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A B S T R A C T

Climate change and global warming, significantly caused by greenhouse gas
emissions from human activities, pose various serious problems, including
negative impacts on health, significant sea level rise, food instability, and
various social issues. Intensive decarbonization needs to be carried out
in various sectors, especially the electricity and heat production sector,
which is the largest contributor to the carbon dioxide and greenhouse gases
emissions. This has encouraged the development of renewable sources, such
as solar and wind, for electricity generation to reduce dependence on fossil
fuels. However, these energy sources often have elements of uncertainty
and intermittency, as they are highly dependent on weather conditions.

The fluctuating nature of renewable energy sources presents a challenge
in maintaining a constant equilibrium between electricity supply and de-
mand in the electric grid. In this context, modern gas turbines could be
a viable solution to bridge this gap. When these turbines are part of a
combined cycle power plant—where both gas and steam turbines work in
tandem—they operate at a high efficiency rate of around 60%, and have a
quick load response to adapt to the demand of the grid. Furthermore, mod-
ern gas turbines have very low NOx emissions at wide range of operating
loads.

A leading example of modern gas turbine technology is the constant
pressure sequential combustor (CPSC). This CPSC concept uses two com-
bustion chambers arranged in series, increasing the gas turbine’s flexibility
to burn various types of fuels, including hydrogen, in a safe and efficient
manner. Additionally, this technology offers a wider operational load range
compared to gas turbine configurations that only have one combustion
chamber.

However, thermoacoustic instability, arising from the constructive inter-
action between the acoustics of the combustion chamber and the flame
heat release rate, can disrupt operations and damage components. Passive
control methods such as Helmholtz dampers and quarter-wave resonators
are common in practical combustors. Active control strategies could offer a
wider operational range as they can adapt to changes in operating condi-
tions. However, their implementation is rather limited due to the lack of fast
and robust actuators. Recent advances in nanosecond repetitively pulsed
discharges (NRPD) show great potential for active control of thermoacous-
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tic instabilities. The main benefit of such an actuator is that it involves
no moving parts and hence could be retrofitted to the existing combustor
without major geometry modifications.

This thesis studies the application of NRPDs to control the thermoa-
coustic instabilities of a lab-scale sequential combustor. The discharges are
generated by applying high voltage across a pair of electrodes in pin-to-pin
configuration. The electrodes are strategically placed within a mixing duct,
located downstream of the first-stage combustion chamber and upstream
of the sequential burner outlet. This specific location is advantageous due
to the gas temperature, which typically exceeds 1000 K. The elevated tem-
perature results in a lower gas density, consequently reducing the voltage
needed to initiate plasma breakdown.

The effect of NRPD parameters, such as generator voltage and pulse rep-
etition frequency (PRF), on the thermoacoustic stability and NO emissions
of a lab-scale sequential combustor is investigated through experiments at
atmospheric pressure. High-speed OH∗ chemiluminescence imaging was
employed to visualize the dynamics of the sequential flame. The study
shows that NRPDs with a mean plasma power of 1.5 × 10−3 percent of
the thermal power of the flame can effectively stabilize the thermoacustics
of the sequential combustor. However, in certain parameter combinations,
NRPDs can inadvertently enhance thermoacoustic instabilities. This un-
derscores the importance of developing an adaptive control algorithm to
optimize control parameters safely and efficiently.

The optimization of control parameters is achieved using safe Bayesian
optimization algorithms which are data-driven and do not require a model.
However, the inclusion of a model is possible by incorporating it as a
prior mean function. Three Bayesian optimization algorithms are presented,
each with unique properties. The framework also allows for transfer of
knowledge between operating conditions of the combustor through the use
of Bayesian context. The performance of the algorithms is demonstrated
via a numerical simulation using a low-order thermoacoustic network and
two distinct experimental setups. The advantages and limitations of the
algorithms are also discussed in detail.

The sequential flame could be sensitive to the upstream temperature
fluctuations. To experimentally measure the acoustic response of the se-
quential flame, it is necessary to use a fast and robust temperature sensor.
An advanced laser absorption spectroscopy method is developed to facil-
itate temperature measurement at a high sampling rate. The method is
tunable diode laser absorption spectroscopy with wavelength modulation
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spectroscopy (TDLAS-WMS). The efficacy of this sensor was tested using a
single-stage premixed swirling flame setup, and peculiar entropic responses
of the flame were uncovered.

Real gas turbines frequently operate under varying loads, which involve
transient load changes. Thus, controlling the thermoacoustics during these
transitions is essential. The effectiveness of NRPDs under transient opera-
tion was investigated using the same sequential combustor setup, located
inside a high-pressure vessel. The first method entailed altering the outlet
area geometry of the combustor transiently, while the second involved a
simultaneous transient ramp-up of both power and combustor pressure.
The combustor pressure in the experiments ranged from 4 to 6 bar. The
ability of NRPD to stabilize the thermoacoustics is discussed, and novel
results are presented.

In general, this thesis explores different aspects of active control of ther-
moacoustic instabilities in sequential combustor, including experimental
demonstrations at atmospheric and high pressure, the establishment of data-
driven algorithms to optimize the control parameters, and the development
of a fast and robust temperature sensor.





Z U S A M M E N FA S S U N G

Der Klimawandel und die globale Erwärmung, die maßgeblich durch die
vom Menschen verursachten Treibhausgasemissionen verursacht werden,
stellen verschiedene schwerwiegende Probleme dar, darunter negative Aus-
wirkungen auf die Gesundheit, einen erheblichen Anstieg des Meeress-
piegels, die Instabilität der Nahrungsmittelversorgung und verschiedene
soziale Probleme. Eine intensive Dekarbonisierung muss in verschiede-
nen Sektoren durchgeführt werden, insbesondere im Bereich der Strom-
und Wärmeerzeugung, der am meisten zu den Kohlendioxid- und Treib-
hausgasemissionen beiträgt. Dies hat die Entwicklung von erneuerbaren
Energiequellen wie Sonnen- und Windenergie für die Stromerzeugung
gefördert, um die Abhängigkeit von fossilen Brennstoffen zu verringern.
Diese Energiequellen unterliegen jedoch häufig Schwankungen, da sie stark
von den Wetterbedingungen abhängen.

Die schwankende Verfügbarkeit erneuerbarer Energiequellen stellt eine
Herausforderung für die Aufrechterhaltung eines konstanten Gleichge-
wichts zwischen Stromangebot und -nachfrage im Stromnetz dar. In diesem
Zusammenhang könnten moderne Gasturbinen eine praktikable Lösung
sein, um diese Lücke zu schließen. Wenn diese Turbinen Teil eines Kom-
bikraftwerks sind, in dem Gas- und Dampfturbinen zusammenarbeiten,
erreichen sie einen hohen Wirkungsgrad von etwa 60 %, und können sich
schnell an den Bedarf des Netzes anpassen. Darüber hinaus haben moderne
Gasturbinen sehr niedrige NOx-Emissionen bei einer großen Bandbreite
von Betriebslasten.

Ein führendes Beispiel für die moderne Gasturbinentechnologie ist die
sequentielle Brennkammer mit konstantem Druck (constant pressure se-
quential combustor, CPSC). Dieses CPSC-Konzept verwendet zwei hin-
tereinander angeordnete Brennkammern und erhöht die Flexibilität der
Gasturbine bei der sicheren und effizienten Verbrennung verschiedener
Arten von Brennstoffen, einschließlich Wasserstoff. Außerdem bietet diese
Technologie im Vergleich zu Gasturbinenkonfigurationen mit nur einer
Brennkammer einen größeren Betriebslastbereich.

Allerdings können thermoakustische Instabilitäten, die durch die kon-
struktive Wechselwirkung zwischen der Akustik der Brennkammer und
der Wärmefreisetzungsrate der Flamme entstehen, den Betrieb stören und
Komponenten beschädigen. Passive Regelungsmethoden wie Helmholtz-
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Dämpfer und Viertelwellenresonatoren sind in Brennkammern häufig zu
finden. Aktive Regelungsstrategien erlauben einen größeren Betriebsbereich,
da sie sich an Änderungen der Betriebsbedingungen anpassen können. Ihre
Umsetzung ist jedoch aufgrund des Mangels an schnellen und robusten
Aktuatoren eher begrenzt. Jüngste Fortschritte im Bereich der repetitiv
gepulsten Plasmaentladungen im Nanosekundenbereich (nanosecond repe-
titively pulsed discharges, NRPD) zeigen ein großes Potenzial für die aktive
Regelung thermoakustischer Instabilitäten. Der Hauptvorteil eines solchen
Aktuators besteht darin, dass er ohne bewegliche Teile auskommt und da-
her ohne größere geometrische Änderungen in bestehende Brennkammern
nachgerüstet werden kann.

In dieser Arbeit wird die Anwendung von NRPDs zur Unterdrückung
thermoakustischer Instabilitäten in einer sequenziellen Brennkammer im
Labormaßstab untersucht. Die Entladungen werden durch Anlegen einer
Hochspannung an ein Elektrodenpaar in Stift-zu-Stift-Konfiguration er-
zeugt. Die Elektroden sind strategisch innerhalb eines Mischungskanals
platziert, der sich stromabwärts der Brennkammer der ersten Stufe und
stromaufwärts des Auslasses des sequentiellen Brenners befindet. Diese
spezielle Anordnung ist aufgrund der Gastemperatur, die in der Regel über
1000 K liegt, von Vorteil. Die höhere Temperatur führt zu einer geringeren
Gasdichte und damit zu einer geringeren Spannung, die für die Zündung
des Plasmas erforderlich ist.

Die Auswirkung von NRPD-Parametern wie Generatorspannung und
Pulswiederholungsfrequenz (PRF) auf die thermoakustische Stabilität und
die NO-Emissionen einer sequentiellen Brennkammer im Labormaßstab
wird durch Experimente bei atmosphärischem Druck untersucht. Zur Vi-
sualisierung der Dynamik der sequenziellen Flamme wurde die Hochge-
schwindigkeits Chemilumineszenz Bildgebung von OH∗ eingesetzt. Die
Studie zeigt, dass NRPDs mit einer mittleren Plasmaleistung von 1, 5 × 10−3

Prozent der thermischen Leistung der Flamme die Thermoakustik des se-
quentiellen Brenners effektiv stabilisieren können. Bei bestimmten Parame-
terkombinationen können NRPDs jedoch unbeabsichtigt thermoakustische
Instabilitäten verstärken. Dies unterstreicht die Bedeutung der Entwicklung
eines adaptiven Regelalgorithmus zur sicheren und effizienten Optimierung
der Regelparameter.

Die Optimierung der Regelungsparameter erfolgt mit sicheren Bayes’schen
Optimierungsalgorithmen, die datengesteuert sind und kein Modell erfor-
dern. Die Einbeziehung eines Modells ist jedoch möglich, indem man
es als a-priori Mittelwertfunktion einbezieht. Es werden drei Bayes’sche
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Optimierungsalgorithmen vorgestellt, die sich durch unterschiedliche Ei-
genschaften auszeichnen. Das Framework ermöglicht auch die Übertragung
von Informationen zwischen verschiedenen Betriebsbedingungen durch die
Verwendung von Bayes’schem Kontext. Die Leistungsfähigkeit der Algorith-
men wird anhand einer numerischen Simulation unter Verwendung eines
thermoakustischen Netzwerkmodells niedriger Ordnung und zweier un-
terschiedlicher Versuchsaufbauten demonstriert. Die Vorteile und Grenzen
der Algorithmen werden ebenfalls im Detail diskutiert.

Die sequenzielle Flamme könnte sensitiv auf die stromaufwärts gelege-
nen Temperaturschwankungen reagieren. Um die akustische Antwort der
sequenziellen Flamme experimentell zu messen, ist es notwendig, einen
schnellen und robusten Temperatursensor zu benutzen. Es wurde eine
fortschrittliche Laserabsorptionsspektroskopie-Methode entwickelt, um die
Temperaturmessung mit einer hohen Abtastrate zu ermöglichen. Bei der
Methode handelt es sich um abstimmbare Diodenlaser Absorptionsspek-
troskopie mit Wellenlängenmodulation (TDLAS-WMS). Die Wirksamkeit
dieses Sensors wurde an einer einstufigen, vorgemischten Wirbelflamme
getestet, und es wurden besondere entropische Reaktionen der Flamme
aufgezeigt.

