite signs in equation (387) in a sense explained below.

A correlation vertex with two density edges encodes density-density-correlations
Cδδ
ℓ ′bℓ

′
c
, where ℓ ′b and ℓ ′c are the particle indices corresponding to the density

nodes it connects to. Similarly, density-momentum-correlations Cδp
ℓ ′bℓ

′
c

and Cpδ
ℓ ′bℓ

′
c

have one density and one momentum edge and momentum-momentum-
correlations Cpp

ℓ ′bℓ
′
c

have two momentum edges.
Due to the way density correlations appear through a product of derivatives

with respect to ξj, no two density edges may end at the same vertex. In contrast,
momentum correlations—even ones originating from the same correlation
vertex—may end at the same vertex. This means, that any density node in the
diagram is connected to by up to one density and arbitrarily many momentum
edges. As before, edges coming from interaction vertices can also connect to
these density nodes.

The two remaining difficulties are the factors f(p)j in the momentum edges as
well as the implementation of the Dirac δ-functions from equation (387). Let us
again postpone the discussion of the latter and further study the momentum
edges. Their definition is complicated by the dependence on all vertices con-
nected the to density node it connects to. This can be remedied by subdividing
these contributions.

Specifically, we change the Feynman rules stated above in favor of

t s,a :=
m(ai)

κ ∥k ′′t ∥
2
g(a,ai) k ′′t · ks , (398)

t b :=
m(ai)

κ ∥k ′′t ∥
2
g(a ′

b,ai) k ′′t · k ′b , (399)

t b :=
m(ai)

κ ∥k ′′t ∥
2
g(a ′

b,ai) k ′′t · k ′b . (400)

All contributions coming from the third kind combine to yield the factor f(p)

present previously. However, avoiding this factor is not even the main achieve-
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ment of this change. Provided that the interaction potential factorizes into a
product of the form

v(k,a) = v(k)(k) v(a)(a) , (401)

each diagram corresponds to a product of a term depending exclusively on
scale factors and a term depending exclusively on wave-vectors.

The factorization of the contributions allows us to perform the integrations
over scale factors and wave-vectors separately which reduces the computational
complexity significantly. To facilitate the factorization, let us define separate
Feynman rules for the two terms. For maximal clarity, we give the complete
instructions for the construction of the contribution to the r-point density
correlation function in nth interaction and mth correlation order.

Consider all diagrams which can be formed from r density vertices, n inter-
action vertices and m correlation vertices, such that each interaction vertex has
exactly one outgoing edge which can connect to another interaction vertex or to
a density node. Together with these edges, the density and interaction vertices
form a forest, where each density vertex is a root for one of the trees. Interaction
vertices are labeled from 1 to n increasingly towards the root of their trees. In
case there are multiple possible labelings, each of them is considered a different
diagram. Each correlation vertex has two correlation edges connected to its
upper and lower corners. These can either be density or momentum edges.
Each density edge connects to a density node, while each momentum edge
connects either to a density node or an interacting vertex. No two density edges
may be connected to the same density node.

Each individual diagram corresponds to a product of two mathematical
expressions. The first of these is based on the product Πa of the following
expressions associated to the vertices and edges appearing in the diagram:

s,a
∣∣∣
a

= ρ̄(q) , (402)

b

∣∣∣∣
a

:= ρ̄(q) v(a)(a ′
b) , (403)

b s,a
∣∣∣∣
a

:= −m(a ′
b)g(a,a ′

b) , (404)

b c
∣∣∣∣
a

:= −m(a ′
b)g(a

′
c,a ′

b) , (405)

b c
∣∣∣∣
a

:= m(a ′
b)g(a

′
c,a ′

b) , (406)

t s,a
∣∣∣∣
a

:= −m(ai)g(a,ai) , (407)

t b

∣∣∣∣∣
a

:= −m(ai)g(a
′
b,ai) , (408)

t b

∣∣∣∣
a

:= m(ai)g(a
′
b,ai) . (409)

As before, transparent vertices indicate that their contribution is not included.
The subscript a next to the diagrams helps to clarify that these are only the
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contributions of the objects to the first term. Any vertices or edges which are not
on this list supply a factor of 1 and hence can be ignored for constructing the
first term. The product Πa is to be integrated over all scale factors associated to
interaction vertices abiding time-ordering, i.e., the first expression is obtained
as ∫a

ai

da ′
1

∫a
a ′
1

da ′
2 . . .

∫a
a ′
n−1

da ′
nΠa , (410)

where a is the scale factor at which the density correlation function is to be
evaluated.

The second expression takes care of all terms involving wave-vectors as
well as the Dirac δ-functions. First, we form the product Πk which is given by
1
m! (2π)

3(r−m) times the product of the expressions

t

∣∣∣
k

:=
1

2
Pδ(k

′′
t ,ai) , (411)

b s,a
∣∣∣∣
k

:= v(k)(k ′b) k
′
b · ks , (412)

b c
∣∣∣∣
k

:= v(k)(k ′b) k
′
b · ks , (413)

b c
∣∣∣∣
k

:= v(k)(k ′b) k
′
b · k ′c , (414)

t s,a
∣∣∣∣
k

:=
−1

κ ∥k ′′t ∥
2
k ′′t · ks , (415)

t b

∣∣∣∣∣
k

:=
−1

κ ∥k ′′t ∥
2
k ′′t · k ′b , (416)

t b

∣∣∣∣
k

:=
−1

κ ∥k ′′t ∥
2
k ′′t · k ′b . (417)

for each such vertex and edge in the diagram. Next, we form a linear system
of equations corresponding to the density nodes. For this purpose, we assign
to each edge a wave-vector and a density node as follows: An density or
correlation edge corresponds to the wave vector of its correlation vertex, though
it comes with a minus sign if the edge is connected to the bottom of the
correlation vertex. Each edge coming from an interaction vertex corresponds
to the wave-vector of that vertex. Any edge is associated to the density node
it connects to. If it connects to an interaction vertex instead, it is assigned
iteratively the same density node as the edge leaving that vertex. Provided
these preparations, for each density node, the wave-vector associated to it, i.e.,
the wave-vector of the density or interaction vertex it touches, equals the sum
over all wave-vectors corresponding to edges associated to it. Note that each of
these equations corresponds to one of the Dirac δ-functions in equation (387).
We solve the linear system of equations for all k ′b for b = 1, . . . ,n and replace
them accordingly in Πk. The remaining equations are multiplied to Πk as
Dirac δ-functions. Finally, we integrate the result over all k ′′t for t = 1, . . . ,m,
obtaining the second expression of the contribution of the diagram.

We emphasize that this procedure precisely reproduces the previous Feynman
rules as well as the Dirac δ-functions in equation (387). As such, we obtain the
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correct mathematical expression for the diagrams. Their sum then yields the
desired contribution to the r-point density correlation function at nth interaction
and mth correlation order.

Given the admitted complexity of the description, let us perform it explicitly
for the diagram

1

2

1

2

3

1,a

2,a

(418)

contributing to the expectation value of the 2-point density correlation function
at third interaction and second correlation order. The structure of the diagram
already suggests that the initial correlations symbolized by the correlation
vertices create a correlation between the density vertices.

Let us start with the scale factor part of the expression. The product of the
relevant expressions yields

Πa =
(
ρ̄(q)

)5
v(a)(a ′

1)
(
m(a ′

1)g(a
′
3,a ′

1)
)
v(a)(a ′

2)
(
−m(a ′

2)g(a,a ′
2)
)

v(a)(a ′
3)
(
−m(a ′

3)g(a,a ′
3)
) (

−m(ai)g(a
′
1,ai)

)(
−m(ai)g(a

′
2,ai)

)
(−m(ai)g(a,ai)) (419)

and needs to be integrated over the scale factors a ′
1,a ′

2,a ′
3 under the time-

ordering condition ai ⩽ a ′
1 ⩽ a ′

2 ⩽ a ′
3 ⩽ a. As hinted at in subsection 3.2.3,

this integration can in practice be performed iteratively relying on the results
from lower order diagrams.

The wave-vector part of the expression is actually much easier than the
description above would suggest. We follow the prescription and obtain

Πk =
(2π)3

2!
1

2
Pδ(k

′′
1 ,ai)

1

2
Pδ(k

′′
2 ,ai)

(−1)

κ
∥∥k ′′1∥∥2 k ′′1 · k ′1

(−1)

κ
∥∥k ′′1∥∥2 k ′′1 · k2

(−1)

κ
∥∥k ′′2∥∥2 k ′′2 · k ′2 v(k)(k ′1) k ′1 · k ′3 v(k)(k ′2) k ′2 · k1 v(k)(k ′3) k ′3 · k1 . (420)

Next, we ought to assign wave-vectors and density nodes to all edges. The wave-
vectors are simply the ones associated to the left end of each edge. The only
edge not connected directly to a density node is the edge between interaction
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vertices 1 and 3 which gets associated to the density node at the density vertex
with label 1. The resulting system of equations is thus

k ′1 = −k ′′1

k ′2 = k ′′2

k ′3 = −k ′′2

k1 = k ′1 + k
′
2 + k

′
3

k2 = k ′′1

⇒



k ′1 = −k ′′1

k ′2 = k ′′2

k ′3 = −k ′′2

k1 = −k ′′1

k2 = k ′′1

(421)

where in the right-hand system we used the top three equations to simplify the
fourth. Performing the replacements in Πk leads to many cancellations and we
are left with

Πk = −
(2π)3

8κ3
Pδ(k

′′
1 ,ai)Pδ(k ′′2 ,ai) v(k)(k ′′1 ) (−k

′′
1 ) · (−k ′′2 ) v(k)(k ′′2 ) k ′′2 · k1

v(k)(k ′′1 ) (−k
′′
2 ) · k1 δD(k1 + k ′′1 ) δD(k2 − k ′′1 ) . (422)

We used symmetry of the interaction potential v(k)(−k) = v(k)(k) to absorb some
signs. As a final step, we integrate this expression over k ′′1 and k ′′2 . Note that one
of the integrals cancels and the result is proportional to a factor δD(k1 + k2).
We have found a contribution to the density power spectrum!