Reale Gasturbinen werden häufig unter wechselnden Lasten betrieben,
die mit transienten Lastwechseln einhergehen. Daher ist die Kontrolle der
Thermoakustik während dieser Übergänge von wesentlicher Bedeutung.
Die Wirksamkeit von NRPDs bei instationärem Betrieb wurde mit der glei-
chen sequentiellen Brennkammer in einem Hochdruckbehälter untersucht.
Bei der ersten Methode wurde die Geometrie der Auslassöffnung der Brenn-
kammer transient verändert, während bei der zweiten Methode sowohl die
Leistung als auch der Druck in der Brennkammer transient erhöht wurden.
Der Druck in der Brennkammer lag bei den Versuchen zwischen 4 und
6 bar. Die Fähigkeit von NRPD, die Thermoakustik zu stabilisieren, wird
erörtert, und es werden neue Ergebnisse vorgestellt.

Im Allgemeinen werden in dieser Arbeit verschiedene Aspekte der ak-
tiven Kontrolle thermoakustischer Instabilitäten in sequenziellen Brenn-
kammern untersucht. Dazu gehören experimentelle Untersuchungen bei
atmosphärischem und bei hohem Druck, die Entwicklung datengesteuerter
Algorithmen zur Optimierung der Regelungsparameter und die Entwick-
lung eines schnellen und robusten Temperatursensors.





A B S T R A K

Perubahan iklim dan pemanasan global yang sebagian besar disebabkan
oleh emisi gas rumah kaca dari aktivitas manusia menimbulkan berbagai
masalah serius, antara lain dampak negatif terhadap kesehatan, kenaikan
permukaan air laut yang signifikan, ketidakstabilan pangan, dan berbagai
masalah sosial. Dekarbonisasi secara intensif perlu dilakukan di berba-
gai sektor, terutama sektor produksi listrik dan panas, yang merupakan
penyumbang emisi karbon dioksida dan gas rumah kaca terbesar. Hal
ini mendorong pengembangan sumber-sumber energi terbarukan, seperti
tenaga surya dan angin, untuk pembangkitan listrik guna mengurangi
ketergantungan terhadap bahan bakar fosil. Namun, sumber-sumber energi
ini sering kali memiliki unsur ketidakpastian dan intermiten, karena sangat
bergantung pada kondisi cuaca.

Sifat fluktuatif dari sumber energi terbarukan menjadi tantangan dalam
menjaga keseimbangan antara pasokan dan permintaan listrik di jaringan
listrik. Dalam konteks ini, turbin gas modern dapat menjadi solusi yang
tepat untuk menjaga keseimbangan tersebut. Ketika turbin ini menjadi
bagian dari pembangkit listrik siklus gabungan - di mana turbin gas dan
uap bekerja bersama-sama (pembangkit listrik tenaga gas uap)- turbin ini
beroperasi pada tingkat efisiensi yang tinggi, yaitu sekitar 60%, dan memili-
ki respons yang cepat untuk beradaptasi dengan permintaan jaringan listrik.
Selain itu, turbin gas modern memiliki emisi NOx yang sangat rendah pada
berbagai macam beban operasi.

Contoh utama dari teknologi turbin gas modern adalah constant pressure
sequential combustor (CPSC). Konsep CPSC ini menggunakan dua ruang ba-
kar yang disusun secara seri, sehingga meningkatkan fleksibilitas turbin gas
untuk membakar berbagai jenis bahan bakar, termasuk hidrogen, dengan
cara yang aman dan efisien. Selain itu, teknologi ini menawarkan rentang
beban operasional yang lebih luas dibandingkan dengan konfigurasi turbin
gas yang hanya memiliki satu ruang bakar.

Namun, ketidakstabilan termoakustik, yang timbul dari interaksi kon-
struktif antara akustik dari ruang bakar dan laju pelepasan panas api,
dapat mengganggu operasi dan merusak komponen. Metode kontrol pasif
seperti peredam Helmholtz (Helmholtz damper) dan resonator seperempat
gelombang (Quarter-wave resonator) adalah contoh yang umum digunakan
di turbin gas komersil. Strategi kontrol aktif dapat menawarkan jangkauan
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operasional yang lebih luas karena dapat beradaptasi dengan perubahan
kondisi operasi. Namun, implementasinya terbatas karena kurangnya ak-
tuator yang cepat dan kuat. Riset-riset dan perkembangan terbaru dalam
nanosecond repetitively pulsed discharges (NRPDs) menunjukkan potensi besar
untuk aplikasi kontrol aktif. Manfaat utama dari aktuator tersebut adalah
tidak adanya bagian yang bergerak dan oleh karena itu dapat diimplen-
tasikan di turbin gas yang sudah ada tanpa modifikasi geometri yang
signifikan.

Disertasi ini mempelajari penerapan NRPD untuk mengontrol ketidak-
stabilan termoakustik dari sequential combustor skala laboratorium. Plasma
dihasilkan dengan menerapkan tegangan tinggi pada sepasang elektroda
dalam konfigurasi pin-to-pin. Elektroda ditempatkan secara strategis di
dalam sebuah saluran, yang terletak di bagian hilir ruang bakar tahap
pertama dan di bagian hulu ruang bakar kedua. Lokasi spesifik ini meng-
untungkan karena suhu gas, yang biasanya melebihi 1000 K. Suhu yang
tinggi membuat masa jenis gas menjadi lebih rendah, sehingga mengurangi
tegangan yang dibutuhkan untuk memulai plasma.

Pengaruh parameter NRPD, seperti tegangan generator dan frekeunsi
repetisi (pulse reptition frequency), pada stabilitas termoakustik dan emisi NO
dari pembakaran berurutan skala laboratorium dipelajari melalui eksperi-
men pada tekanan atmosfer. Pencitraan chemiluminescence OH∗ berkecepa-
tan tinggi digunakan untuk menggambarkan dinamika nyala api. Studi ini
menunjukkan bahwa NRPD dengan daya plasma rata-rata 10−3 persen dari
daya termal nyala api dapat secara efektif menstabilkan termoakustik CPSC.
Namun, dalam kombinasi parameter tertentu, NRPD dapat meningkatkan
ketidakstabilan termoakustik. Hal ini menggarisbawahi pentingnya men-
gembangkan algoritma kontrol adaptif untuk mengoptimalkan parameter
kontrol secara aman dan efisien.

Optimalisasi parameter kontrol dicapai dengan menggunakan safe Bayesi-
an optimization yang cara kerjanya berdasarkan data dan tidak memerlukan
model. Namun, penyertaan model dapat dilakukan dengan menjadikan-
nya sebagai nilai rata-rata. Tiga algoritma optimasi Bayesian disajikan,
masing-masing dengan keunggulan yang unik. Kerangka kerja ini juga
memungkinkan untuk mentransfer informasi di antara kondisi-kondisi ope-
rasi dari CPSC. Kinerja dari masing-masing algoritma ditunjukkan melalui
simulasi numerik dan dua eksperimen yang berbeda. Keuntungan dan
keterbatasan dari setiap algoritma juga dibahas secara rinci.

Api kedua dari CPSC, dibagian hilir, dapat memiliki respon yang sensitif
terhadap perubahan suhu di belakangnya. Untuk mengukur respons akus-
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tik dari api yang kedua secara eksperimental, dibutuhkan sebuah sensor
suhu yang cepat dan tangguh. Metode spektroskopi penyerapan laser (laser
absorption spectroscopy) yang canggih dikembangkan untuk memfasilitasi
pengukuran suhu pada tingkat pengambilan sampel yang tinggi. Metode
ini menggunakan laser dioda yang dimodulaskan dan dikenal dengan tun-
able diode laser absorption spectroscopy with wavelength modulation spectroscopy
(TDLAS-WMS). Keampuhan sensor ini diuji di eksperimen dengan satu
ruang bakar dan satu api di dalamnya. Hasil pengukuran menunjukkan
respons entropik yang unik dari api tersebut.

Dalam praktik nyata, turbin gas beroperasi dengan beban yang bervariasi,
yang melibatkan perubahan beban transien. Oleh karena itu, mengendali-
kan termoakustik pada situasi transien ini sangat penting. Efektivitas NRPD
di bawah operasi transien diselidiki di disertasi ini dengan menggunakan
konfigurasi eksperiment CPSC yang sama, namun diletakkan di dalam
bejana bertekanan tinggi. Pada metode pertama, geometri saluran keluar
diubah secara transien, sedangkan metode kedua melibatkan peningkatan
daya dan tekanan secara serentak. Tekanan pembakaran dalam percobaan
berkisar antara 4 hingga 6 bar. Kemampuan NRPD untuk menstabilkan
termoakustik dibahas, dan hasil-hasil baru dipresentasikan.

Secara umum, disertasi ini menggali berbagai aspek kontrol aktif ke-
tidakstabilan termoakustik dalam CPSC. Aspek-aspek tersebut meliputi
demonstrasi eksperimental pada tekanan atmosfer dan tekanan tinggi,
pembentukan algoritma-algoritma berbasis data untuk mengoptimalkan
parameter kontrol, dan pengembangan sensor suhu yang cepat, akurat dan
tangguh.
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1
I N T R O D U C T I O N

The duty of the man who investigates the writings of
scientists, if learning the truth is his goal, is to make
himself an enemy of all that he reads, and attack it from
every side. He should also suspect himself as he
performs his critical examination of it, so that he may
avoid falling into either prejudice or leniency

— Alhazen Ibn al-Haytham

1.1 motivation

Historically, controlled fire has been a key tool for human progress, with
archaeological evidence indicating its early use dating back nearly a million
years [1]. These ancient applications of fire were diverse, ranging from
culinary practices to personal protection and wildlife management. Indeed,
the ability to harness combustion has been a transformative force, playing
a critical role in shaping the trajectory of human advancement. Perhaps,

Figure 1.1: Cartoon illustration of early humans gathering around a campfire.
Generated with GPT-Vision

one of the most significant benefits of controlled fire was the ability to cook
food, thus changing the quality of the human diet with the accompanying

1



2 introduction

increases in brain size [2]. Fire has played an important role in the intellec-
tual development of global civilisations. The concept of fire has changed in
the minds of humans, polarizing between fire that is revered, worshiped,
and used, to being feared and suppressed as the population moves within
the landscape [2].

1

2

3
456

1 Compressor 4 Generator

2 Combustor 5 Starter M.
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b)

Figure 1.2: Photograph a) and schematic diagram b) of the first single cycle gas-
turbine for electricity production in Neuchâtel, Switzerland. Images
taken from [3]

Before the industrial revolution in the 1800s, humans relied on burning
biomass for heat generation. During the industrial revolution, fossil fuel
combustion began to be used on a large scale for energy production, raw
materials, the manufacture of various goods, mainly steel, and transporta-
tion, for example, via steam engines, which were invented by James Watt in
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1769 [4]. Later in 1791, John Barber, an English inventor, obtained a patent
for an early gas turbine engine. The design was similar to that of a modern
gas turbine engine, which includes compressor, combustor, and turbine.
Frank Whittle in the 1930s also patented a design of a jet engine for a
propulsion system. His design later on was implemented in an aircraft and
inspired many modern jet engines today. In 1939, the first commercially
operated gas turbine for electricity in the world was installed in Neuchâ-
tel, Switzerland. Construction was carried out by Brown Boveri Company
(BBC). The power of the gas turbine was 4 MW with a thermal efficiency
of about 18% [3]. Figure 1.2 shows the image of the first Neuchâtel gas
turbine during an exhibition and the schematic diagram of the engine. The
gas turbine was awarded the GT Neuchâtel Historic Mechanical Landmark
status in 1988 by ASME (American Society of Mechanical Engineers). Later
on in 2005, Alstom (Switzerland) Ltd. relocated the engine to Birr, which is
14 km away from Baden.

Today, gas turbine engines are often used both for propulsion and power
generation. However, since the engine fuel is dominated mainly by fossil
fuels, it generates CO2 and NOx emissions and therefore contributes to
global warming. One way to reduce NOx emissions is to burn in a lean
premixed condition to reduce the temperature. To reduce CO2 emissions,
a hydrogen mixture could be added to the fuel, thus lowering the carbon
content of the fuel for the same thermal power. The hydrogen could be
produced by electrolysis using energy generated from renewable sources
such as solar PV and wind turbines. However, the design of the combustion
chamber and the burner might need to be changed to avoid flame flashback
due to increased mixture reactivity.

Thermoacoustic instabilities have remained a major challenge in the
development of new gas turbines. The explanation of thermoacoustic in-
stability will be elaborated in the subsequent sections, essentially, it is a
constructive coupling between the acoustic field of the combustor and the
heat release rate fluctuations of the flame, which induce typically high
amplitude pulsation. It is more pronounce in the low emission premixed
combustor configuration compared to the non-premixed one. This thesis
focuses mainly on the development of active control strategies and actuators
to suppress thermoacoustic instabilities in a constant pressure sequential
combustor.

In the next section, the role of combustion in global energy production,
its contribution to global warming, and its role in future energy production
will be discussed shortly.
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1.2 world energy consumption and production

Energy consumption plays a pivotal role in human society, manifesting in
various forms including electricity, heat, transportation, manufacturing, and
agriculture. The energy use per person on earth varies between countries.
The countries with higher GDP per capita tend to use more energy per
capita as well. Figure 1.3 shows the map of energy consumption per capita
in 2022 for all countries on Earth.

No data
0 kWh

1,000 kWh
3,000 kWh

10,000 kWh
30,000 kWh

100,000 kWh

Figure 1.3: Energy use per person in 2022, measured in kWh. Energy refers to pri-
mary energy using the substitution method. Primary energy includes
energy that the end user needs, in the form ofelectricity, transport and
heating, plus inefficiencies and energy that is lost when raw resources
are transformed into a usable form. The ‘substitution method’ is used
by researchers to correct primary energy consumption for efficiency
losses experienced byfossil fuels. It tries to adjust non-fossil energy
sources to the inputs that would be needed if it was generated from
fossil fuels. It assumes that wind andsolar electricity is as inefficient
as coal or gas. Figure adapted from [5]

On a global level, energy production has been dominated by fossil fuels
that are based on combustion. About 80 % of the energy is produced by
the combustion process even in the year 2022. Figure 1.4 shows the world
energy production by source from 1995-2022. As seen, in the last 15 years,
the contribution of solar and wind has increased dramatically in the energy
production mix. However, their contribution has been rather marginal at
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the global level. On the other hand, fossil fuels are not sustainable and
in fact this will be a challenge in the next few years if we want to aim at
producing energy sustainably.

When it comes to global electricity production, coal-based power plants
have been dominating the mix, followed by gas and hydropower. Fossil fuel
sources account for more than 50% of the global electricity production in
2022. Figure 1.5 shows the world electricity production by source from 1995
to 2022. By grouping countries according to their income level, the mix of
electricity production sources also varies. Figure 1.6 shows the production
of electricity by source in different income levels. The populations in each
group in the year 2022 are about 703 million, 6.678 billion, 2.784 billion, and
1.244 billion people for the low-income, low-middle-income, upper-middle-
income, and high-income countries, respectively [6]. Hence, it is remarkable
that the high-income countries produce about three times the electricity
than the lower-middle income countries, while the population is 5.35 times
lower.

1995 20222000 2005 2010 2015
0 TWh

20,000 TWh

40,000 TWh

60,000 TWh

80,000 TWh

100,000 TWh

120,000 TWh

140,000 TWh

160,000 TWh
Other renewables
Modern biofuels
Solar
Wind
Hydropower
Nuclear
Natural gas

Oil

Coal

Traditional biomass

Figure 1.4: World energy production by source from 1995-2002, measured in
TWh . Figure adapted from [7].

In high-income countries, the production of electricity from coal has been
on the decline since 2008. In contrast, the generation of electricity using gas
has seen a consistent rise and in 2022, it became the predominant source,
accounting for 33% of the total energy produced that year. Additionally,
both solar and wind energy have seen considerable increases from 2010 on.
However, in the upper-middle-income and lower-middle-income countries,
coal has been the main producer of electricity, even until 2022. Gas and coal
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Figure 1.5: World electricity production by source from 1995-2022, measured in
TWh. Figure adapted from [7].

accounted for 62.37% and 73.73% of total electricity production in countries
of upper middle income and lower middle income, respectively. Similarly
to high-income countries, solar and wind have seen rapid increases since
2010. In low-income countries, hydropower has been the main electricity
production.

Other renewables Bioenergy Solar Wind Hydropower Nuclear Oil Gas Coal

Low-income countries

1995 20222000 2005 2010 2015
0 TWh

50 TWh

100 TWh

Lower-middle-income countries

1995 20222000 2005 2010 2015
0 TWh

1k TWh

2k TWh

3k TWh

Upper-middle-income countries

1995 20222000 2005 2010 2015
0 TWh

4k TWh

8k TWh

12k TWh

High-income countries

1995 20222000 2005 2010 2015
0 TWh

2k TWh
4k TWh
6k TWh
8k TWh

10k TWh

Figure 1.6: Electricity production by source in different countries category by
income level. Figure adapted from [7].
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A recent report by the International Energy Agency (IEA) in 2023 pre-
sented different scenarios for future energy and electricity production [8].
In all different scenarios, solar photovoltaic (PV) is predicted to dominate
electricity production. However, combustion-based power production is still
going to play an important role in all scenarios. It is also noted that in the
future batteries and demand response play a critical role in meeting hourly
variability, while dispatchable low-emission generators such as fossil fuel
capacity with CCUS (Carbon Capture Utilisation and Storage), hydropower,
biomass power, nuclear and hydrogen and ammonia-based plants will play
a critical role in smoothing variability across seasons. It is predicted that the
demand for oil and natural gas in developing countries such as China, India,
Indonesia, southeast Asian countries, and African countries will remain
significant. Furthermore, in one of their scenarios, Japan and Korea will
import significant amounts of hydrogen and hydrogen-based fuels for use
in the power sector and for direct use in industry.

1995 20202000 2005 2010 2015
0 t

2 billion t

4 billion t

6 billion t

8 billion t

10 billion t

12 billion t

14 billion t

Electricity and heat

Transport

Manufacturing and construction
Agriculture

Fugitive emissions
Industry
Buildings
Waste
Land-use change and forestry
Aviation and shipping
Other fuel combustion

Figure 1.7: World greenhouse gas emissions by sector. Emissions are measured in
tonnes of carbon dioxide-equivalents. The graph is adapted from [9].

Energy production and consumption emit greenhouse gases that con-
tribute significantly to global warming. Other human activities such as
agriculture, and land-use change & forestry also emit greenhouse gases
(GHG). Figure 1.7 shows the greenhouse gas emissions by sector, measured
in tonnes of CO2 equivalent. As seen, electricity and heat are the main
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No data Below global Above global

Figure 1.8: This map denotes whether a country’s average per capita emissions
are above or below the value of global per capita emissions, adapted
from [5]. This is based on territorial emissions, which do not adjust
for trade. Figure adapted from [9].

contributor to GHG emissions, followed by transportation in the second
place. Both account for approximately 75% of the global GHG emissions.
Therefore, abating CO2 emissions from both sectors is essential to prevent
further global warming. It should be noted that the equivalent emissions
per capita also varies between countries. Figure 1.8 presents a geographical
representation that distinguishes countries based on their per capita CO2
emissions, comparing each country’s emissions with the global average per
capita emissions.

Contributions to global warming from different groupings of countries,
classified by income levels, can be analyzed quantitatively. Figure 1.9 shows
the impact of fossil fuels & industry and agriculture & land use on global
warming for each income group, as well as the cumulative global impact,
using 1850 as the baseline year. The calculation of the global mean surface
temperature change incorporates emissions of carbon dioxide, methane,
and nitrous oxide. The data clearly show that high-income countries are the
predominant contributors to global warming, responsible for an increase
of approximately 0.64 °C by 2021. Following them, upper-middle-income
countries have contributed to a rise of 0.55 °C in global temperatures by
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Figure 1.9: Global warming contributions from fossil fuels and land use, 1995
to 2021. Change in global mean surface temperature as a result of
cumulative emissions by a country or region of three gases – carbon
dioxide, methane, and nitrous oxide. The reference year is 1850. Figure
adapted from [9].

2021. At the global level, the earth’s temperature has increased by 1.6 °C
since 1850.

To address climate change, the Paris Agreement convened in 2015 with
a primary goal to limit global warming to below 1.5°C by the century’s
end. Peters et al. [10] emphasized the need for a unified approach to
monitor progress, spanning various levels of detail and timeframes. They
categorized key indicators into five layers, with the first layer encompassing
total global or country-level CO2 emissions. The second layer includes
indicators like CO2 emissions per energy unit, further dissected in the third
layer into carbon intensity of fossil fuels and their share in the energy
mix. They suggested that CO2 emissions reduction could be achieved by
transitioning from coal to gas, implementing carbon capture and storage
(CCS), or increasing renewable energy use.

The switch from coal to gas could reduce CO2 emissions, as well as
NOx, SO2 and particulate matter (PM2.5) [11]. As noted in the report of
International Energy Agency (IEA) in 2019 [11], the combustion of natural
gas emits 40% less CO2 compared to coal for the same energy unit produced.
The benefit of natural gas over other types of fuel is further reinforced when
considering the emissions of particulate matter, sulfur oxides, and nitrogen
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Figure 1.10: Share of fuel sources in pollutant emissions measured in metric ton
(Mt). Non-combustion emissions are process emissions in industry
and non-exhaust emissions in transport. Figure adapted from [11].

oxides. Figure 1.10 shows the proportion of different fuel sources in the
emission of all the aforementioned emissions. It is evident that natural gas
combustion releases significantly lower amounts of PM2.5 and SO2.

Increasing the proportion of renewable sources, such as solar and wind,
for electricity generation poses many challenges due to their intermittency
and variability [12]. These sources require advanced strategies to balance
the supply and demand in the electric grid. Owing to its high load flexibility
and low emissions, combined cycle gas turbine power plants are a suitable
candidate to fulfill the role of load balancer [13]. Furthermore, excess energy
production from renewable sources could be stored in a form of hydrogen
by electrolysis [14, 15]. Hydrogen produced in this way is termed green
hydrogen. Hydrogen storage with up to 2 weeks of discharge duration
is predicted to be cost-effective in future power systems [16]. The stored
hydrogen could then be utilized as a fuel for gas turbines. The concept of
power-to-hydrogen-to-power has received a lot of attentions. For example,
in 2020, the HYFLEXPOWER (HYdrogen as a FLEXible energy storage for
a fully renewable European POWER system) project received funding from
the European Research Council. The goal of the project was to demonstrate a
fully integrated Power-to-H2-to-Power industrial-scale installation in a real-
world power plant application with 12 MW electricity [17]. Skordoulias et.
al [18] investigated the techno-economic analysis of the “power to hydrogen
to combined heat and power systems" (PtH2tCHP). Their study showed that
with the expected decrease in the capital cost of the electrolysis unit and the



1.3 sequential combustor 11

high utilization rate of the electrolysis unit, the levelized cost of hydrogen
production could drop to 3 €/ kg. Furthermore, with the expected increase
in carbon cost in the coming years, the production of renewable electricity
through PtH2tCHP could be more economically viable and cheaper than
the combustion of 100% natural gas in 2030. Thus, gas turbines are expected
to remain a vital component of our energy infrastructure in the foreseeable
future, balancing the integration of renewable energy sources.

The GT36 gas turbine, featuring a constant pressure sequential com-
bustion (CPSC) design, can efficiently burn fuel with a high hydrogen
blend [19]. Additionally, it offers a wide operating load range [20], while
maintaining low emissions and high efficiency. By examining the CPSC con-
figuration at a laboratory scale, this thesis aims to offer a solution to control
the thermoacoustics of the combustor to further enhance the operational
range.

1.3 sequential combustor

Brown Boveri Company (BBC) installed the first 10 MW gas turbine unit for
power generation at the Filaret power plant, Bucharest, Romania [3]. The
photograph of the gas turbine engine and its schematic diagram are shown
in Figure. 1.11. There are two sets of compressors, turbines, and combustors
in the setup, with one set operating at high pressure and the other under
low pressure. The maximum turbine inlet temperatures were about 566°C
and 573°C, which were below the limit of the materials at that time (600
°C). The plant had a higher efficiency compared to the first gas turbine in
Neuchatel, the corrected coupling efficiency during the acceptance tests in
Baden 1946 was 23.72 percent [3].

1.3.1 GT24/GT26 Gas Turbine

The next milestone took place in the mid-1990s when the GT24/GT26
gas turbine engine was introduced and marketed as “sequential combus-
tion" concept. At that time, the BBC company had been replaced by the
ABB/Alstom company. The GT24/GT26 was created in response to the
trends in the power market that were moving to higher output & efficiency,
substantial NOx reductions, and operational flexibility [3]. GT24 and GT26
were designated for 60 Hz and 50 Hz application, respectively. Both series
operates with an efficiency of 38.2% in the simple cycle mode and 58.5%
in the combined cycle mode [21]. Both are equipped with 22 stages of
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Figure 1.11: Photograph a) and schematic diagram b) of the first BBC’s 10 MW
power generating unit with sequential reheating at Bucharest, Ro-
mania. Images taken from [3]

compressor, resulting in a pressure ratio of 30, and 5 stages of turbines.
The turbine exhaust temperature is 610°C, which is ideal for the combined
cycle (gas and steam) configuration [21]. Images of the welded rotor and
the schematic diagram of GT24/GT26 are shown in Figure. 1.12.
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Section through the sequential combustion system in the GT24/GT26 gas turbine
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Figure 1.12: Photograph of the welded rotor a) and schematic diagram b) of
the GT24/GT26. Images in a) are adapted from [3], the schematic
diagram in b) is adaped from [21]

The combustor is made up of two sequentially staged EV (EnVironemntal)
combustor with a high pressure turbine in between. The EV combustor
design was first presented in [22], where the flameholding mechanism is
based on then vortex breakdown generated by a swirler. The sequential EV
combustor (SEV) relies on the self-ignition effect of the fuel and the hot
mixture from the first stage EV combustor.