We conclude this subsection with two remarks. Firstly, from the structure of
the linear system of equations, it follows immediately that if the diagram has
an interaction with a density node which is not connected to any edge, then
the entire contribution vanishes. This is because the wave-vector associated to
it appears in the product and is set to zero.15

Secondly, if exactly one edge is associated at a density node, cancellations
can happen in Πk. For momentum correlations, we have encountered this in the
example thrice. The one of the wave-vectors of the scalar product is replaced
by the other and thus cancels against the norm squared in the denominator. In
case of a Newtonian interaction potential v(k)(k) ∝ ∥k∥−2, the same happens if
a single interaction edge ends at a density node.

Based on the second remark, for a Newtonian interaction potential, the form
of the expression depending on wave-vectors thus only depends on the topology
of the diagram. For example, one can show that

1

2

1

2

3

1,a

2,a

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
k

∝

1

2

1,a

2,a

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
k

(423)

15 The factor v(k)(0) does not spoil this conclusion, as argued in appendix A of [1].
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up to constant factors. In case of v(k)(k) = ∥k∥−2, the diagrams have the exact
same wave-vector dependent structure.

The further development and algorithmic implementation of this formalism
is subject of current study. Using the splitting of the contributions into scale
factor and wave-vector dependent factors should make the computation of
contributions to the density-fluctuation power spectrum in Newtonian gauge
and for quadratically expanded initial correlations feasible for high interaction
orders. Preliminary results suggest that interaction orders up to 20 and beyond
are feasible. An optimized implementation might allow even for the study of
cubic initial correlations at moderately high interaction orders.

4.2.4 Density-Fluctuation Power Spectrum

We have explained in the previous subsection in detail, how to obtain expecta-
tion values for r-point correlation functions an expansion in interactions and
initial correlations in the KFT framework. We have seen in equation (196) that
for r = 2, these are directly related to the density-fluctuation power spectrum.
Specifically, it is〈

G
(q)
ρ̃ρ̃

〉
(k1,k2,a) = (2π)6 δD(k1) δD(k2)

(
ρ̄(q)

)2
+ (2π)3 δD(k1 + k2)P

(q)

δ̃
(k1,a) , (424)

It is easy to see that the first term in that equation is given by the zeroth order
diagram

1,a

2,a
= (2π)6 δD(k1) δD(k2)

(
ρ̄(q)

)2 (425)

implying that all other contributions to ⟨G(q)
ρ̃ρ̃⟩ directly contribute to the density-

fluctuation power spectrum.
There are no other contributions at zeroth correlation order, since the exis-

tence of an interaction would make the expression vanish due to the absence
of correlation edges which could connect to the associated density node. As
such, this single diagram gives the full contribution in zeroth order in the
expansion in initial contributions. Physically, it is clear that there cannot be any
contributions to the density-fluctuation power spectrum from an uncorrelated
diagram.

The contributions to the expectation value of the two-point density correlation
function are from diagrams like

1

1 3 n−1

2 n

· · ·

· · ·

1, a

2, a
(426)
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Figure 3: Contributions to the linear growth of the cosmic density-fluctuation power
spectrum from diagrams with a single correlation vertex at various interaction
orders n. The black dashed line is the expected behavior of the linear growth
factor squared. Figure 3 of [1].

for all orderings of interaction vertices and all possible connections between
the correlation vertex and the density nodes of the two left-most interaction
vertices. This includes all combinations of density and momentum edges as well
as connecting the top of the correlation vertex to the density node of interaction
vertex in the lower tree and the bottom of it to the upper tree.

This form of the diagrams is forced due to the need of having at least one
edge connected to each density node. Note that this condition also extends to
density vertices, because a diagram like

1

1 3 1, a

2, a

(427)

would be proportional to a factor δD(k2). Of course, it would not be im-
possible for ⟨G(q)

ρ̃ρ̃⟩ to feature such terms, provided they cancel upon adding
contributions from all diagrams. In either case, they do not contribute to the
density-fluctuation power spectrum.16

In [1] and [35] it was shown that the diagrams of the from (426) combine to
yield the linear growth of the cosmic density-fluctuation power spectrum. This
is shown in figure 3. For a %-level agreement with the behavior of the linear
growth factor squared, one needs to consider contributions up to 12th order in
the interactions.

16 A more detailed analysis of the linear system of equations shows that contributions involving
trees which are not connected to other trees via correlations always vanish. Trees consisting of a
single density vertex are the sole exception to this.
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As a consequence, the non-linear growth of the cosmic density-fluctuation
power spectrum is fully encoded in contributions from diagrams at second and
higher order in the expansion in initial correlations. Work is ongoing to obtain
the contributions from quadratically expanded initial correlations in Newtonian
gauge, extending the results of [35] which determined them up to eighth order
in the interactions.
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4.3 neutrino clustering

Cosmic neutrinos released in the early universe have been traveling mostly
unperturbed due to their very low mass. As highly relativistic particles, they
behave similarly to radiation. Hence, the CνB thus has similar properties to
the CMB. However, cosmic neutrinos have been continuously losing kinetic
energy due to the expansion of spacetime. As such, they have relatively recently
become slow enough to be affected by gravitational potentials.[49]

Specifically, while the CνB was to good approximation homogeneous around
redshift z = 3, it has been becoming more and more correlated with the
inhomogeneous distribution of matter. This clustering of neutrinos should
result into an overdensity inside galactic halos relative to their mean density. In
this section, we predict this overdensity with perturbative methods of KFT.

Compared to the application to the formation of the large scale structure of
the universe presented in the previous section 4.2, we can neglect the pairwise
interactions between the neutrinos here. This N-1-body approximation was
introduced in [66] and is applied to our formalism in the first subsection
below. Considering only the interaction of the system of N neutrinos with an
external potential factorizes the system and allows to consider each neutrino
individually.

In subsection 4.3.2, we obtain expressions for perturbative contributions of
the expectation value for the neutrino number density. The calculations are
based on the microscopic perturbation theory in the KFT formalism presented
in this thesis. We obtain expressions for up to second order in the expansion in
interactions.

Concluding this section, we summarize the results of [2] and discuss them.
There, only the first order contribution to the local cosmic neutrino density on
Earth is considered. While the results agree well with numerical simulations for
realistic neutrino masses, the clustering is underestimated at higher values of
the mass. We provide a brief outlook to ongoing work of including the second
order contribution which should improve the agreement for a larger range of
neutrino masses.

This section is based on [2] which is joint work with Isabel M. Oldengott and Emil
Brinch Holm as well as ongoing work on its extension. The idea of the project, the
relevant neutrino physics and the adaption to the Milky Way were contributed by Isabel.
Emil implemented the numerical evaluation, created figure 4 and contributed in the
adaptation to the Milky Way.

4.3.1 N-1-body Approximation

Neutrinos have a very small, but non-zero mass.[54–57] Regarding them as
point-particles moving in a universe filled with inhomogeneously distributed
matter, the pairwise gravitational interactions are strongly suppressed relative
to their interaction with the gravitational potentials of dark matter halos. This
allows for a so-called N-1-body approximation proposed in [66].
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As derived in equation (356), the Hamiltonian of a system ofN point-particles
in an expanding spacetime interacting with an external potential V(q, z) is

H =
1

2m(z)
x(p) · x(p) +

N∑
j=1

m(z)

H(z)2
V
(
x
(q)
j , z

)
, (428)

when choosing redshift z as a time parameter and working in comoving coordi-
nates. Recall that the negative signs appear because redshift decreases during
the evolution of the system. The effective mass is given by

m(z) = −
mνH(z)

1+ z
, (429)

where mν is the neutrino mass17 and H(z) the Hubble function.
Due to the absence of interactions between the particles, the Hamiltonian can

be written as a sum

H =

N∑
j=1

Hj with (430)

Hj =
1

2m(z)
x
(p)
j · x(p)j +

m(z)

H(z)2
V
(
x
(q)
j , z

)
. (431)

Analogously to our example of N independent harmonic oscillators in sub-
section 2.2.2, this yields N identical copies of the single-particle equation of
motion

Ej[φj](z) =
d
dz
φj(z) +

 −m(z)φ
(p)
j (z)

m(z)
H(z)2

∇V
(
φ

(q)
j (z), z

) , (432)

where ∇V is the gradient of the potential with respect to its first argument.
Let φ̃j(t; x) be the solution of these equations of motion for initial value x.

Evidently, the physical evolution of the jth particle φ̃j is independent of all
other particles ℓ ̸= j. Indeed, the initial values for its equations of motion are
only the component xj of x. Given our setup, this was to be expected since we
did not assume any interaction between the neutrinos.

In our application, we are interested in the overdensity of the CνB in a dark
matter halo. Therefore, we consider the macroscopic spatial density of the
system

ρ̃(q)(q, z; x) =
N∑
j=1

ρ̃
(q)
j (q, z; xj) =

N∑
j=1

δD

(
q− φ̃

(q)
j (z; xj)

)
. (433)

Note that due to the independence of φ̃j from xℓ for ℓ ̸= j, the microscopic
component densities ρ̃(q)j in the sum only depend on xj.

Provided an exact initial state x of the CνB at initial redshift zi, the macro-
scopic spatial density ρ̃(q)(q, z; x) is a sum of Dirac δ-functions. Each neutrino is
a point-particle and has a precise position at redshift z. However, we of course

17 For simplicity, we focus on a single neutrino flavor with mass mν.
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do not know the exact initial state x and we are also not really interested in the
exact positions of each individual neutrino at present time z = 0.

Instead, we would like to obtain the macroscopic spatial density when
averaged over a reasonably sized volume which contains enough neutrinos
to avoid statistical noise.18 Our knowledge of the initial state of the system is
also quite limited. As discussed in subsection 4.1.2, choosing our initial redshift
as zi = 3 or earlier, the CνB is in good approximation spatially homogeneous
and has a Fermi-Dirac momentum distribution.

The properties of the CνB at initial time can be regarded as a probability
distribution for the initial state x of the system of N neutrinos. Specifically, the
initial state x is obtained by taking a sample of N point particles subject to the
probability distributions

P(xj) =
1

N
PFD

(
x
(p)
j

)
=

1

(2π  h)3N

exp

c
∥∥∥x(p)j ∥∥∥
kB T0

+ 1

−1

(434)

for all j. The Fermi-Dirac distribution PFD is taken from equation (359). Note
that integration over PFD yields the mean comoving cosmic neutrino density.
Hence, the probability distribution for the entire system is given by

P(x) =

N∏
j=1

P(xj) =

(
1

(2π  h)3N

)N N∏
j=1

exp

c
∥∥∥x(p)j ∥∥∥
kB T0

+ 1

−1

. (435)

The expectation value of the macroscopic spatial density subject to this
probability distribution of initial values is〈

ρ̃(q)
〉
(q, z) =

∫
dxP(x) ρ̃(q)(q, z; x) . (436)

As explained in subsection 2.4.3 it is equal to an average over the final positions
of the N neutrinos. This can be regarded as a spatial average over an infinites-
imally small volume and thus exceeds the desired average over a small, but
finite volume mentioned above.

Having identified the expectation value in equation (436) as the observable
of interest, let us further investigate it. It is

〈
ρ̃(q)

〉
(q, z) =

∫
dxP(x)

N∑
j=1

ρ̃
(q)
j (q, z; xj) (437)

=

N∑
j=1

∫
dxj P(xj) ρ̃

(q)
j (q, z; xj) . (438)

In the second equality, we have performed the integrations over xℓ for all ℓ ̸= j.
We can rewrite this equation as

〈
ρ̃(q)

〉
(q, z) =

N∑
j=1

〈
ρ̃
(q)
j

〉
(q, z) . (439)

18 Experimentally, an idealized direct detection measurement would observe the total number of
neutrinos traversing a detector in a certain time. Assuming local homogeneity in space and
time, this corresponds to the mean spatial density averaged over a volume proportional to the
neutrino velocity, the observation time and the detector volume.



4.3 neutrino clustering 134

The expectation value of the spatial density of a sample of N independent
particles is the sum over the expectation values of each particle sampled indi-
vidually. Note that this is only possible because the probability distribution and
the equations of motion factorized. Moreover, since all neutrinos are subject to
equivalent equations of motion and distributions of initial values, it is〈

ρ̃(q)
〉
(q, z) = N

〈
ρ̃
(q)
j

〉
(q, z) . (440)

Equation (440) suggests to replace our system by a single neutrino. This is the
N-1-body approximation alluded to at the beginning of this subsection. Because
we neglected interactions between the neutrinos, they evolve independently.
Additionally, given that the probability distribution of initial values is given
by a product of independent distributions for each neutrino, the entire system
factorizes.

The N-1-body approximation allows us to study the component system
subject to the equation of motion and probability distribution of initial values,

E[φ](z) =
d
dz
φ(z) +

 − 1
m(z)φ

(p)(z)

m(z)
H(z)2

∇V
(
φ(q)(z), z

)
 and (441)

P(x) =
1

(2π  h)3

(
exp

(
c
∥∥x(p)∥∥
kB T0

)
+ 1

)−1

, (442)

respectively, instead of the composite system of N neutrinos. Note that there is
no factor 1

N in the probability distribution, because we only sample a single
particle.

4.3.2 Density Expectation Value

We perform a split of the equations of motion (441) by working in Newtonian
gauge. The free part of the equations of motion becomes

E[φ](z) =
d
dz
φ(z) −

 1
m(z)φ

(p)(z)

0

 (443)

and admits the Green’s function

G(z, z ′) =

(
θ(z ′ − z) I3 g(z, z ′) θ(z ′ − z) I3

0 θ(z ′ − z) I3

)
with (444)

g(z, z ′) =
∫z ′
z

dz ′′
1

m(z ′′)
. (445)

We note that the Heaviside θ-functions have negative argument compared to
the one in equation (311) due to the decreasing time parameter z. In particular,
it is G(z, z ′) = 0 for z ⩾ z ′.
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We are interested in the expectation value of the spatial density which in the
N-1-body approximation takes the form

〈
ρ̃(q)

〉
(q, z) =

∫
dx P(x) ρ̃(q)(q, z; x) =

∫
dx P(x) δD

(
q− φ̃(q)(z; x)

)
(446)

=

∫
dx P(x)

∫
dk

(2π)3
exp(ik · q) exp

(
−ik · φ̃(q)(z; x)

)
. (447)

In the second line, we replaced the Dirac δ-function by its Fourier transform.
We intent to approximate ⟨ρ̃(q)⟩ by truncations of a series expansion in the
interactions, i.e., apply the perturbative formalism presented in chapter 3. This
requires functional derivatives of our observable which would become very
involved when applied to a Dirac δ-function.

Therefore, let us regard the Fourier space spatial density

ρ̃(q)(k, z; x) = exp
(
−ik · φ̃(q)(z; x)

)
(448)

as our observable. According to equation (252), we can expand ρ̃(q) into an
infinite sum of perturbative contributions of the form

ρ̃
(q)
n (k, z; x) = in

∫zi
zf

dz ′n · · ·
∫zi
z ′2

dz ′1 Γ̂I(z
′
1) · · · Γ̂I(z ′n) exp

(
−ik · φ̄(q)(z; x)

)
(449)

for all non-negative integers n. Provided convergence of this sum, a truncation
yields an approximation to ρ̃(q) which improves in accuracy for higher orders n.
The value of zf does not matter as long as it is not greater than the redshift at
which we evaluate observables.

Likewise, an approximation for the expectation value of the density is ob-
tained via the truncated sum〈

ρ̃(q)
〉
(q, z) ≈

∫
dk

(2π)3
exp(ik · q)

(〈
ρ̃
(q)
0

〉
(k, z) + . . .+

〈
ρ̃
(q)
n

〉
(k, z)

)
. (450)

The expectation values on the right-hand side of this equation are simply given
by integrating the product of P(x) with the expression in equation (449) over
the initial values x.

In equation (449), the free neutrino trajectory appears. It is given via the
action of the Green’s function on the initial conditions, i.e.,

φ̄(q)(z; x) = G(z, zi) x =

(
x(q) + g(z, zi) x(p)

x(p)

)
. (451)

It corresponds to motion in a straight line, but the comoving distance traveled
does not increase uniformly. This is due to both the choice of time parameter z
and the expansion of the spacetime.

The operators Γ̂I are up to reparametrization of the form given in equa-
tion (317). Using that the interaction part of the equations of motion is given
by E(q)I = 0 and

E
(p)
I [φ](z) =

m(z)

H(z)2
∇V
(
φ(q)(z), z

)
, (452)
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we have

i Γ̂I(z
′) = −

∫z ′
zf

dz ′′
m(z ′)g(z ′′, z ′)

H(z ′)2
∇V
(
φ̄(q)(z ′; x), z ′

)
· δ

δ
(
φ̄(q)

)
t

(z ′′; x)
. (453)

Having collected all the necessary ingredients, let us compute the contri-
butions to the expectation value of the spatial density up to second order. At
zeroth order, we find

ρ̃
(q)
0 (k, z; x) = exp

(
−ik · φ̄(q)(z; x)

)
. (454)

In order to obtain the contribution to the expectation value of the spatial density,
we need to average this quantity over the distribution P(x) and perform an
inverse Fourier transform. Performing the latter first we obtain

〈
ρ̃(q)

〉
0
(q, z) =

∫
dx P(x) δD

(
q− φ̃(q)(z; x)

)
(455)

=

∫
dx(p)

1

(2π  h)3

(
exp

(
c
∥∥x(p)∥∥
kB T0

)
+ 1

)−1

. (456)

The remaining integral over the Fermi-Dirac distribution yields the mean
comoving cosmic neutrino density.

The first order contribution is given by

ρ̃
(q)
1 (k, z; x) =

∫zi
zf

dz ′1 i Γ̂I(z
′
1) exp

(
−ik · φ̄(q)(z; x)

)
(457)

= −

∫zi
z

dz ′1
m(z ′1)g(z, z

′
1)

H(z ′1)
2

∇V
(
φ̄(q)(z ′1; x), z ′1

)
· (−ik)

exp
(
−ik · x(q) − i g(z, zi) k · x(p)

)
, (458)

where the integral over z ′′1 inside Γ̂I is canceled by the Dirac δ-function originat-
ing from taking the functional derivative. The condition z ′′1 ⩽ z ′1 encoded in
its boundaries yields the condition z ⩽ z ′1 in the boundary of the integration
over z ′1 in the second line.

In order to perform the inverse Fourier transform and the averaging over P(x),
consider the integration by parts

−

∫
dx(q)∇V

(
φ̄(q)(z ′1; x), z ′1

)
· (−ik) exp

(
−ik · x(q)

)
= −

∫
dx(q)∇V

(
x(q) + g(z, zi) x(p), z ′1

)
· ∂

∂x(q)
exp

(
−ik · x(q)

)
(459)

=

∫
dx(q)

∂

∂x(q)
· ∇V

(
x(q) + g(z, zi) x(p), z ′1

)
exp

(
−ik · x(q)

)
(460)

=

∫
dx(q)∇2V

(
φ̄(q)(z ′1; x), z ′1

)
exp

(
−ik · x(q)

)
. (461)

The last equality introduces the Laplacian of V which can be justified through
a simple chain rule. Via use of a Fourier transform and an integration by parts,
we have effectively shifted the functional derivative in Γ̂I from the observable
to the potential.
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Utilizing this procedure, the only term in ⟨ρ̃(q)1 ⟩ depending on the wave-
vector k is the Fourier transform of the zeroth order spatial density. We have
shown the formula〈

ρ̃(q)
〉
1
(q, z) =

∫
dx P(x)

∫zi
z

dz ′1
m(z ′1)g(z, z

′
1)

H(z ′1)
2

∇2V
(
φ̄(q)(z ′1; x), z ′1

)
ρ̃
(q)
0 (q, z; x) . (462)

Note that its derivation relied on the fact that P(x) is independent of x(q),
though otherwise we could have used a product rule in the integration by parts
and would have obtained a second term involving the partial derivative of P(x)
with respect to x(q).