The compressed air coming from the compressor is fed through the first
EV combustor which is supplied with 60% of the total amount of fuel (at
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full load condition) [21]. The combustion gas then expands through the high
pressure turbine and the pressure drops from 30 to approximately 15 bar.
The hot air at 1000°C then goes to the SEV combustor and remaining fuel
and the bled air from the compressor are then added to the SEV combustor.
The bled air or the dilution air enhances the premixing and also acts as an
ignition controller [21]. The temperature of the second combustion products
reaches the maximum turbine inlet temperature. As in the EV combustor,
the second flame is anchored at the vortex breakdown position, in which
the vortices are generated by delta-wing vortex generators placed on the
walls of the SEV burner. The final expansion happens within the subsequent
4-stage turbine. The rated NOx emission was below 25 ppmv with dry fuel
gas, and below 42 ppmv for wet oil combustion.

1.3.2 GT36 Gas Turbine

The most recent advancement in the commercial sequential combustor
setup is the Ansaldo GT36 gas turbine. This development was carried on
by Ansaldo Energia after General Electric (GE) acquired Alstom Power in
2014. The GT36’s design resembles that of the GT24/GT26, which also uses
a sequential combustor configuration. A significant change in GT36 is the
elimination of the high-pressure turbine, leading to the introduction of the
term CPSC (Constant Pressure Sequential Combustor) [20]. The rated power
for GT36 s5 (50 Hz) and GT36 s6 (60 Hz) for combined cycle is 720 MW
and 500 MW, with the ISO efficiency of 61.5% and 61.3%, respectively.

The GT36 shares several benefits with the GT26, including high turndown,
high reliability, and low emissions. Additionally, it offers improvements in
design simplicity and increased flexibility in load handling. The elimination
of the high-pressure turbine simplifies the maintenance of the combustor
because it requires no rotor extraction for more extensive combustor and
turbine access.

Figure 1.13 shows the GT36 gas turbine and its cross-sectional cut. The
dilution air mixer is introduced upstream of the sequential burner via a
multi-row mixer with specific nozzles designed for uniform inlet profile to
the sequential burner. The sequential fuel is injected downstream inside
the so-called mixing duct. Similarly to GT26, the front panel of the se-
quential burner is equipped with Helmholtz resonators for thermoacoustic
stabilization [20].

The air exiting compressor is split into two main paths; the first path
goes to the first stage premix burner and combustor, the second path
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goes to the sequential linear cooling and subsequently to the dilution air
mixer. The hot gases from the first-stage combustion products mix well
with the downstream dilution air at a temperature typically of around
1000°C. This temperature is termed the mixer exit temperature (MET)
and is the control parameter for the combustor, which is a function of
load, fuel composition, and dynamics. The sequential fuel is then injected
through multiple downstream nozzles equipped with vortex generators to
enhance mixing. Subsequently, the sequential flame burns downstream in
the sequential combustor, whose length is chosen to minimize residence
times to minimize the NOx emissions through the Zeldovich mechanism.

The CPSC configuration allows for high fuel flexibility. For example, if
there is a change in the reactivity of the mixture due to a higher hydrogen
content, a lower inlet temperature, or MET, can be achieved by changing the
split of the fuels between the first stage and the second stage [19, 20]. When

15 Stage
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Compressor
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Combustor

Combustor

Sequential
Combustor Turbine

4 stage turbine

GT26

GT36
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b)

Figure 1.13: a). The GT36 H-class gas turbine. b) The evolution from GT26 to
GT36. Adapted from [20]
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operating in high-load conditions, and therefore, with increased heating of
compressor exit air, the air routing is configured so that the first-stage flame
burns colder than at the part load to minimize NOx emissions. A single
can high-pressure combustion test campaign was carried out to investigate
the capabilities of CPSC to burn high volumetric hydrogen, and it was
presented in [19]. It was noted that in the range of 0%-70% (vol.) H2, stable
operations were possible at full nominal combustor exit temperature by
adjusting the MET. However, for a larger amount of H2, adjustment was
no longer possible because the flame propagation stabilization mechanism
would dominate, and hence, a reduction in the equivalence ratio was
necessary to be compatible with the burner design. However, NOx emissions
remained low in all test cases, highlighting the remarkable potential to
fully decarbonize power generation. It is worth mentioning that Schulz
et al. [23] identified through numerical simulations the three combustion
regimes of the sequential flame: autoignition, flame propagation, and flame
propagation assisted by autoignition. It was shown that variation on the
inlet temperature of the sequential combustor, or equivalently, the MET,
will result in changes in the flame stabilization mode.

Due to its high level of fuel flexibility, low NOx emissions, and the ability
to burn hydrogen, the CPSC configuration could be relevant in the future
market for power generation. However, similar to the conventional single-
stage combustor, the operability of the CPSC configuration is still limited
by the thermoacoustic instabilities. The description of the thermoacoustic
instabilities and its physical mechanism are described in the next section.

1.4 thermoacoustic instabilities

Thermoacoustic instabilities result from the constructive interplay between
acoustic disturbances in the combustion chamber and the fluctuating heat
release from the flame [24, 25, 26]. This interaction typically produces
high-amplitude pressure pulsations that can be harmful. These instabilities
are not restricted to a single type of application; they can be observed in
a range of systems, such as boilers, rocket engines, jet engines, and gas
turbines [26, 27]. In particular in gas turbines with premix-type combustor,
these instabilities are more likely to occur [28].

The first person to observe the thermoacoustic phenomenon was Dr.
Higgins in 1777 [29]. He noted that a hydrogen flame placed inside a
tube produced sweet tones that vary according to the geometry of the
tube. About 100 years later, Lord Rayleigh gave the explanation of the
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phenomenon [30, 31]: If heat be given to the air at the moment of greatest
condensation, or be taken from it at the moment of greatest rarefaction, the vibration
will be encouraged. On the other hand, if heat will be given at the moment of greatest
rarefaction or abstracted at the moment of greatest condensation, vibration will be
discouraged. These sentences are widely known as the “Rayleigh Criterion".

A prime illustration of the destructive impacts of uncontrolled thermoa-
coustic instabilities can be seen in the development of the F1 rocket engine.
This issue persistently caused the rocket engine combustor to fail, over
2000 full-scale tests were done to eventually devise an optimal injector
and baffle design to eliminate these instabilities [32]. Notably, the predomi-
nant instability mode was identified as the first tangential spinning mode,
approximately at 500 Hz.

The examples of engine components damaged by these instabilities are
shown in Figure 1.14. Such occurrences can significantly compromise the
safety and reliability of engines. In the case of gas turbines, this would
result in a need for extensive overhauls, leading to costly maintenance and
operational downtime, ultimately causing a loss of revenue due to halted
electricity or energy production.

The diagram in Figure 1.15 provides a simplified overview of the key
thermoacoustic interactions and the associated feedback mechanisms. The
process begins with modulation of the fuel and air flow, which leads to
changes in the equivalence ratio and coherent mass flow fluctuations. These
alterations contribute to coherent fluctuations in the rate of reactants con-
sumption. In addition, turbulence introduces stochastic fluctuations in the
equivalence ratio and mass flow, which in turn causes stochastic fluctu-

a) b) c)

Figure 1.14: a). Rocket engine destroyed by thermoacoustic instability during
the early years of the US rocket program, adapted from [33]. b)
Borescope of damaged combustion chamber due to thermoacoustic
instabilities and c) photograph of damaged combustion chamber
assembly, adapted from [34]
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Figure 1.15: Diagram of thermoacoustic interaction in a combustion chamber.
The picture in the first row is the Helmholtz solver solution of the
sequential combustor configuration at CAPS Laboratory.

ations in the consumption rate of reactants. Consequently, this results in
fluctuations in the heat release rate and the generation of entropy waves.
The fluctuation in heat release acts as a source term in the wave equation,
while the entropy waves have the potential to produce sound at the outlet
boundaries, effectively altering the outlet reflection coefficient. These re-
flected waves then travel back towards the burner, completing the feedback
loop.

The aforementioned “Rayleigh Criterion" could be mathematically de-
rived by writing the acoustic energy balance. For simplicity, the contribution
of the mean flow is neglected, and the flow is assumed to be isentropic. The
energy balance between the acoustic energy flux

⇀

I, the acoustic energy of
the systen E, and the source Φ can be written as follows [35, 36, 37]:
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where p′,
⇀

u′, and q′ are the acoustic pressure, acoustic velocity fluctuations,
and heat release rate fluctuations, respectively. The mean density, the speed
of sound, the mean pressure, and the specific heat capacity are denoted by
ρ0, c0, p0, and γ, respectively. By integrating over the volume and applying
the time averaging operator, ⟨ ⟩, Eq 1.2 can be written as follows:

∂

∂t

∫
V
⟨E⟩dV =

∫
V

γ − 1
γp0

⟨p′q′⟩dV −
∫

S
⟨p′

⇀

u′⟩dS. (1.3)

The term on the left-hand side (LHS) denotes the rate of change of
the total acoustic energy in the domain. The first term on the right-hand
side (RHS) is the source term that depends on the phasing between the
pressure fluctuations and the heat release rate fluctuations. When the phase
is between -90°and 90°the term will be positive. The second term on the
RHS denotes the flux or losses across the boundaries. When the first term
in the RHS is larger than the second, there will be an increase in acoustic
energy in the system and thermoacoustic instability could be established.
Note that the energy will not increase to infinity as there will be some
saturation mechanism taking place in the real system.

If the pressure field is the quantity of interest, the acoustic wave equation
can be derived from the conservation of mass and momentum, and by
noting that heat release rate fluctuation is a monopolar source, the wave
equation is expressed as:

∂2 p′

∂t2 + α
∂p′

∂t
− c2

0∇2 p′ = (γ − 1)
∂Q′

∂t
, (1.4)

where the second term on the LHS is the acoustic loss. The pressure field
can be projected to orthogonal basis Ψ and writte as:

p(x, t) =
∞

∑
i=1

ψi(x)ηi(t), (1.5)

where ψi(x) is the ith eigenmodes of the system , and ηi(t) is the correspond-
ing modal amplitude. Note that the eigenmode ψi satisfies the following
Helmholtz equation:
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∇2ψi(x) +
(

ω2
i

c2
0

)
ψi(x) = 0, (1.6)

If one acoustic mode is dominating, a single mode projection can be
employed: p(x, t) = ψ(x)η(t). Using the Laplace transform and considering
Eq 1.4, the equation for the modal amplitude η̂(s) can be written as [38]:(

s2 + αs + ω2
)

η̂ = sq̂, (1.7)

where q̂ is the projection of the flame heat release rate fluctuation to the
mode ψ:

q̂ =
γ − 1
VΛ

∫
V

Q̂(s, x)ψ(x)dV, (1.8)

where Λ is the mode normalization coefficient. The heat release rate fluc-
tuations can be written as the sum of coherent and stochastic part: q̂ =
q̂c + q̂t. The stochastic term is attributed to the turbulence in the practical
combustor. The coherent part results from the interaction with the acoustic
field. The linear coupling between those two is referred to as flame transfer
function (FTF). In many cases, the relationship between the flame heat
release rate and the acoustic amplitude (at a specific frequency) exhibits a
sigmoid-like saturation and hence it is possible to approximate it with a
cubic polynomial [38, 39, 40, 41]:

q̂c = βη̂ +
κ

3
η̂3, (1.9)

where, β is the real part of the flame transfer function at the frequency of
interest, and κ is the corresponding nonlinear coefficient. The imaginary
part of β only affects the frequency and not the stability [38], hence it is
assumed in this explanation that β is a purely real quantity. Combining
equation 1.9 and equation 1.4, and going back to the time domain results
in:

η̈ + ω2η = η̇
(

β − α − κη2
)
+ ξ, (1.10)

where ξ is the stochastic component of the heat release rate due to tur-
bulence. The term β − α = 2ν is the growth rate of the oscillations, which,
for a positive value, causes the acoustic modal amplitude to grow and
then eventually becomes saturated by the nonlinear term κη2. Equation 1.4
describes a van der Pol oscillator that is forced stochastically.