Recall that the zeroth order contribution to the density,

ρ̃
(q)
0 (q, z; x) = δD(q− φ̄(z; x)) = δD

(
q− x(q) − g(z, zi) x(p)

)
, (463)

is given in terms of a Dirac δ-function. This makes the integration over x(q) in
equation (462) trivial and we obtain

〈
ρ̃(q)

〉
1
(q, z) =

∫
dx(p)

1

(2π  h)3

(
exp

(
c
∥∥x(p)∥∥
kB T0

)
+ 1

)−1

∫zi
z

dz ′1
m(z ′1)g(z, z

′
1)

H(z ′1)
2

∇2V
(
q− g(z, z ′1) x

(p), z ′1
)

. (464)

We used that the argument of the potential is

q− g(z, zi) x(p) + g(z ′1, zi) x(p) = q− g(z, z ′1) x
(p) (465)

after x(q) is replaced.
In a similar fashion, we can calculate the second order contribution. Re-

calling the construction of our Feynman rules, we expect two contributions
corresponding to the diagrams

1 2 O and
1

2
O . (466)

Let us consider the left-hand diagram first. It corresponds to the term obtained
by acting with Γ̂I(z ′1) on Γ̂I(z ′2) in

ρ̃
(q)
2 (k, z; x) =

∫zi
zf

dz ′2

∫zi
z ′2

dz ′1 i
2 Γ̂I(z

′
1) Γ̂I(z

′
2) exp

(
−ik · φ̄(q)(z; x)

)
. (467)

Evaluating the functional derivatives, we obtain the expression∫zi
z

dz ′2

∫zi
z ′2

dz ′1
m(z ′1)g(z, z

′
1)

H(z ′1)
2

m(z ′2)g(z
′
1, z ′2)

H(z ′2)
2

exp(−ik · φ̃(z; x))(
∇V
(
φ̄(q)(z ′1; x), z ′1

)
· ∇
)
∇V
(
φ̄(q)(z ′2; x), z ′2

)
· (−ik) . (468)

Performing the exact same steps as for the first order contribution, we can
replace the factor (−ik) by a derivative with respect to x(q) which subsequently
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can be shifted by means of an integration by parts. However, this time there
are two potential terms resulting in a product rule. Evaluating it yields the
contribution

−

∫
dx P(x)

∫zi
z

dz ′2

∫zi
z ′2

dz ′1
m(z ′1)g(z, z

′
1)

H(z ′1)
2

m(z ′2)g(z
′
1, z ′2)

H(z ′2)
2

ρ̃
(q)
0 (q, z; x)(

tr
(
(∇t∇)V

(
φ̄(q)(z ′1; x), z ′1

)
(∇t∇)V

(
φ̄(q)(z ′2; x), z ′2

))
+ ∇V

(
φ̄(q)(z ′1; x), z ′1

)
· ∇∇2V

(
φ̄(q)(z ′2; x), z ′2

))
(469)

to the expectation value ⟨ρ̃(q)2 ⟩, in analogy to equation (462). The terms (∇t∇)V

in the trace in the second line are the Hessian matrices of the potential with
respect to its first argument. In the third line, a third derivative of the potential
appears, specifically the gradient of the Laplacian. Yet again, the inverse Fourier
transform resulted in the zeroth order contribution to the spatial density. It
cancels the integration over x(q) and replaces the arguments of the potential
terms, in the same way as for the first order contribution.

The right-hand diagram in equation (466) corresponds to acting with both Γ̂I(z ′1)
and Γ̂I(z ′2) on ρ̃(q)0 in equation (467). This results in the expression∫zi

z

dz ′2

∫zi
z ′2

dz ′1
m(z ′1)g(z, z

′
1)

H(z ′1)
2

m(z ′2)g(z, z
′
2)

H(z ′2)
2

exp(−ik · φ̃(z; x))

∇V
(
φ̄(q)(z ′1; x), z ′1

)
· (−ik)∇V

(
φ̄(q)(z ′2; x), z ′2

)
· (−ik) (470)

featuring two factors (−ik). This does not change our strategy, but requires
two integrations by parts and consequently yields four terms. Performing the
calculation results in the contribution∫

dx P(x)
∫zi
z

dz ′2

∫zi
z ′2

dz ′1
m(z ′1)g(z, z

′
1)

H(z ′1)
2

m(z ′2)g(z, z
′
2)

H(z ′2)
2

ρ̃
(q)
0 (q, z; x)(

tr
(
(∇t∇)V

(
φ̄(q)(z ′1; x), z ′1

)
(∇t∇)V

(
φ̄(q)(z ′2; x), z ′2

))
+ ∇V

(
φ̄(q)(z ′1; x), z ′1

)
· ∇∇2V

(
φ̄(q)(z ′2; x), z ′2

)
+ ∇∇2V

(
φ̄(q)(z ′1; x), z ′1

)
· ∇V

(
φ̄(q)(z ′2; x), z ′2

)
+ ∇2V

(
φ̄(q)(z ′1; x), z ′1

)
∇2V

(
φ̄(q)(z ′2; x), z ′2

))
, (471)

where again the integral over x(q) can be performed immediately. Evidently,
the first two terms are identical with the ones of the other diagram except for
the arguments of the functions g and thus can be combined.
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Using the identity g(z, z ′2) − g(z
′
1, z ′2) = g(z, z

′
1) and replacing the arguments

of the potentials appropriately, the second order contribution to the expectation
value of the spatial density is〈

ρ̃(q)
〉
2
(q, z)

=

∫
dx(p) PFD

(
x(p)
) ∫zi
z

dz ′2

∫zi
z ′2

dz ′1
m(z ′1)g(z, z

′
1)

H(z ′1)
2

m(z ′2)

H(z ′2)
2(

g(z, z ′1) tr
(
(∇t∇)V

(
q− g(z, z ′1) x

(p), z ′1
)
(∇t∇)V

(
q− g(z, z ′2) x

(p), z ′2
))

+ g(z, z ′1)∇V
(
q− g(z, z ′1) x

(p), z ′1
)
· ∇∇2V

(
q− g(z, z ′2) x

(p), z ′2
)

+ g(z, z ′2)∇∇2V
(
q− g(z, z ′1) x

(p), z ′1
)
· ∇V

(
q− g(z, z ′2) x

(p), z ′2
)

+ g(z, z ′2)∇2V
(
q− g(z, z ′1) x

(p), z ′1
)
∇2V

(
q− g(z, z ′2) x

(p), z ′2
))

. (472)

4.3.3 Local Neutrino Density

In the subsection above we found expressions for the perturbative contribu-
tions to the expectation value of the spatial density up to second order using
microscopic perturbation theory in the KFT framework. In order for them to
yield the local neutrino density, we need to specify the potential V to be the
local gravitational potential. But prior to this, we have to define more explicitly
our usage of the term “local”.

The main motivation for studying the local cosmic neutrino density is to
assess the feasibility of a direct detection of the CνB. While its mean density
can be inferred from the Fermi-Dirac distribution in equation (359), clustering
due to gravitational interaction might significantly alter the density of cosmic
neutrinos on Earth. This question has been investigated by earlier studies
using numerical simulations.[49, 58, 66] In order to test our (semi-)analytical
approach19 based on KFT, we follow the exact treatment in [58] as a first step.

Specifically, we consider a spherically symmetric NFW potential[67] truncated
at the virial radius Rvir(z), induced by a DM density of the form

ρ
(q)
DM(q, z) =


ρ0(z)Rs(z)

3

∥q∥(∥q∥+Rs(z))2
, ∥q∥ < Rvir(z) ,

0, ∥q∥ > Rvir(z) .
(473)

Here, ρ0(z) is the central density and Rs(z) is the scale radius. The time evo-
lution of the quantities ρ0(z), Rs(z) and Rvir(z) is taken directly from [58] to
enable a direct comparison to the numerical results obtained there. Likewise,
we take from there the distance of Earth from the galactic center (8.2 kpc)
and use the their choice of parameters Ωm,0 = 0.3111, ΩΛ = 0.6889 and
H0 = 67.77 km s−1Mpc−1 for the ΛCDM-model.

19 The prescription of microscopic perturbation theory and thus the obtained expressions in the
previous subsection are fully analytic. However, the efficient numerical evaluation of the resulting
integrals still poses a significant challenge, especially at higher orders.
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Figure 4: First order result from the KFT-based approach (dotted red) compared to
the result of numerical simulations (blue). The labels n are spatial number
densities which we denote by ρ(q) in this thesis. This is figure 1 of [2],
“Mertsch+2019” is referring to [58].

The gravitational potential can be obtained from the DM density distribu-
tion ρ(q)DM via the comoving Poisson equation

∇2V(q, z) =
4πG

(1+ z)2
ρ
(q)
DM(q, z) (474)

which we introduced in equation (354). However, in many of the terms obtained
in the previous subsection, the DM density can be directly inserted due to the
dependence on the Laplacian of the potential.

In fact, let us consider this replacement explicitly for the first order contri-
bution to the expectation value derived in equation (464). Upon inserting the
Poisson equation, it is

〈
ρ̃(q)

〉
1
(q, z) =

∫
dx(p)

G

2π2 h3

(
exp

(
c
∥∥x(p)∥∥
kB T0

)
+ 1

)−1

∫zi
z

dz ′1
m(z ′1)g(z, z

′
1)

H(z ′1)
2 (1+ z ′1)

2
ρ
(q)
DM

(
q− g(z, z ′1) x

(p), z ′1
)

. (475)

This shows that the neutrino overdensity is in first order sourced by the DM

mass density integrated along free trajectories ending at the position q.
This first order contribution was computed in [2]. The result is shown in

figure 4. For low neutrino rest masses mν there is excellent agreement, but
the overdensity is underestimated for higher neutrino masses. While neutrino
masses abovemν ≈ 0.1 eV are disfavored observationally[57], the discrepancy in
figure 4 for this mass range is still worth investigating. After all, this application
is also intended as a test of microscopic perturbation theory in KFT in a realistic
setting.

The obvious explanation for this discrepancy is the first order approximation
in the interaction. This is supported by the fact that our results underestimate
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the neutrino clustering only for high neutrino masses. For such masses, neutri-
nos become non-relativistic earlier and their paths are modeled worse by free
motion.

Work is ongoing to implement the second order contribution given in equa-
tion (472) to test this hypothesis. In parallel, we are working on a comparison
to other (semi-)analytical methods. However, even at this stage it is evident that
microscopic perturbation theory in KFT is a viable approach to this problem,
especially for realistic neutrino masses.
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In this thesis we have performed a construction of Kinetic Field Theory (KFT)
and its microscopic perturbation theory. We have done so in a very general
setting, allowing the framework to be applied to any classical physical systems
described by a Hamiltonian, even allowing for the configuration space to
be a manifold. Based on this, we introduced a new formalism of encoding
perturbative contributions with diagrams and applied it to two problems in
cosmology, namely the formation of the large-scale structure in the universe
and local clustering of cosmic neutrinos.

While KFT has been introduced as an approach to study cosmic structure
formation [23] and has been mostly applied in this field [32], the framework is
very general. Indeed, as we showed, the generating functional Z can be defined
for any classical physical system described by a Hamiltonian H. In such cases,
it can be brought into the form

Z[J; x] = C−1

∫
x

Dφ

∫
Dχ exp

(
i

∫tf
ti

dt ′
(
χ(t ′) · E[φ](t ′) + J(t ′) ·φ(t ′)

))
, (476)

where C = det(∂t) and E[φ] are Hamilton’s equations as given in equation (16).
Moreover, x is the state of the system at initial time ti.

By means of functional derivatives with respect to the source field J we can
extract observables from the generating functional. We described the details in
subsection 2.2.1. This corresponds to the first of the three key ideas of KFT we
followed in our construction. They are:

1. Determine analytic expressions for observables without explicitly solving the
system.

2. Split evolution from interactions while keeping the description exact.

3. Determine observables given a stochastic initial state.

Unless considering a very simple system, the observables obtained from
the generating functional in the form given above are not particularly useful.
The problem is that they require the evaluation of the path integral over the
auxiliary field χ which leads to a Dirac δ-functional of the form δD(E[φ]). The
evaluation of the path integral over φ then corresponds to solving the equations
of motion.

This is where the second key idea of KFT allowed us to make further progress.
In section 2.3 we showed that splitting the equations of motion into a free and
an interaction part leads to an expression of the generating functional in the
form

Z[J; x] = exp
(
i

∫tf
ti

dt ′
δ

i δK(t ′)
· EI
[
δ

i δJt

]
(t ′)

)
exp

(
i

∫tf
ti

dt ′
∫t ′
ti

dt ′′ Jt(t ′)G(t ′, t ′′)
(
δD(t

′′ − ti) x−K(t
′′)
)) ∣∣∣∣∣

K=0

(477)

featuring the Green’s function G of the free part E0, and the interaction part EI
of the equations of motion.
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In the KFT literature, this equation is often taken as the most general form of
the generating functional.[23, 32] The exponential in the section line is referred
to as the free generating functional and the argument of the exponential in the
first line is the interaction operator. In subsection 2.3.4 we showed that this
expression can be further simplified and the auxiliary source field K can be
removed yielding

Z[J; x] = Texp
(
i

∫tf
ti

dt ′ L̂I(t ′)
)
Z0[J; x] with (478)

L̂I(t
′) = −

∫tf
t ′

dt ′′ Jt(t ′′)G(t ′′, t ′)EI

[
δ

i δJt

]
(t ′) and (479)

Z0[J; x] = exp
(
i

∫tf
ti

dt ′ Jt(t ′)G(t ′, ti) x
)

, (480)

where Texp is the time-ordered exponential. The functional Z0 in the last line
is our simplified version of the free generating functional.

The expression for the generating functional above relied on a splitting of the
equations of motion into a free and an interaction part. However, the conditions
on this splitting are relatively liberal, we only demand the existence of a Green’s
function G for the free equation of motion EI[φ] = 0. If the splitting does not
correspond to a split H = H0 +HI of the Hamiltonian, there is an additional
technical condition on certain functional determinants.

As a result, there is substantial freedom in the choice of splitting. Note that
for any of these choices the generating functional Z remains unchanged, but
the free generating functional Z0 and the operator L̂I may change significantly.
In subsection 2.3.2 we regard this as a gauge freedom. We highlighted natural
gauge choices and provided a naive prescription for gauge transformations.

Further formalizing and investigating this splitting freedom might well turn
out very useful. It is a central result of [35] that the perturbative treatment of
interactions in cosmic structure formation is converging much more quickly in
Zel’dovich gauge than in Newtonian gauge. This demonstrates that the choice
of gauge can have a significant impact on microscopic perturbation theory
in KFT. Gauge choice should likewise impact the accuracy of the mean field
approximation to interactions presented in [34].

Returning to the three key ideas of KFT, let us recall the averaging of observ-
ables over probability distributions of initial states. We provided a detailed
discussion of its motivation and practical benefits in subsection 2.4.3. As we
have seen in our applications in chapter 4, this approach to obtaining smoothed
observables from a discrete system is particularly suited for initial conditions
obtained via a sampling process.

We remark that the averaging over observables can be replaced by an aver-
aging of the generating functional over the probability distribution of initial
values. This approach is taken in most of the KFT literature.[32] In this conven-
tion, the exact same expressions we use in this thesis to obtain observables, then
immediately yield expectation values. However, it can make the description
somewhat less transparent.
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In chapter 3 we have introduced a new formalism for microscopic perturba-
tion theory in KFT. It is based on the series expansion

Z[J; x] =
∞∑
n=0

in
∫tf
ti

dt ′n · · ·
∫t ′2
ti

dt ′1 L̂I(t
′
n) · · · L̂I(t ′1)Z0[J; x] (481)

of the generating functional. Truncating the infinite sum at order n yields
approximations to the generating functional and the observables derived from
it.

We have seen in a simple example that for the harmonic oscillator this
series does converge and the nth order approximation to the phase space
trajectory φ̃(t; x) corresponds to its Taylor approximation of order (2n+ 1)

in the position and of order 2n in the momentum. The difference in orders
is related to the choice of Newtonian gauge and is, e.g., absent in stationary
gauge.20

However, a detailed study of the convergence properties of the expansion in
interactions in the general case would be desirable. This was beyond the scope
of this thesis and thus is left for future research. Note that the availability of an
estimate of the truncation error would be a very useful tool for optimizing the
choice of splitting gauge.

Our formalism of microscopic perturbation theory in section 3.1 expresses
the contributions at any order in terms of commutators of the operator L̂I. This
treatment quickly becomes tedious due to the combinatorial complexity, but
allowed us to find a way to reformulate the series expansion as

Z[J; x] =
∞∑
n=0

in
∫tf
ti

dt ′n · · ·
∫t ′2
ti

dt ′1 Γ̂I(t
′
1) · · · Γ̂I(t ′n)Z0[J; x] with (482)

Γ̂I(t
′) = −

∫tf
t ′

dt ′′ Et

I[φ̄(•; x)](t ′)Gt(t ′′, t ′)
δ

i δφ̄t(t ′′; x)
. (483)

Compared to the series expansion in terms of the operator L̂I, this removes
reference to the source field J in the operators. Moreover, the functional deriva-
tives appear no longer inside the interaction part of the equations of motion,
but as a simple multiplicative factor. In subsection 3.1.2 we show that based on
the series expansion in Γ̂I the nth order contribution to an observable O can be
written as

Õn(χ, t; x) = in
∫tf
ti

dt ′n · · ·
∫t ′2
ti

dt ′1 Γ̂I(t
′
1) · · · Γ̂I(t ′n)O(χ; φ̄(t; x)) (484)

without any reference to the (free) generating functional remaining.
This equation is arguably the central result of this thesis. It provides an

approximation scheme for observables of classical physical systems under very
general conditions. We have showed in subsection 3.2.2 that for the phase space
or spatial trajectory of the system, the first order approximation implied by the
equation above coincides with the Born approximation.

20 One can show easily that the analogous calculation in stationary gauge yields Taylor polynomials
of nth order when truncating the expansion in the interactions at order n in both position and
momentum.
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However, for other observables or higher orders there are differences to
the (iterative) Born approximation. Our discussion shows that microscopic
perturbation theory in KFT corresponds to a substantial reordering of the
iterative Born series. Some terms of the nth Born iteration appear at arbitrarily
high orders in the KFT approximation. Conversely, all terms in the nth order in
the KFT formalism appear at most at the nth iteration of the Born approximation.

It would be interesting to compare the perturbative contributions to observ-
ables in the microscopic perturbation theory presented here to other approxi-
mation schemes, too. In particular, a comparison to approximation schemes of
the Boltzmann or Vlasov equations might be worthwhile. Their formulation is
on phase space, too, and finding a correspondence would be just as interesting
as investigating inherent differences.

In order to determine the perturbative contributions to observables in our
formulation of microscopic perturbation theory in the KFT framework, we
presented a diagrammatic treatment in subsection 3.2.1. This is a generalization
of the Feynman rules we presented in [1]. The diagrammatic treatment also
allows for an iterative determination of contributions to observables as we
outlined in subsection 3.2.3. A precise formulation of this is subject to current
study.