The growth rate ν, the saturation coefficient κ, and the noise intensity
of ξ can be identified by analyzing the statistics of the envelope of η from
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experiments [38, 41]. The information on the growth rate can then be used
to develop a passive damper solution, optimize the parameters of an active
control algorithm, or validate a thermoacoustic network model. It should
be mentioned that a thermoacoustic network model has the advantage of
being able to predict changes in thermoacoustic stability depending on
some variation in the relevant parameters [42, 43, 44, 45].

In a sequential combustor, the first and second-stage flames communicate
via the acoustic field and entropy waves [23, 46]. In low Mach number
combustion, entropy fluctuations are proportional to temperature fluctu-
ations [47, 48]. The heat release rate responds to upstream temperature
fluctuations, due to changes in the ignition delay time [23, 46]. Despite
flame stabilization in the propagation regime, nonlinear responses in the
flame’s heat release rate can occur due to autoignition kernels in the mixing
channel, depending on the mean inlet temperature and temperature forcing
amplitude [23]. When convected autoignition kernels reach the flame front,
they promote a sudden increase in the heat release rate. The dynamics of
the sequential flame can be characterized by a 3×3 flame transfer matrix
relating upstream and downstream fluctuations in acoustic pressure, veloc-
ity, and temperature [49]. Notably, the study in [49] focuses on a sequential
flame that is fully supported by autoignition. Currently, studies on the
flame transfer matrix of a sequential flame are heavily based on numerical
simulations, and no experimental investigations have been performed to
date. This could be attributed to difficulties in measuring the temperature
fluctuations. This thesis also addresses this issue, and later, in Chapter 4,
a laser absorption spectroscopy-based temperature sensor for combustion
applications will be outlined.

Thermoacoustic instabilities not only pose a threat to the structural
integrity of the combustion chamber, but are also often associated with
an increase in NOx emissions [50]. Thermoacoustic instabilities can be
controlled using passive and active control strategies [50]. Passive control
strategies are more widely applied in practical combustors due to their
simplicity. There are two categories in passive control strategies: increasing
the acoustic loses and reducing the acoustic driving of the combustion
process [51]. Examples of the application belonging to the first category
are Quarter-wave and Helmholtz resonators. Helmholtz resonators have
been widely applied in many practical combustors [20, 52, 53]. The second
category includes modification of the fuel injection staging location and
modification of burner geometry.
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The application of active control strategies in the real practical combustors
is rather limited due to the lack of fast and robust actuators. Moreover, it is
crucial to ensure that the actuator’s power consumption is kept minimal to
avoid compromising the efficiency of the gas turbine. Another significant
challenge is the development of a robust controller capable of adapting
to dynamic changes in operational conditions [50]. Plasma discharges,
specifically those generated by nanosecond repetitively pulsed discharges
(NRPDs), have shown promising results in stabilizing the thermoacoustics
of conventional single-stage combustors [54, 55]. This thesis explores the use
of NRPDs in a laboratory-scale sequential combustor for thermoacoustic
control. A brief overview of plasma-assisted combustion is provided in the
next section.

1.5 plasma-assisted combustion

Plasma is the fourth state of matter which is characterized by a collection
of neutral and charged particles which are electrically neutral on average.
In a laboratory, plasma could be generated by example applying a high-
voltage drop across two electrodes with air in between. When the voltage
is sufficiently high, that is, higher than the voltage required to promote a
sufficiently intensive electron avalanche, a sharp increase in current would
occur [56]. The process is typically accompanied by light emission, which is
generated by the excitation of air molecules. For example, light emission
at a wavelengths around 337 nm and around 357 nm are caused by the
transition of excited nitrogen from the N2(C) to the N2(B) state and are
often used to measure the gas temperature [57, 58]. There exist two types of
plasma: thermal and non-thermal plasma [56]. In the former, the rotational
(Tr), vibrational (Tv) and electron temperatures (Te) of the particles are in
equilibrium equal to each other. In the latter case, all temperatures are not
in equilibrium and typically the relation among them is Te > Tv > Tr ≈
Ti ≈ To, where Ti and To are the temperature of ions and heavy particles,
respectively.

Thermal plasma for combustion applications has been applied since
more than one hundred years ago in internal combustion (IC) engines and
spark ignition systems [59]. The nonthermal plasma has a higher electron
temperature (1-100 eV) compared to the thermal plasma, and has attracted
a lot of interest in combustion applications [60]. Some examples of non-
thermal plasma are nanosecond repetitively pulsed discharges (NRPD),
dielectric barrier discharges (DBD), and microwave plasma.
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Figure 1.16: Diagram of the three major pathways of plasma and combustion
interaction. Adapted from [60].

NRPDs refer to the type of plasma generation mechanism in which short
(10− 100 ns ) high-voltage pulses are applied at a high repetition rate in the
range of 1 − 100 kHz. Nanosecond discharges can produce a very strong
reduced electric field that allows energy transfer for the electronic excitation
and dissociation of gas molecules [60]. Therefore, nanosecond discharges
have attracted a lot of interest for combustion applications. One of the
typical uses of nanosecond discharges is to improve the lean flammability
limit of a premixed flame; for example, Barbosa et al. presented the effect
of NRPD on the extension of the lean flammability limit of a swirled lean
premixed flame [61]. The next example is the use of NRPD to control the
thermoacoustics of a turbulent swirled flame, as demonstrated in [54, 55,
62]. In these studies, it was shown that NRPD with a mean plasma power of
approximately 1% the thermal power of the flame could reduce the acoustic
pulsation.
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There are three main pathways for plasma to interact and affect combus-
tion: the kinetic, thermal, and transport pathways [60]. Figure 1.16 shows
the diagram of the three major pathways. In the thermal pathway, plasma in-
creases temperature and thereby accelerates the chemical reaction between
the fuel and the oxidizer. In atmospheric pressure preheated air to 1000 K,
nonthermal plasma discharges can result in gas heating rates between 30
and 50 K/ns. The rapid increase in temperature phenonemon is known as
fast gast heating (FGH) [63]. It results from the relaxation of electronically
excited states of atoms and molecules. However, note that the rate of FGH
depends on the discharge parameters [57].

In kinetic pathways, the generated high-energy electrons and ions pro-
duce active radicals (e.g. O, OH, H) through direct electron impact dis-
sociation, ion impact and recombination dissociation (e.g., O+

2 , N+
2 ), and

collisional dissociations of reactants with electronically and vibrationally
excited molecules. Understanding plasma kinetics is a complex subject,
with numerous studies undertaken to gain both quantitative and qualitative
insights into its processes.

In the transport pathways, plasma can breakdown the fuel into simpler
molecules and hence changing the diffusivity and thus affecting the com-
bustion processes. Plasma also changes the local flow velocity through ionic
wind and hydrodynamic instabilities and hence affecting the flow mixing.

In weakly ionized plasma, that is, where the electron number density , ne,
is much smaller than the gas number density N, the reduced electric field,
E/N, and ne are the important parameters [64]. The reduced electric field
is a function of the gas density, the applied voltage and the geometry of the
discharge cell [59]. The value of E/N governs the electron temperature and
electron-impact reaction rates, and it controls how the electron energy is
dissipated to different excitation channels. Figure 1.17 shows the fraction
of electron energy disspated in different channels as a function of E/N
for H2-Air mixture in stoichiometric [59, 63]. At low E/N ≈ 10Td, most
of the electron energy goes to the vibrational excitation of nitrogen and
hydrogen. At higher E/N values which is the relevant range of interest in
tis thesis, in the range of 100 − 300 Td, the electronic excitatioin of nitrogen
dominates. The excited particles are then quenched during the relaxation
processes and result in the fast heating of the gas, which contributes to the
thermal pathways in Figure 1.16. In nanosecond discharges, during and
after the pulse, electronically excited nitrogen reacts with the molecular
oxygen in exothermic reactions. The generation of the electronically excited
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Figure 1.17: Computed fractional energy dissipated by electrons into the different
molecular degrees of freedom in H2-Air mixture as a function of,
reduced electric field, E/N in Td (V/cm2) [59, 63]. rot+tr: rotational
and translational excitation, v: vibrational excitation, el: electronic
excitation, a+b: sum of singlet electronic excitation, ion: ionisation,
dis: dissociation.

nitrogen and its reaction with oxygen molecules could be summarized in
the following two-step mechanism [64]:

N2(X) + e− −→ N2(A, B, C, a′, . . .) + e− (1.11)

N2(A, B, C, a′, . . .) + O2 −→ N2(X) + 2O + heat (1.12)

Equation 1.11 describes the excitation of nitrogen molecules to the elec-
tronically excited states, and equation 1.12 comprises of different quenching
reactions of electronically excited states to ground states by the oxygen
molecules which in turn produce oxygen atom and heat. The mechanism
was first proposed and detailed in [65].

As mentioned previously, NRPDs have been employed to control the
thermoacoustics of a turbulent combustor in single-stage combustors. This
thesis explores the application of NRPDs in controlling thermoacoustics
within a sequential combustor. The high-voltage electrodes are strategically
positioned within the mixing channel of the sequential combustor, where
gas temperatures exceed 1000 K. This placement is crucial because it enables
plasma breakdown at reduced voltages, owing to the lower gas density at
these temperatures. Consequently, the electrical energy required to initiate
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the breakdown is less than that that would be necessary if the discharge
were to happen at ambient temperatures.

1.6 scope and structure of the thesis

The central focus of this thesis is to apply nanosecond repetitively pulsed
discharges (NRPDs) to stabilize the thermoacoustics of a lab-scale sequential
combustor at atmospheric and elevated pressures of up to 6 bar. A novel
adaptive control approach based on a safe Bayesian optimization algorithm
is developed to optimize the control parameter of NRPDs and the combustor.
Furthermore, a fast and robust temperature sensor based on tuneable diode
laser absorption spectroscopy with wavelength modulation spectroscopy
(TDLAS-WMS). This sensor is designed to support future studies aimed
at understanding the dynamic behavior of sequential flames which are
typically sensitive to inlet temperature fluctuations.

The main objectives of this thesis are summarized as follows:

• Introduce the ultra-low-power NRPD as an actuator to stabilize a
sequential combustor under stationary operation at atmospheric pres-
sure.

• Develop a safe optimization algorithm to optimize the control param-
eters of NRPD and the sequential combustor.

• To create a fast and robust temperature probe sensor, laying the
groundwork for future research into entropy waves within the sequen-
tial combustor.

• Demonstrate the capability and effectiveness of NRPD in stabilizing
the thermoacoustics of a transiently operated sequential combustor at
high pressure.

Chapters 2 through 5 sequentially tackle the stated objectives. The follow-
ing paragraphs provide brief overview of each chapter.

Chapter 2: Thermoacoustic stabilization of a sequential combustor with
ultra-low-power Nanosecond Repetitively Pulsed Discharges. This chap-
ter demonstrates the effectiveness of NRPD to stabilize the thermoacoustics
of an atmospheric sequential combustor. The sequential flame was fueled
with a mixture of hydrogen and natural gas. A parametric study of plasma
repetition frequency (PRF) and generator voltage was performed. The ex-
perimental findings included measurements of NO emissions, high-speed
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OH∗ chemiluminescence imaging, plasma energy deposition, and acoustic
pressure pulsations. It was observed that with a plasma power amounting
to just 1.5×10−3 percent of the flame’s thermal power, the NRPDs effectively
suppressed thermoacoustic instabilities with negligible additional NO emis-
sions. The insights gained from this chapter are pivotal for developing the
adaptive control algorithm discussed in chapter 3 and for the high pressure
experiments presented in chapter 5.

Chapter 3: BOATS: Bayesian Optimization for Active Control of Ther-
moacousticS. This chapter focuses on the development of safe Bayesian
optimization algorithms to optimize control parameters safely. Three dif-
ferent algorithms are extensively presented in detail and demonstrated
through numerical and experimental studies. The algorithms were eval-
uated first in a simpler numerical and experimental setup with only a
single-stage combustor equipped with loudspeaker actuation. Subsequently,
the same algorithm was employed in a sequential combustor with NRPDs
actuation. With the help of the algorithms, it was possible to find regions
in the control parameter space that were thermoacoustically unstable with-
out plasma control but became stable with plasma and produced low NO
emissions.