In subsection 3.3 we specialized our perturbative treatment to interacting
N-body systems. This recovers the results of [1], though we made some minor
adjustments to make the Feynman rules more compatible with the diagram-
matic treatment independently proposed in [35]. The specialization to N-body
system was in preparation to the two applications we presented in chapter 4.

In section 4.2 we summarized the application of our perturbative treatment to
the cosmic structure formation presented in [1]. It relies on an expansion in the
initial correlations between particles. In [1] it was shown that the contributions
of first order in this expansion reproduces the linear growth of the cosmic
matter fluctuation power spectrum when going to sufficiently high order in the
expansion in the interactions.

In [35] it was shown that the convergence observed in figure 3 can be for-
malized. Indeed, a full resummation of the terms can be performed yielding
exactly the linear growth as the interaction order goes to infinity. Moreover, this
work studied the contributions of quadratic order in the initial correlations.

In Newtonian gauge the work [35] obtained results for quadratic correlations
for up to eighth order in the interactions. Considering that for linear correlations
contributions from interaction orders up to 12 are relevant, this is insufficient.
Indeed, the obtained correction to the linearly evolved power spectrum in [35]
is minimal. However, by working in Zel’dovich gauge, it is shown that already
at very low interaction orders a convergence can be obtained.

As discussed in [35], the inclusion of the large-scale gravitational interaction
into the free motion of particles speeds up the convergence of the perturbative
series significantly. This is in accordance with our comments on the choice of
splitting gauge. The convergence is against the 1-loop correction of standard
perturbation theory. This is a behavior which is observed in Resummed Kinetic
Field Theory (RKFT), too.[41]
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This is a somewhat surprising result, as the conceptual issues related to
shell crossing in standard perturbation theory should not be present in KFT.
However, if the correspondence holds at higher correlation orders, too, the
perturbative treatment of KFT would exhibit similar divergence problems of
higher order contributions. In [35], this is blamed on the expansion in the
correlations. While this is an obvious culprit, it should be mentioned that in the
presence of divergences the choice of splitting gauge might have a non-trivial
effect on perturbative results.

In the work leading up to this thesis, we independently investigated the
contributions to the cosmic matter fluctuation power spectrum coming from
quadratic and higher orders in the initial correlations. In order to facilitate
these calculations, we defined new Feynman rules for expectation values of
r-point density correlation functions. These might allow to obtain contributions
in higher interaction orders in Newtonian gauge.

The diagrams for expectation values of density correlation functions of an
N-body system subject to correlated initial conditions are an extension of the
Feynman rules constructed in section 3.3.4. They introduce correlation vertices
and edges corresponding to initial density and momentum correlations between
particles. Due to their compatibility with the diagrams for the observables
themselves, the averaging can naturally be performed over individual diagrams.

We have shown that it is possible to factorize the contributions of each
diagram into a term depending on time and a term involving wave-vectors.
This allows to perform the integrations over these terms separately significantly
reducing the computational complexity. Moreover, the term involving wave-
vectors is only dependent on the diagram topology which reduces the number
of possible integrals significantly further facilitating the numerical evaluation
of the expressions.

As a second application, we present the work of [2] on the local clustering of
cosmic neutrinos in section 4.3. Again, aside from summarizing the methods
and results of this work, we go beyond it and give an outlook to ongoing work
for contributions beyond first order in KFT perturbation theory. The main result
of this section is a reproduction of results from numerical approaches to this
problem for realistic neutrino masses.

The application to neutrino clustering shows that microscopic perturbation
theory in KFT is viable even in case it would be confirmed that the application
to cosmic structure formation is plagued by the same problems as conventional
analytic approaches. In fact, even for cosmic structure formation, the expansion
in the interactions may not be to blame. A non-perturbative treatment of the
initial particle correlations may remove the suspected coincidence with the
results of standard perturbation theory.

In any case, in the form presented in this thesis, KFT and its microscopic
perturbation theory yield approximations to observables and their expecta-
tion values in classical physical systems. Applications for such approximation
schemes are manifold. As such, KFT is a powerful framework for studying
classical physical systems with stochastic initial conditions.



L I S T O F P U B L I C AT I O N S

peer-reviewed

[1] Lavinia Heisenberg, Shayan Hemmatyar, and Stefan Zentarra. “Kinetic
field theory: Higher-order perturbation theory.” In: Phys. Rev. D 106.6
(2022), p. 063513. doi: 10.1103/PhysRevD.106.063513. arXiv: 2207.10504
[hep-th].

[2] Emil Brinch Holm, Isabel M. Oldengott, and Stefan Zentarra. “Local
clustering of relic neutrinos with kinetic field theory.” In: Phys. Lett. B
844 (2023), p. 138073. doi: 10.1016/j.physletb.2023.138073. arXiv:
2305.13379 [hep-ph].

[3] Andrea Giusti, Stefan Zentarra, Lavinia Heisenberg, and Valerio Faraoni.
“First-order thermodynamics of Horndeski gravity.” In: Phys. Rev. D
105.12 (2022), p. 124011. doi: 10.1103/PhysRevD.105.124011. arXiv:
2108.10706 [gr-qc].

[4] Fabio D’Ambrosio, Lavinia Heisenberg, and Stefan Zentarra. “Hamilto-
nian Analysis of f(Q) Gravity and the Failure of the Dirac–Bergmann
Algorithm for Teleparallel Theories of Gravity.” In: Fortschritte der Physik
(2023). doi: 10.1002/prop.202300185. arXiv: 2308.02250 [gr-qc].

arxiv

[5] Fabio D’Ambrosio, Mudit Garg, Lavinia Heisenberg, and Stefan Zentarra.
“ADM formulation and Hamiltonian analysis of Coincident General
Relativity.” In: (July 2020). arXiv: 2007.03261 [gr-qc].

[6] Fabio D’Ambrosio et al. “Gravitational Waves in Full, Non-Linear General
Relativity.” In: (Jan. 2022). arXiv: 2201.11634 [gr-qc].

unpublished

[7] Stefan Zentarra. “Jacobi Fields and their Applications in Kinetic Field
Theory.” MA thesis. Heidelberg University, 2010.

148

https://doi.org/10.1103/PhysRevD.106.063513
https://arxiv.org/abs/2207.10504
https://arxiv.org/abs/2207.10504
https://doi.org/10.1016/j.physletb.2023.138073
https://arxiv.org/abs/2305.13379
https://doi.org/10.1103/PhysRevD.105.124011
https://arxiv.org/abs/2108.10706
https://doi.org/10.1002/prop.202300185
https://arxiv.org/abs/2308.02250
https://arxiv.org/abs/2007.03261
https://arxiv.org/abs/2201.11634


B I B L I O G R A P H Y

[11] Steven Weinberg. “The cosmological constant problem.” In: Reviews of
modern physics 61.1 (1989), p. 1.

[12] Lavinia Heisenberg. “A systematic approach to generalisations of General
Relativity and their cosmological implications.” In: Phys. Rept. 796 (2019),
pp. 1–113. doi: 10.1016/j.physrep.2018.11.006. arXiv: 1807.01725
[gr-qc].

[13] Taishi Katsuragawa and Shinya Matsuzaki. “Dark matter in modified
gravity?” In: Phys. Rev. D 95 (4 Feb. 2017), p. 044040. doi: 10.1103/
PhysRevD . 95 . 044040. url: https : / / link . aps . org / doi / 10 . 1103 /

PhysRevD.95.044040.

[14] Michael Boylan-Kolchin, Volker Springel, Simon DM White, Adrian Jenk-
ins, and Gerard Lemson. “Resolving cosmic structure formation with the
Millennium-II Simulation.” In: Monthly Notices of the Royal Astronomical
Society 398.3 (2009), pp. 1150–1164.

[15] Katherine Garrett and Gintaras Duda. “Dark matter: A primer.” In: Ad-
vances in Astronomy 2011 (2011), pp. 1–22.

[16] Planck Collaboration. “Planck 2018 results - VI. Cosmological parame-
ters.” In: A&A 641 (2020), A6. doi: 10.1051/0004-6361/201833910. url:
https://doi.org/10.1051/0004-6361/201833910.

[17] Brian D. Fields, Keith A. Olive, Tsung-Han Yeh, and Charles Young.
“Big-Bang Nucleosynthesis after Planck.” In: Journal of Cosmology and
Astroparticle Physics 2020.03 (Mar. 2020), p. 010. doi: 10.1088/1475-
7516/2020/03/010. url: https://dx.doi.org/10.1088/1475-7516/
2020/03/010.

[18] Mark Vogelsberger, Federico Marinacci, Paul Torrey, and Ewald Puch-
wein. “Cosmological simulations of galaxy formation.” In: Nature Reviews
Physics 2.1 (2020), pp. 42–66.

[19] Francis Bernardeau, S Colombi, E Gaztanaga, and R Scoccimarro. “Large-
scale structure of the Universe and cosmological perturbation theory.” In:
Physics reports 367.1-3 (2002), pp. 1–248.

[20] Richard B Larson. “Insights from simulations of star formation.” In:
Reports on Progress in Physics 70.3 (2007), p. 337.

[21] Christian Fidler et al. “Relativistic interpretation of Newtonian simula-
tions for cosmic structure formation.” In: 2016.09 (Sept. 2016), p. 031. doi:
10.1088/1475-7516/2016/09/031. url: https://dx.doi.org/10.1088/
1475-7516/2016/09/031.

[22] Florin Diacu. “The solution of the N-body problem.” In: Mathematical
Intelligencer 18.3 (1996), pp. 66–70.