Chapter 4: Entropy Transfer Function Measurement with Tuneable Diode
Laser Absorption Spectroscopy. This chapter describes in detail the tune-
able diode laser absorption spectroscpy with wavelength modulation spec-
troscopy (TDLAS-WMS) method. The method was employed to measure co-
herent temperature fluctuations of a technically premixed turbulent swirled
flame at three different operating conditions. The resulting entropy transfer
function (ETF) and flame transfer function (FTF) .This chapter establishes
a fundamental groundwork for subsequent research in the experimental
investigation of entropic response of sequential flame.

Chapter 5: Plasma Assisted Thermoacoustic Stabilization of a Transiently
Operated Sequential Combustor at High Pressure. This chapter focuses
on the evaluation of the actuation performance of NRPDs under transient
operation at high pressure. The expereiments are carried out in the newly
built high-pressure setup at CAPS lab. Two different transient scenarios
are considered: first, the combustor is operated at a pressure of 5 bar and
the tunable outlet orifice area is progressively increased. This results in the
change of outlet impedance and enhances the acoustic pulsations when
the system is uncontrolled. Second, the thermal power of the sequential
combustor is ramped-up from 273 to 341 kW, the combustor pressure
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simultaneously increases from 4 to 5 bar. In addition, the performance of
the actuator is evaluated in stationary conditions under high pressure.



2
T H E R M O A C O U S T I C S TA B I L I Z AT I O N O F A S E Q U E N T I A L
C O M B U S T O R W I T H U LT R A - L O W- P O W E R N A N O S E C O N D
R E P E T I T I V E LY P U L S E D D I S C H A R G E S .

It doesn’t matter how beautiful your theory is, it
doesn’t matter how smart you are. If it doesn’t agree
with experiment, it’s wrong.

— Richard Feynmann

In this chapter, the first demonstration of nanosecond repetitively pulsed
discharges (NRPDs) to stabilize an atmospheric sequential combustor is
presented. Parametric studies on the NRPDs parameter such as generator
voltage and pulse repetition frequency (PRF) is conducted to evaluate their
effect on the NO emissions and acoustic pulsations. It is found that NRPDs
with a mean plasma power of 1.5 × 10−3 percent of the thermal power of the
flame can adequately stabilize the thermoacoustics. However, Depending on the
combination of the parameters, thermoacoustic instabilities could be enhanced.
Changes in the flame structure of the sequential flame are studied by means of
high-speed OH∗ chemiluminescence imaging. This chapter introduces novel
findings that establish a basis for future research.

2.1 introduction

One major technological breakthrough of the recent past in gas turbine
technologies is the constant pressure sequential combustor (CPSC) [20, 66].
It significantly improves the operational range with very low pollutant
emissions, and the fuel flexibility, which is the ability to be supplied with
mixtures of hydrogen and natural gas, as well as non-conventional fuels
derived from waste processes or biomass gasification [67]. Notably, the
combustion of pure H2 in an academic CPSC configuration has recently
been investigated in [68]. In CPSC configurations, the hot products from the
first-stage combustor are diluted with air bypassing the first-stage before
the sequential fuel is injected. This combustor architecture reduces the
temperature of the vitiated air flow at the inlet of the sequential stage
to prevent too fast autoignition of the sequential fuel in poorly mixed
conditions. Ensuring in this way a sufficient mixing time of the globally lean

29
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mixture of gas and vitiated air, the exothermal reactions of the autoignition
process in the sequential stage occur under well-mixed conditions, and
therefore the NOx emissions can be drastically reduced.

Similarly to a traditional combustor, CPSC combustors are also prone to
thermoacoustic instabilities [69, 70, 71, 72]. These instabilities can lead to
high amplitude acoustic pressure oscillations which can lead to vibration-
induced structural damage and possibly flame flashback [33]. Therefore,
the development of technologies to control instabilities is essential for the
safety and operability of gas turbines.

Passive damping strategies have been widely studied and applied in real
combustors. For example, the nonlinear behavior of Helmholtz resonators
mounted on the walls of combustion chambers has been investigated in a
recent study in order to draw design guidelines to avoid failures of their
damping effectiveness [73]. Furthermore, dampers based of interconnected
cavities with broadband acoustic absorption capabilities were successfully
implemented in large modern gas turbines [53, 74]. However, the design
of these passive dampers is still challenging for the following two reasons:
First, it requires costly engine testing to obtain a relatively precise prior
knowledge of the difficult-to-predict thermoacoustic instabilities, in order
to tune their geometry for effective reduction of the acoustic amplitude.
Second, for a given volume constraint for their implementation, there is
always a trade-off to find between their broadbandness for addressing
multiple instability frequencies and their effectiveness at a given frequency.

In contrast, active control strategies can adapt to the operating conditions
of the system but, so far, their implementation in real engines has been
hindered by the harsh thermodynamic and thermochemical conditions and
by the lack of cost-effective and mechanically robust actuation solutions.
The big challenge of implementing active control strategies is to find appro-
priate actuators [75, 76]. For example, the use of loudspeakers to stabilize
an unstable combustor by tailoring its acoustic boundary conditions was
successfully achieved in an academic configuration operated at atmospheric
pressure [77] but could not be applied in a real engine. Another active
control strategy, based on the fast modulation of the fuel mass flow has
been successfully developed about thirty years ago for liquid spray [78] and
natural gas [79]. The latter technology has even been validated in heavy
duty gas turbines and was commercialised. However, effective modulation
of the pilot gas mass flow cannot be achieved beyond 500 Hz, which pre-
vents one from addressing the problem of high-frequency instabilities with
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the corresponding valves. Furthermore, such modulation of the fuel mass
flow could negatively impact the pollutant emissions.

In this context, the search for alternative actuators for gas turbine com-
bustors, with high control authority, low power consumption, and minimal
additional emissions, is highly relevant to increase the fuel and operational
flexibility of future gas turbines. This chapter focuses on ultra-low-power
plasma actuation, which has never been implemented in industrial systems
so far, and aims to show that it is a very promising strategy for suppressing
thermoacoustic instabilities in sequential combustors without increasing
NOx emissions.

Owing to its high influence to the kinetics of the reactive mixture, several
studies have characterized the effect of nanosecond repetitively pulsed
discharges (NRPD) on the heat release rate oscillations of acoustically-
forced flames. For instance, Lacoste et al. [62] have studied this effect in a
single stage swirled stabilized combustor. It was shown that NRPD affects
significantly the gain and phase of the flame transfer function (FTF) and
thereby, might influence the thermoacoustic stability of the combustor.
In [80], it was shown with a laminar flame that strong heat release rate
modulation can be induced by periodic series of constant voltage NRPD.
The forcing mechanism was mainly attributed to the increase of local
burning velocity close to the plasma region. In a similar set-up to the one
in [62], Moeck et al. [54] have successfully demonstrated the applicability
of nanosecond plasma discharges to stabilize a linearly unstable combustor
with active feedback control. By using the extended kalman filter (EKF),
the instantaneous phase of the acoustic pulsation was estimated and then
fed to the gate signal for the actuation of the plasma generator. The plasma
power required to stabilize the combustor was at around percent of the
flame thermal power. Furthermore, Kim et al. [81] have demonstrated the
capability of NRPD to stabilize a combustor under realistic low-power
conditions of aeroengine combustors.

Nanosecond plasma discharges in pin-to-pin configuration have shown
high potential for second-stage flame stabilization in constant-pressure
sequential combustors, as the hot reactive mixture in the sequential burner
already undergoes radicals-producing chemical reactions that precede au-
toignition. Xiong et al. [82] demonstrated that NRPD could shorten signifi-
cantly the auto-ignition time of a CH4 sequential flame with low electric
power and NO emissions. In a more compact laboratory-scale sequential
combustor, Shcherbanev et al. [57] demonstrated the effectiveness of plasma
discharges in igniting very lean mixtures of hydrogen and natural gas
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blending, thereby enabling a continous ignition of the sequential flame. One
significant advantage of the NRPD actuation is that the electrode system
implementation does not require a drastic modification of the combustor
geometry and could also be considered for retrofitting existing systems.

Another advantage of NRPD is their fast response time, which enables
high-frequency actuation without moving parts that are usually causing
reliability and durability issues in mechanical actuators. Indeed, non-
equilibrium plasma actuation can quickly influence flames, improving
their stability and extending their lean flammability limit [55, 83, 84].

Finally, the mean NRPD power is known to be small compared to the
thermal power of the flame [55, 62, 85]. It should be noted that the mean
NRPD power reported in literature pertains only to the electrical energy
that gets transferred to the system, without accounting for the electrical
energy necessary for the high-voltage generator. However, if we consider an
optimistic scenario where an exceptionally efficient high voltage generator
is feasible, including the achievement of a perfect impedance matching at
the electrodes, the generator’s power requirements would match the energy
deposited into the system. In the case of a sporadic use of the NPRD, for
flame ignition assistance or during transient operation, the electric power
requirements of a NRPD system is not a major driver in the development of
plasma-assisted combustion technologies. Although the mean NRPD electric
power reported in previous works is on the order of 1 percent of the thermal
power of the flame [54, 86], it is worth mentioning that the cost-benefit
analysis of an NRPD system with an electric power of 1 percent of the
combustor thermal power would not be straightforward for heavy duty gas
turbines, for the following two reasons. First, 1 percent is still a large penalty
for gas turbine manufacturers which struggle for gaining any 0.1 percent of
engine thermal efficiency during stationary operation (over the last decade,
this efficiency increased toward 65 percent for combined cycle power plants
by only a couple of percents). Second, for an H-class gas turbine exhibiting
a combustor with 1 GW of thermal power, it means that, by assuming linear
scaling, a system of 10 MW electric power would have to be developed, just
for the NRPD actuation, which is technically rather challenging. This study
demonstrates that for a sequential combustor, operated at atmospheric
pressure, successful actuation suppressing thermoacoustic instabilities can
be achieved with a mean plasma power that is about 3 orders of magnitude
lower than 1 percent of the thermal power, which would be much more
realistic for implementation in practice (for 1 GW of thermal power, one
would need about 10 kW of mean plasma power). Therefore, as research
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in this area continues, it is foreseen that such NRPD technology may
be implemented in future gas turbines burning green H2 in sequential
combustors for compensating the intermittency of renewable sources.

This chapter aims to introduce ultra-low-power nanosecond plasma rapid
discharges (NRPD) to thermoacoustically stabilize a sequential combustor
which has never been attempted so far. Parametric studies on plasma
repetition frequency (PRF) and generator voltage are also performed to
investigate the effectiveness of the actuator in suppressing the instability
and the associated NO emissions.

2.2 experimental setup
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Figure 2.1: Lab-scale sequential combustor test-rig. CC- Combustion chamber,
HVG- High Voltage Generator, BCS- Back Current Shunt.

The lab-scale sequential combustor is depicted in Figure 2.1. The setup
consists of a plenum, a 4 × 4 array of jet flames anchored on a so-called
matrix burner, a combustion chamber with 62 × 62 mm2 cross section, a
dilution air section, a sequential burner featuring a mixing channel with 25
× 38 mm2 cross section in which secondary fuel is injected, a sequential or
second-stage combustion chamber equipped with a motor-driven adjustable
outlet orifice. This variable outlet geometry enables an online tuning of
the acoustic reflection coefficient, and thus an independent control of the
thermoacoustic instabilities, which is key for validating the NRPD-based
control. The first stage combustor is fed with a mixture of natural gas
and air, with the air preheated to 230°C and supplied from the plenum,
while natural gas is added in the matrix burner, which corresponds to
a technically premixed first stage. The thermal power of the first stage
combustor is 35 kW with an equivalence ratio of 0.7. A piezo sensor is
placed on a flush mounted plate to monitor the acoustic pressure inside
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the first stage and denoted as Mic. 1 in the Figure. A massflow of 18 g/s
of dilution air at 25 C is introduced from the dilution air port and mixes
with the hot gases from the first stage. A mixture of 0.07 g/s of hydrogen
and 0.6 g/s of natural gas is injected into the sequential injector. The
sequential injector features an X-shaped vortex generator to enhance the
mixing process. The total thermal power of the two flames is 73.4 kW. A
pin-to-pin electrode configuration, with an inter-electrode distance of 5 mm,
is located 10.3 cm downstream from the sequential fuel injector, and a gas
analyzer probe is placed at 45 cm from the outlet of the second-stage burner
to monitor the NO emissions. Another piezo sensor is placed downstream
of the sequential flame to monitor the acoustic pressure pulsation of in the
second combustion chamber. The exhaust gas analysis is conducted using
an ABB EL3040 gas analyzer equipped with an Uras26 infrared photometer,
operating at a sampling rate of 1 Hz. Automatic calibration with integrated
calibration cells and the sealing tests of the propagation line were carried
out before the start of each measuring set. The device exhibits a relative
extended uncertainty of 7.9% for NO measurements within the range of
0–200 mg/m3.

As indicated above, the outlet of this chamber has an adjustable orifice
to control the thermoacoustic stability of the system. The outlet orifice is
composed of a conical piston which is connected to a DC motor. Adjusting
the position of the piston horizontally enables the variation of the exit
area. To measure NO emissions accurately, the system requires continuous
operation for a duration of 90 seconds. In order to quantify NO emissions
in the absence of plasma discharges, the adjustable orifice is adjusted to
stabilize the flame.

The OH∗ chemiluminescence is used to characterize the sequential flame,
with the camera capturing a portion of the mixing channel downstream of
the electrodes. The intense light emission from the plasma discharges is
masked by an optical obstacle. The recording setup comprises of a LaVision
Star X high-speed CMOS Camera and a LaVision HS-IRO high-speed
intensifier, which are equipped with a 45 mm CERCO UV lens (F/1.8
Cerco) and an Edmund Optics optical bandpass filter (centered at 310 nm,
FWHM 10nm).

To measure the energy deposition of the plasma, a current probe and
a back current shunt are placed on the anode and cathode to acquire
current and voltage. The plasma generator (FID) initiates the high voltage
pulses with a 2-3 ns rise time and a pulsed width of 10 ns. A mixed signal
digital oscilloscope (Tektronix MDO3104) was used to record the current
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and the voltage signals at 1 GHz bandwidth and 5 GHz sampling rate.
A Pearson fast current monitor (model 6585, 0.5 V/A, 50.) was used to
measure the current. During testing, four generator voltages (11, 11.7, 12.5,
and 14 kV) at three pulse repetition frequencies (10, 20, 40 kHz) were used,
with an additional voltage value of 13.2 kV at 40 kHz. All experiments were
performed using only the negative polarity of applied pulses.
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Figure 2.2: Measured voltage, current, and the time derivative of the voltage
without plasma initation.

To obtain synchronization between the current and voltage measure-
ments, an additional series of measurements were conducted under cold
conditions. During these experiments, the signals of current and voltage
pulses were recorded at room temperature and pressure without initiating
the plasma. The lengths of the current probe and BCS cables were chosen
to be nearly the same to minimize signal propagation time disparities. The
displacement current was determined by decreasing the applied voltage
amplitude until the peak voltage was smaller than the breakdown voltage
value. The procedure used is similar to the one in [87]. As the displacement
current is proportional to the derivative of the voltage waveform, an in-
strumental time lag between the measured current waveform and the time
derivative of the voltage signal was calibrated, with a time adjustment of
2.5 ns. This adjustment corresponds to the time lag between current and
voltage traces.
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Characteristic voltage and current waveforms without plasma initiation
are shown in figure 2.2, demonstrating the synchronization process. The
absolute value of the conduction current during discharge was found to
be significantly higher than the displacement current values, and thus the
value of the latter was neglected when calculating the deposited energy
values.
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Figure 2.3: a) One realization of current (black), voltage (red), and energy deposi-
tion (blue). The energy deposition is obtained by taking the integral of
the product of the current and voltage signal. The measured voltage
corresponds to the voltage across the electrodes’ gap and hence it is
not necessarily equal to the voltage of the generator. b) The time trace
of the mean energy deposition and the uncertainty bound at every
time instance. This uncertainty range encompasses the minimum
and maximum values derived from all measured pulses. The inset
shows the distribution of the energy deposition at the end of each
measurement (t = 200 ns).



2.3 results 37

Figure 2.3a illustrates the deposited energy measured within one pulse
of the applied burst (14kV and 10kHz). The observed oscillations in voltage
and current are due to the mismatch between the generator impedance and
the plasma impedance. Under these conditions, the mean energy deposition
is approximately 2mJ, classifying the plasma as spark plasma [88].

To obtain a precise estimate of the mean plasma power, the data were
gathered over a substantial number of applied pulses. Figure 2.3b displays
the time trace of the mean value (solid black line) and the confidence
intervals (cyan shadow) of the deposited energy measured over 500 applied
pulses. The inset provides a clear representation of the distribution of the
final values of the instantaneous energies. Further in the text, the error bars
of the deposited energy are defined as (±2 · σ), where σ is the standard
deviation of the final values of the measured energy profiles. Note that the
measurements of current and voltage were conducted during the open-loop
plasma actuation and may not fully represent the transient case for the
transition from a state without plasma to a state with plasma. The temporal
evolution of the voltage and current signals is recorded during the time
period of 5 ms after the steady-state conditions are reached (10 s after the
start of NRPD actuation). For each operating condition, this recording was
repeated 10 times to acquire more pulses for an overall statistical analysis
of the deposited energy per pulse.

The resulting energy deposition under all conditions is shown in Figure
2.4a). It is interesting to note that the y-axis has a logarithmic scale, and
the energy deposition increases exponentially with respect to the generator
voltage. Furthermore, except at 14 kV, the energy deposition per pulse at
higher frequencies and the same voltage decreases. This is probably due to
the interference between the incoming and reflected pulses inside the high
voltage cable. Additionally, no plasma was observed at 11kV and 40kHz,
consequently, the data cannot be displayed in the plot.

By multiplying the energy deposition and the plasma repetition frequency
(PRF), the mean plasma power is obtained and shown in figure 2.3b). The
highest power is at 81 W, which corresponds to 1.1 × 10−1 percent of the
thermal power of the flames. The ratio between the plasma and thermal
power is indicated on the right axis of figure 2.4(b), denoted as ηp.

2.3 results

Figure 2.5 shows the effects of plasma discharges on the stability of the
sequential combustor at a PRF of 10 kHz and generator voltage of 11.7 kV.
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Figure 2.4: Energy deposition measurement a) and the plasma power b) at three
different PRFs and four generator voltages. The mean plasma power is
obtained by taking the product of the PRF and the energy deposition.
The ratio between the mean plasma power and the thermal power
of the combustor is indicated on the right y-axis in b). There is no
plasma discharge observed at PRF = 40 kHz and V = 11 kV. The error
bars represent the uncertainty at the ±2σ level

The plasma was turned on at t = 5 s and turned off at t = 35 s. In Figure
2.5a and 2.5b, the acoustic pressure signals from the first and second stage
combustion chambers are presented, along with their corresponding power
spectra. The definition of power spectra is as follow:

Spp(ω) = 20 log10

(
p̂rms(ω)

2 × 10−5Pa

)
(2.1)

where ω is the frequency, p̂rms is the root mean squared of the pressue
signal, and Spp(ω) is the power spectrum at the corresponding frequency.

Without plasma discharges, the combustor exhibits a strong pulsation
at the frequency of 330 Hz, by looking at the corresponding probability
density of the bandpass filtered time trace around 330 Hz, it is clear that
the system exhibits a stable limit cycle. Furthermore, the power spectra
of the first microphone show a resonance peak at 260 Hz for which the
importance will become clearer later.

Immediately after the start of plasma actuation, a burst of the mean
pressure signal is observed, which then decays to the nominal value. This
burst is attributed to the rapid change in flame position induced by the
start of the NRPD and the presumed abrupt variation of pressure drop
across the sequential burner. Nevertheless, its amplitude and relaxation
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Figure 2.5: The time trace of the acoustic pressure signal with and without
plasma discharges and their corresponding power spectra inside the
first a) and second b) stage combustion chambers. The PRF is at
10 kHz, and the generator voltage is at 11.7 kV. The mean plasma
power is 1.1 W, which is about 1.5 × 10−3 percent of the thermal
power of the flame. The bandpass-filtered acoustic pressure signal
and its associated normalized probability density function inside the
first c) and second d) stage combustion chambers. The low-pass and
high-pass frequencies are indicated by the dashed lines in a) and b).
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time do not provide quantitative information about the actual evolution of
the mean pressure in the combustor, as the piezoelectric sensor’s signal is
high-pass filtered in the data acquisition system card and is responsible
for this apparent decay. It is possible that the rise in mean pressure is due
to the plasma discharges altering the flow conditions around the flame.
The purpose of this work is to study thermoacoustic stability control with
NRPD. Therefore, the acoustic signals are bandpass filtered around the
thermoacoustic peak frequency of 330 Hz and are shown in Figure 2.5c and
2.5d, along with their corresponding scaled probability density functions
(PDFs) in the inset.

As seen in Figure 2.5c and 2.5d, when the plasma is on, the combustor
becomes linearly stable. On the contrary, without the plasma, the PDF of the
acoustic pressure exhibits a bimodal distribution, which is a typical feature
of a system that undergoes a limit cycle. Additionally, the first harmonic at
around 660 Hz is also detected in the spectra.

Figures 2.6a to 2.6f show the OH chemiluminescence of the sequential
chamber and of a portion of the burner mixing channel. In Figures 2.6a to
2.6c, the OH chemiluminescence is shown at three different time instances
before plasma initiation, while Figures 2.6d to 2.6f show the OH chemilu-
minescence after plasma activation. The PRF is at 10 kHz with a generator
voltage of 11.7 kV. The mean intensity within the red and blue squares
in Figures 2.6a to 2.6f is illustrated in figure 2.6g. Figure 2.6h depicts the
acoustic pressure inside the first and sequential combustion chambers. Re-
markably, the thermoacoustic limit cycle in the sequential combustor can
be effectively suppressed with a mean plasma power of only 1.1 W, which
is about 1.5 × 10−3 percent of the thermal power of the flame. The mean
plasma power in our case is similar to that in [86]; however, the thermal
power of the flame in our case is 300 times higher than in their case.

In Figure 2.7, the frequency spectra of the pressure oscillations are dis-
played, with the PRF fixed at 10 kHz and at varying generator voltages.
It is evident that the peak corresponding to a limit cycle around 330 Hz
becomes smaller, and thus corresponding to a thermoacoustic stabilization,
and shifts to higher frequencies as the voltage and energy deposition in-
crease. This frequency shift can be indirectly attributed to a change in the
mean flame position, which will be quantified later. In Figure 2.7a, another
peak at around 260 Hz becomes more prominent as the voltage is increased,
but the gaussian-like PDF of the acoustic pressure filtered around that
peak (not shown here), indicates that it remains a resonance peak, i.e. the
thermoacoustic oscillations at that frequency are linearly stable. Notably,
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Figure 2.6: (a-f) OH chemiluminescence of the sequential combustor at 6 different
time instances with the time instances shown in g). The PRF is 10 kHz
and the generator voltage is 10 kV. Plasma is initiated at t = 500 ms.
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combustor. h) The bandpass filtered acoustic pressure signal inside
the first and sequential combustor.



42 plasma-assisted thermoacoustic stabilization of atmospheric cpsc

the first microphone has a more intense peak around 260 Hz, compared to
the second microphone. However, for the mode at 330 Hz, almost the same
amplitudes are observed with both microphones.
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Figure 2.7: The frequency spectra of the acoustic pressure signal with plasma
discharges at PRF = 10 kHz and four different generator voltages
inside the a) first and b) second stage combustor.

Another important aspect of the actuator’s performance is its ability to
stabilize the system quickly, which can be expressed as a decay rate. To
measure this decay, in a similar way to [38], a periodic on-off cycle of plasma
actuation is applied. The plasma is turned on for 5 seconds, followed by
a 5-second off period, and the entire cycle is repeated for 5 minutes. The
time trace of the first microphone’s bandpass-filtered acoustic signal during
this process is shown in Figure 2.8, with the PRF set at 10 kHz and the
generator voltage at 12.5 kV. The envelope of the acoustic pressure signal A
is obtained from these data by computing the analytical signal using the
Hilbert transform and is averaged over the cycles. Figure 2.8 illustrates the
distribution of the pressure envelope at different time points, with the black
line indicating the mean value. This procedure is repeated at generator
voltages of 11.7 kV and 14 kV. The resulting decay rates at different voltages
are shown in Figure 2.9, where the envelope is normalized to its value
at t = 0 for a better comparison. It is evident that the envelope decays
faster as the voltage increases. The system takes around 30 ms to reach a
quasi-steady-state value with generator voltages of 12.5 and 14 kV, and the
steady-state value is lower at higher voltages.