149

https://doi.org/10.1016/j.physrep.2018.11.006
https://arxiv.org/abs/1807.01725
https://arxiv.org/abs/1807.01725
https://doi.org/10.1103/PhysRevD.95.044040
https://doi.org/10.1103/PhysRevD.95.044040
https://link.aps.org/doi/10.1103/PhysRevD.95.044040
https://link.aps.org/doi/10.1103/PhysRevD.95.044040
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1088/1475-7516/2020/03/010
https://doi.org/10.1088/1475-7516/2020/03/010
https://dx.doi.org/10.1088/1475-7516/2020/03/010
https://dx.doi.org/10.1088/1475-7516/2020/03/010
https://doi.org/10.1088/1475-7516/2016/09/031
https://dx.doi.org/10.1088/1475-7516/2016/09/031
https://dx.doi.org/10.1088/1475-7516/2016/09/031


bibliography 150

[23] Matthias Bartelmann et al. “A microscopic, non-equilibrium, statistical
field theory for cosmic structure formation.” In: New Journal of Physics
18.4 (Apr. 2016), p. 043020. doi: 10.1088/1367-2630/18/4/043020. url:
https://dx.doi.org/10.1088/1367-2630/18/4/043020.

[24] Felix Fabis. “A Statistical Field Theory for Classical Particles - Founda-
tions and Applications in Cosmological Structure Formation.” PhD thesis.
Heidelberg University, 2015. doi: 10.11588/heidok.00018676.

[25] E Gozzi. “Hidden BRS invariance in classical mechanics.” In: Physics
Letters B 201.4 (1988), pp. 525–528.

[26] E Gozzi, M Reuter, and W D Thacker. “Hidden BRS invariance in classical
mechanics. II.” In: Physical Review D 40.10 (1989), p. 3363.

[27] E Gozzi and M Reuter. “Algebraic characterization of ergodicity.” In:
Physics Letters B 233.3-4 (1989), pp. 383–392.

[28] E Gozzi and M Regini. “Addenda and corrections to work done on the
path-integral approach to classical mechanics.” In: Physical Review D 62.6
(2000), p. 067702.

[29] E Deotto, E Gozzi, and D Mauro. “Hilbert space structure in classical
mechanics. I.” In: Journal of Mathematical Physics 44.12 (2003), pp. 5902–
5936.

[30] G F Mazenko. “Fundamental theory of statistical particle dynamics.” In:
Physical Review E 81.6 (2010), p. 061102.

[31] S P Das and G F Mazenko. “Field theoretic formulation of kinetic theory:
basic development.” In: Journal of Statistical Physics 149.4 (2012), pp. 643–
675.

[32] Matthias Bartelmann et al. “Cosmic structure formation with kinetic field
theory.” In: Annalen der Physik 531.11 (2019), p. 1800446.

[33] Sara Konrad and Matthias Bartelmann. “Kinetic field theory for cosmic
structure formation.” In: Riv. Nuovo Cim. 45.11 (2022), pp. 737–799. doi:
10.1007/s40766-022-00037-y. arXiv: 2202.11077 [astro-ph.CO].

[34] Matthias Bartelmann et al. “Kinetic field theory: Non-linear cosmic power
spectra in the mean-field approximation.” In: SciPost Phys. 10 (6 2021),
p. 153.

[35] Christophe Pixius. “On the Perturbative Treatment of Interactions in
Kinetic Field Theory - Applications to Cosmic Structure Formation.” PhD
thesis. Heidelberg University, 2023. doi: 10.11588/heidok.00033589.

[36] Brian C Hall. Quantum theory for mathematicians. Springer, 2013.

[37] Vladimir Igorevich Arnold, Valery V Kozlov, Anatoly I Neishtadt, and I Ia-
cob. Mathematical aspects of classical and celestial mechanics. Vol. 3. Springer,
2006.

[38] Ana Cannas Da Silva. Lectures on symplectic geometry. Vol. 3575. Springer,
2001.

https://doi.org/10.1088/1367-2630/18/4/043020
https://dx.doi.org/10.1088/1367-2630/18/4/043020
https://doi.org/10.11588/heidok.00018676
https://doi.org/10.1007/s40766-022-00037-y
https://arxiv.org/abs/2202.11077
https://doi.org/10.11588/heidok.00033589


bibliography 151

[39] R. Penrose. “Gravitational collapse: The role of general relativity.” In: Riv.
Nuovo Cim. 1 (1969), pp. 252–276. doi: 10.1023/A:1016578408204.

[40] Hayato Motohashi and Teruaki Suyama. “Third order equations of motion
and the Ostrogradsky instability.” In: Phys. Rev. D 91 (8 Apr. 2015),
p. 085009. doi: 10.1103/PhysRevD.91.085009. url: https://link.aps.
org/doi/10.1103/PhysRevD.91.085009.

[41] Robert Lilow. “Structure Formation in Dark and Baryonic Matter within
Resummed Kinetic Field Theory.” PhD thesis. Heidelberg University,
2018. doi: 10.11588/heidok.00024828.

[42] Robert Lilow, Felix Fabis, Elena Kozlikin, Celia Viermann, and Matthias
Bartelmann. “Resummed Kinetic Field Theory: general formalism and
linear structure growth from Newtonian particle dynamics.” In: Journal
of Cosmology and Astroparticle Physics 2019.04 (Apr. 2019), p. 001. doi:
10.1088/1475-7516/2019/04/001. url: https://dx.doi.org/10.1088/
1475-7516/2019/04/001.

[43] J. Zinn-Justin. “Renormalization and stochastic quantization.” In: Nuclear
Physics B 275.1 (1986), pp. 135–159. issn: 0550-3213. doi: https://doi.
org/10.1016/0550-3213(86)90592-4. url: https://www.sciencedirect.
com/science/article/pii/0550321386905924.

[44] Matthias Bartelmann. “Trajectories of point particles in cosmology and the
Zel’dovich approximation.” In: Physical Review D 91.8 (2015), p. 083524.

[45] Douglas Scott. “The standard model of cosmology: A skeptic’s guide.”
In: Proc. Int. Sch. Phys. Fermi 200 (2020), pp. 133–153.

[46] DJ Fixsen. “The temperature of the cosmic microwave background.” In:
The Astrophysical Journal 707.2 (2009), p. 916.

[47] FABRIZIO Nicastro et al. “Observations of the missing baryons in the
warm–hot intergalactic medium.” In: Nature 558.7710 (2018), pp. 406–409.

[48] Cyril Pitrou, Alain Coc, Jean-Philippe Uzan, and Elisabeth Vangioni. “Pre-
cision big bang nucleosynthesis with improved Helium-4 predictions.” In:
Phys. Rept. 754 (2018), pp. 1–66. doi: 10.1016/j.physrep.2018.04.005.
arXiv: 1801.08023 [astro-ph.CO].

[49] Shwetabh Singh and Chung-Pei Ma. “Neutrino clustering in cold dark
matter halos: Implications for ultrahigh energy cosmic rays.” In: Phys.
Rev. D 67 (2 Jan. 2003), p. 023506. doi: 10.1103/PhysRevD.67.023506.
url: https://link.aps.org/doi/10.1103/PhysRevD.67.023506.

[50] Miguel Escudero, Alejandro Ibarra, and Victor Maura. “Primordial lep-
ton asymmetries in the precision cosmology era: Current status and
future sensitivities from BBN and the CMB.” In: Phys. Rev. D 107.3
(2023), p. 035024. doi: 10.1103/PhysRevD.107.035024. arXiv: 2208.03201
[hep-ph].

https://doi.org/10.1023/A:1016578408204
https://doi.org/10.1103/PhysRevD.91.085009
https://link.aps.org/doi/10.1103/PhysRevD.91.085009
https://link.aps.org/doi/10.1103/PhysRevD.91.085009
https://doi.org/10.11588/heidok.00024828
https://doi.org/10.1088/1475-7516/2019/04/001
https://dx.doi.org/10.1088/1475-7516/2019/04/001
https://dx.doi.org/10.1088/1475-7516/2019/04/001
https://doi.org/https://doi.org/10.1016/0550-3213(86)90592-4
https://doi.org/https://doi.org/10.1016/0550-3213(86)90592-4
https://www.sciencedirect.com/science/article/pii/0550321386905924
https://www.sciencedirect.com/science/article/pii/0550321386905924
https://doi.org/10.1016/j.physrep.2018.04.005
https://arxiv.org/abs/1801.08023
https://doi.org/10.1103/PhysRevD.67.023506
https://link.aps.org/doi/10.1103/PhysRevD.67.023506
https://doi.org/10.1103/PhysRevD.107.035024
https://arxiv.org/abs/2208.03201
https://arxiv.org/abs/2208.03201


bibliography 152

[51] KATRIN Collaboration. “New Constraint on the Local Relic Neutrino
Background Overdensity with the First KATRIN Data Runs.” In: Phys.
Rev. Lett. 129.1 (2022), p. 011806. doi: 10.1103/PhysRevLett.129.011806.
arXiv: 2202.04587 [nucl-ex].

[52] E Baracchini et al. “PTOLEMY: A proposal for thermal relic detection
of massive neutrinos and directional detection of MeV dark matter.” In:
arXiv preprint arXiv:1808.01892 (2018).

[53] Vedran Brdar, P. S. Bhupal Dev, Ryan Plestid, and Amarjit Soni. “A new
probe of relic neutrino clustering using cosmogenic neutrinos.” In: Phys.
Lett. B 833 (2022), p. 137358. doi: 10.1016/j.physletb.2022.137358.
arXiv: 2207.02860 [hep-ph].

[54] Super-Kamiokande Collaboration. “Evidence for Oscillation of Atmo-
spheric Neutrinos.” In: Phys. Rev. Lett. 81 (8 Aug. 1998), pp. 1562–1567.
doi: 10.1103/PhysRevLett.81.1562. url: https://link.aps.org/doi/
10.1103/PhysRevLett.81.1562.

[55] SNO Collaboration. “Measurement of the Rate of νe + d → p + p + e−

Interactions Produced by 8B Solar Neutrinos at the Sudbury Neutrino
Observatory.” In: Phys. Rev. Lett. 87 (7 July 2001), p. 071301. doi: 10.1103/
PhysRevLett.87.071301. url: https://link.aps.org/doi/10.1103/
PhysRevLett.87.071301.

[56] KATRIN Collaboration. “Improved Upper Limit on the Neutrino Mass
from a Direct Kinematic Method by KATRIN.” In: Phys. Rev. Lett. 123

(22 Nov. 2019), p. 221802. doi: 10.1103/PhysRevLett.123.221802. url:
https://link.aps.org/doi/10.1103/PhysRevLett.123.221802.

[57] Isabelle Tanseri, Steffen Hagstotz, Sunny Vagnozzi, Elena Giusarma,
and Katherine Freese. “Updated neutrino mass constraints from galaxy
clustering and CMB lensing-galaxy cross-correlation measurements.” In:
Journal of High Energy Astrophysics 36 (2022), pp. 1–26. issn: 2214-4048.
doi: https://doi.org/10.1016/j.jheap.2022.07.002. url: https:
//www.sciencedirect.com/science/article/pii/S2214404822000374.

[58] P. Mertsch et al. “Neutrino clustering in the Milky Way and beyond.”
In: JCAP 01 (2020), p. 015. doi: 10.1088/1475-7516/2020/01/015. arXiv:
1910.13388 [astro-ph.CO].

[59] Wan Yan Wong, Adam Moss, and Douglas Scott. “How well do we
understand cosmological recombination?” In: Monthly Notices of the Royal
Astronomical Society 386.2 (Apr. 2008), pp. 1023–1028. issn: 0035-8711. doi:
10.1111/j.1365-2966.2008.13092.x. eprint: https://academic.oup.
com/mnras/article-pdf/386/2/1023/3629046/mnras0386-1023.pdf.
url: https://doi.org/10.1111/j.1365-2966.2008.13092.x.

[60] D.J. Eisenstein. “Dark energy and cosmic sound.” In: New Astronomy Re-
views 49.7 (2005). Wide-Field Imaging from Space, pp. 360–365. issn: 1387-
6473. doi: https://doi.org/10.1016/j.newar.2005.08.005. url: https:
//www.sciencedirect.com/science/article/pii/S1387647305000850.

https://doi.org/10.1103/PhysRevLett.129.011806
https://arxiv.org/abs/2202.04587
https://doi.org/10.1016/j.physletb.2022.137358
https://arxiv.org/abs/2207.02860
https://doi.org/10.1103/PhysRevLett.81.1562
https://link.aps.org/doi/10.1103/PhysRevLett.81.1562
https://link.aps.org/doi/10.1103/PhysRevLett.81.1562
https://doi.org/10.1103/PhysRevLett.87.071301
https://doi.org/10.1103/PhysRevLett.87.071301
https://link.aps.org/doi/10.1103/PhysRevLett.87.071301
https://link.aps.org/doi/10.1103/PhysRevLett.87.071301
https://doi.org/10.1103/PhysRevLett.123.221802
https://link.aps.org/doi/10.1103/PhysRevLett.123.221802
https://doi.org/https://doi.org/10.1016/j.jheap.2022.07.002
https://www.sciencedirect.com/science/article/pii/S2214404822000374
https://www.sciencedirect.com/science/article/pii/S2214404822000374
https://doi.org/10.1088/1475-7516/2020/01/015
https://arxiv.org/abs/1910.13388
https://doi.org/10.1111/j.1365-2966.2008.13092.x
https://academic.oup.com/mnras/article-pdf/386/2/1023/3629046/mnras0386-1023.pdf
https://academic.oup.com/mnras/article-pdf/386/2/1023/3629046/mnras0386-1023.pdf
https://doi.org/10.1111/j.1365-2966.2008.13092.x
https://doi.org/https://doi.org/10.1016/j.newar.2005.08.005
https://www.sciencedirect.com/science/article/pii/S1387647305000850
https://www.sciencedirect.com/science/article/pii/S1387647305000850


bibliography 153

[61] Planck Collaboration. “Planck 2018 results-III. High Frequency Instru-
ment data processing and frequency maps.” In: Astronomy & Astrophysics
641 (2020), A3.

[62] Planck Collaboration. “Planck 2013 results. XXII. Constraints on infla-
tion.” In: Astronomy & Astrophysics 571 (2014), A22.

[63] Planck Collaboration. “Planck 2018 results-IX. Constraints on primordial
non-Gaussianity.” In: Astronomy & Astrophysics 641 (2020), A9.

[64] Diego Blas, Julien Lesgourgues, and Thomas Tram. “The Cosmic Linear
Anisotropy Solving System (CLASS). Part II: Approximation schemes.” In:
Journal of Cosmology and Astroparticle Physics 2011.07 (July 2011), pp. 034–
034.

[65] Adrian Jenkins. “Second-order Lagrangian perturbation theory initial
conditions for resimulations.” In: Monthly Notices of the Royal Astronomical
Society 403.4 (2010), pp. 1859–1872.

[66] Andreas Ringwald and Yvonne Y. Y. Wong. “Gravitational clustering of
relic neutrinos and implications for their detection.” In: JCAP 12 (2004),
p. 005. doi: 10.1088/1475-7516/2004/12/005. arXiv: hep-ph/0408241.

[67] Julio F. Navarro, Carlos S. Frenk, and Simon D. M. White. “The Structure
of cold dark matter halos.” In: Astrophys. J. 462 (1996), pp. 563–575. doi:
10.1086/177173. arXiv: astro-ph/9508025.

https://doi.org/10.1088/1475-7516/2004/12/005
https://arxiv.org/abs/hep-ph/0408241
https://doi.org/10.1086/177173
https://arxiv.org/abs/astro-ph/9508025


A C K N O W L E D G M E N T S

A number of persons have directly impacted the content of this thesis:

• Shayan Hemmatyar has significantly contributed to the development
of the presented approach to microscopic perturbation theory in KFT,
particularly through hundreds of pages of handwritten calculations which
helped to detect and confirm patterns in the expressions.

• The application of KFT to neutrino clustering was conceived of by Isabel
M. Oldengott and jointly worked on with her and Emil Brinch Holm.

• Minor corrections mostly of linguistic and orthographic nature were
suggested by

– Tim Adler,

– Athanasia-Konstantina Angelopoulou,

– Cornelius Bauer,

– Bruno Faigle-Cedzich,

– Thomas Kirchner,

– Ricardo Waibel.

• Individual contributions and references for each section are listed in the
final introductory paragraph of the respective section in italic text.

I want to thank Lavinia Heisenberg for the opportunity of conducting a PhD
thesis in her group. I am particularly grateful for the exceptional care and flexi-
bility offered during the past four years. Many thanks also to the Heisenberg
group for making the time of my doctorate a chapter of my life I will fondly
look back at.

I want to thank all collaborators on projects during my PhD, in particular Shayan
Hemmatyar, Isabel M. Oldengott and Emil Brinch Holm, Fabio D’Ambrosio,
Andrea Guisti, Federica Tarsitano and Alexandre Refregier. Moreover, I want to
sincerely thank Matthias Bartelmann for advice and encouragement as well as
fruitful discussions over many years.

My thanks also goes to the members of my examination committee to whom I
also wish to apologize for handing in my thesis just prior to the winter holidays.

I am grateful to my friends and family for their positive impact on my life.

Thank You!... .... . ..... ..... ........ . ....... . ......

154



D E C L A R AT I O N

Concerning the present doctoral thesis with my signature I confirm:

• that I am its sole author and I have compiled it in my own words,

• that I have not submitted it to any other university,

• that I have not committed any of the forms of plagiarism described in the
“Citation etiquette”,

• that I have documented all methods, data and processes truthfully,

• that I have not manipulated any data,

• that I have mentioned all persons who were significant facilitators of the
work.

Zürich, 14th of February 2024

Stefan Zentarra

155


	Abstract
	Zusammenfassung
	Contents
	Acronyms
	1 Introduction
	2 Kinetic Field Theory
	2.1 Phase Space
	2.1.1 Configuration Space
	2.1.2 Tangent Bundle and Velocity
	2.1.3 Cotangent Bundle and Momentum
	2.1.4 Hamilton's Equations
	2.1.5 Example: Harmonic Oscillator (I)

	2.2 Generating Functional
	2.2.1 Classical Observables
	2.2.2 Example: Harmonic Oscillator (II)
	2.2.3 Classical Path Integrals

	2.3 Free Evolution and Interactions
	2.3.1 Green's Functions
	2.3.2 Splitting Freedom
	2.3.3 Example: Harmonic Oscillator (III)
	2.3.4 Splitting of Generating Functional

	2.4 Initial Values
	2.4.1 Smoothed Macroscopic Description
	2.4.2 Example: Harmonic Oscillator (IV)
	2.4.3 Expectation Values
	2.4.4 Example: Harmonic Oscillator (V)
	2.4.5 Density Correlation Functions


	3 Microscopic Perturbation Theory
	3.1 Perturbative Treatment
	3.1.1 Expansion in Interactions
	3.1.2 Approximations for Observables
	3.1.3 Example: Harmonic Oscillator (VI)

	3.2 Feynman Rules
	3.2.1 Defining Diagrams
	3.2.2 Physical Interpretation
	3.2.3 Diagram Properties
	3.2.4 Example: Harmonic Oscillator (VII)

	3.3 Self-Gravitating Systems
	3.3.1 N-Body Phase Space
	3.3.2 N-Body Green's Function
	3.3.3 Fourier Space Description
	3.3.4 N-Body Feynman Rules


	4 Applications to Cosmology
	4.1 Standard Model of Cosmology
	4.1.1 FLRW Metric
	4.1.2 Cosmic Neutrino Background
	4.1.3 Cosmic Microwave Background

	4.2 Large-Scale Structure
	4.2.1 Correlated Initial Conditions
	4.2.2 Series Expansion of Correlations
	4.2.3 Correlated Feynman Rules
	4.2.4 Density-Fluctuation Power Spectrum

	4.3 Neutrino Clustering
	4.3.1 N-1-body Approximation
	4.3.2 Density Expectation Value
	4.3.3 Local Neutrino Density


	5 Conclusion
	 List of Publications
	 Bibliography
	 Acknowledgments
	 Declaration