Figure 2.10 displays the time evolution of the flame centre of mass at
PRF of 10 kHz and various voltages. The OH∗ chemiluminescence data
are vertically integrated, and the centre of mass is computed along the
streamwise direction. At 11 kV, the plasma has little effect on the flame,
and the fluctuation around 330 Hz is still evident. With increasing voltage,
the fluctuation of the flame centre of mass decreases more rapidly, which
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is strongly correlated with the pressure signal. Moreover, the steady-state
value of the flame centre of mass with plasma actuation decreases as the
voltage is increased, and the centre of mass shifts closer to the burner outlet.
This shift is due to higher energy deposition, resulting in increased mean
plasma power that enhances the autoignition process in the mixing section
of the sequential burner more effectively.
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Figure 2.10: Evolution of the OH∗ intensity integrated horizontally along the
x-axis and the flame centre of mass before and after the plasma
actuation (a-d). Only the region in the sequential combustor, which
corresponds to the red box in figure 2.6, is considered. The start of
the plasma actuation is at t = 500 ms and indicated by the dashed
magenta line in (a-d). The size of the red markers is proportional to
the sum of OH∗ chemiluminescence intensity. The PRF is fixed at
10 kHz, the generator voltages are a) 11 kV, b) 11.7 kV, c) 12.5 kV,
and d) 14 kV. The corresponding averaged flame OH∗ chemilumines-
cence images after the plasma initiation for each generator voltage
are presented in (e-h).

Although the decay rate gets faster and the acoustic pressure amplitude
gets smaller as voltage increases, NO emissions increase slightly. Figure 2.11
shows the root mean square of the acoustic pressure prms, NO emissions,
and the flame center of mass with respect to generator voltage. As it can
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be seen, NO emissions increase from around 10 ppmvd at 11 kV to around
12 ppmvd at 14 kV. It is a well-known fact that spark plasma can produce
significant NO emissions [89]. However, in our configuration, the flame
center of mass is shifted upstream, resulting in an increased residence
time for the burnt gases which can also be the cause of the NO increase.
Furthermore, the energy deposition increases by an order of magnitude,
from 0.2 mJ to 2 mJ, as depicted in figure 2.4. According to [57], the plasma
regime changes from glow to spark. However, NO emissions only increase
by less than 1 ppmvd. The exact mechanism behind this process is not yet
clear, and further investigations are needed.

In the context of the stabilization mechanism by NRPD, recent research
by [90] demonstrated a notable influence of NRPD on the gain of the flame
transfer function (FTF). Furthermore, as the application of NRPD leads
to an upstream shift of the centre of mass of the sequential flame within
our experimental setup, as shown in Figures 2.10 and 2.11, it is reasonable
to anticipate a corresponding variation in the phase of the FTF. Research
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Figure 2.12: Contour maps of the rms acoustic pressure (left) and the NO emis-
sion (right) with respect to the variation of plasma repetition fre-
quency and pulses voltage. The crosses indicate the measurement
points. The bandwidth for the rms acoustic pressure calculation is
from 200 Hz to 400 Hz. The NO measurement at V = 13.2 kV and
PRF = 40 kHz is not available because the combustor cannot be
operated for a long enough time interval under this condition due
to excessive acoustic amplitudes.

presented in [91] has demonstrated how the changes in both flame transfer
function’s gain and phase can influence the stability of the system. The
potential alteration of both gain and phase of the FTF for the sequential
flame, induced by NRPD, could consequently introduce variations in the
overall stability of the system. To conclusively validate this hypothesis,
future investigations will necessitate conducting measurements of the flame
transfer function (FTF) for the sequential flame under NRPD conditions,
followed by thermoacoustic stability analyses. This line of investigation will
be a focal point of forthcoming studies.

The same approach was followed at higher PRFs, and the resulting prms
and NO emission maps are shown in Figure 2.12. Since the thermoacoustic
peak of interest in the power spectra of the acoustic pressure is at around
260 Hz that needs to be considered, the bandpass filter was set to span from
200 Hz to 400 Hz for the rms calculation. Examining the map, at 11.7 kV
the plasma discharges at PRF = 10 and 20 kHz are more effective than at
PRF = 40 kHz. This is consistent with the fact that the mean plasma power
obtained at 40 kHz for this voltage is lower than that at 10 kHz or 20 kHz
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as shown in Figure 2.4b. At 40 kHz and 11.7 kV, the plasma is therefore not
strong enough to affect the system. However, at 12.5 kV, all mean plasma
powers at all PRFs are in the same order of magnitude (see Figure 2.4
b). When the PRF is set to 40 kHz, the rms pressure increases. The same
behavior is observed at 13.2 kV, but the system stabilizes again when the
voltage is set to 14 kV. Because there is strong pulsation at V = 13.2 kV and
PRF = 40 kHz, NO measurement could not be performed. However, it is
clear that the NO emission map shows an increasing trend towards high
PRF and high generator voltage, which is consistent with the findings in [82],
which investigated the effect of plasma on the sequential flame position
and on the NO emissions in another sequential combustor. Looking at
the contour maps, it is evident that staying at PRF = 10 kHz with a pulse
voltage above 11 kV, the thermoacoustic eigenmode in the combustor can
be effectively stabilized without compromising the NO emissions.

To shed light on the peculiar phenomenon at PRF = 40 kHz, it is inter-
esting to show the power spectra of both microphones. This information is
given in Figure 2.13. Notably, at 12.5 kV and 13.2 kV, the mode at 260 Hz
becomes self-excited and exhibits a very high amplitude of 160 dB, while
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Figure 2.13: The frequency spectra of the acoustic pressure signal with plasma
discharges at PRF = 40 kHz at four different generator voltages
inside the a) first and b) second stage combustor. The acoustic
presssure histogram of the bandpass filtered signal inside the first
stage combustor at around 260 Hz c) and 330 Hz d). The acoustic
presssure histogram of the bandpass-filtered signal inside the second
stage combustor at around 260 Hz e) and 330 Hz f). Another mode
at around 260 Hz is excited when the generator voltage is at 12.5 kV
and 13.2 kV.
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the mode at 330 Hz is stabilized. As outlined previously, altering the flame
response with respect to the acoustic perturbation, known as the flame
transfer function (FTF), can affect the overall stability of the system. Alter-
ation of the center of mass of the flame will affect the phase of the flame
response. The alteration of the flame phase can stabilize and destabilize the
system in a periodic manner, as demonstrated in [92, 93, 94]. Contrary to
previous studies, it is important to note that enhancing the mean power of
NRPD does not consistently lead to an enhancement in the suppression of
thermoacoustic instabilities. The PDF of the acoustic pressure P̂p shown in
Figure 2.13 c exhibits in the case of repetitive pulses of 13.2 kV a typical fea-
ture of an intermittently unstable thermoacoustic system. This observation
is also confirmed by the time trace of the filtered signal.

The OH∗ chemiluminescence signals at 13.2 kV and PRF = 40 kHz,
recorded during a time interval when the NRPD was activated, are shown
in Figures 2.14a to 2.14f. When the NRPD actuation is turned on with
these pulse generator settings, the thermoacoustic dynamics changes from
a robust limit cycle at 330 Hz, to a limit cycle at 260 Hz, and in contrast to
the PRF of 10 kHz and 20 kHz, the thermoacoustic system is not stabilized.
As can be seen in Figure 2.14, OH chemiluminescence is visible inside the
mixing channel after plasma actuation, due to the formation of ignition
kernels induced by NRPD. Figure 2.14 g shows the intensity of chemilumi-
nescence OH∗ inside the mixing channel, which fluctuates as the intensity
in the combustion chamber at the acoustic pressure oscillation frequency
of 260 Hz. The acoustic pressure time trace shown in Figure 2.14h clearly
indicates that, before plasma actuation, both microphones record similar
acoustic pressure amplitudes. However, after the NRPD are applied, the
acoustic pressure in the first stage combustor is significantly higher than
that in the sequential combustor. This observation is consistent with Figure
2.13, which shows a 20 dB difference in power spectra at 260 Hz between
the two microphones.

To understand the characteristics of the two observed modes at around
260 Hz and 330 Hz, modal analyses by solving the acoustic Helmholtz
equation were performed using COMSOL. Figure 2.15 shows the side view
of the 3D computational domain and the imposed temperature distribu-
tion along the longitudinal direction. The temperature was obtained by
computing the adiabatic flame temperature with Cantera. The temperature
inside the mixing channel is obtained by assuming a homogeneous mixing
between the hot products from the first-stage combustor and the dilution
air.
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Figure 2.14: (a-f) OH chemiluminescence of the sequential combustor at 6 differ-
ent time instances, the PRF is at 40 kHz and the generator voltage is
at 13.2 kV. g) the mean OH∗ intensity inside the mixing channel and
sequential combustor. h) The bandpass filtered acoustic pressure
signal inside the first and sequential combustor.

The purpose of the analysis is not to exactly model the complete acoustics
of the system. This would require an appropriate description of the complex-
valued frequency dependent boundary conditions and loss mechanisms
at the area changes as well as the transfer functions of both flames. The
intend is to provide a visual rendering of length scales of possible modes
involved and that it is plausible that the two observed peaks are of acoustic
origin, despite being rather closely spaced in frequency. The inclusion of
aeroacoustic and thermoacoustic gains and losses, as demonstrated in the
work by [43, 95], can lead to alterations in the system eigenmodes.
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Figure. 2.16 shows the computed eigenmodes of the pure acoustic prob-
lem. The second and third rows compare the solutions with the experiments.
The disparities observed between the solutions from the Helmholtz solver
and the experimental results can be attributed to the omission of aeroa-
coustic and thermoacoustic gains in the model. These disparities have been
observed in the literature such as [72], and [71]. In summary, the intensity
of the peaks at distinct locations is influenced by the combined effects of
the pure acoustic modes, aeroacoustic and thermoacoustic gains and losses
that constitute the system’s eigenmodes.

The plasma discharges are visualized in Figure 2.17. The images are
obtained by removing the intensifier from the high-speed camera and the
OH∗ filter from the lens. The plasma volume is calculated by counting the
number of pixels whose intensity is greater than the background inten-
sity. The images are phase-averaged with respect to the bandpass-filtered
acoustic signals of the first microphone. As seen, during an oscillation
cycle, when the acoustic pressure in the first stage combustor reaches the
maximum point, the plasma bends more towards the outlet of the sequen-
tial burner. Whereas at the other phase angles, the discharge channels are
relatively straight. The plasma bending effect is similar to the one observed
in [57]. It was noted that plasma bending could become evident when the
distance traveled by the plasma-heated fluid parcel during the inter-pulse
time (dconv) approaches the gap distance (dgap). Their research showed that
the bending occurred sporadically. However, in that study, there was no
thermoacoustic instability and plasma bending occurred exclusively at a
PRF of 40 kHz. In the present study, the thermoacoustic instability leads to
the synchronization of the periodic plasma channel bending with the acous-
tic field. The time trace of the plasma volume variation and the acoustic
pressure pulsation in the first stage also show a strong correlation.

Figure 2.18 shows the NO emissions of the combustor with different
NRPD voltages and PRF, plotted against the mean plasma power. A mea-
surement point without plasma, which is indicated by a red cross in Fig-
ure 2.18, is obtained by stabilizing the combustor by adjusting the outlet
orifice. The maximum NO emission of approximately 17.65 ppmvd occurs
at a generator voltage of 14 kV and a PRF of 40 kHz. It is worth noting that
high PRF and voltage can cause early ignition inside the sequential burner
mixing channel, leading to a reduction in mixing quality between the vi-
tiated flow and the secondary fuel, and consequently a potential increase
in NO emissions. A weak correlation between NO emissions and mean
plasma power is observed at power levels ranging from 0.1 to 10 W. As the
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goal of the NRPD actuation in this work is to thermoacoustically stabilize
the sequential combustor, a generator voltage of 11.7 kV and PRF of 10 kHz
is obviously the optimum because the plasma does not lead to an increase
of the NO emissions compared to the nonactuated operation. Furthermore,
the present ultra-low-power NRPD-based control strategies for sequential
combustors open up other possibilities such as thermoacoustic instability
control during transient operation by employing a feedback loop control.

2.4 conclusions and outlook

This study demonstrates that ultra-low-power non-equilibrium plasma can
effectively stabilize a thermoacoustically unstable sequential combustor.
Indeed, the power of the plasma produced by the NRPD which can achieve
thermoacoustic stabilization can be 5 orders of magnitude lower compared
to the flame thermal power: with a mean plasma power of 1.1 W, which is
1.5 × 10−3 percent of the flame thermal power of 73.4 kW, the thermoacous-
tic limit cycle in the sequential combustor was successfully stabilized. At
this condition, there is practically no additional NO emission compared to
the situation where the thermoaocustic mode was stabilized by changing
the outlet orifice geometry of the combustor with a motor-driven water-
cooled piston. However, at PRF = 40 kHz and generator voltages of 12.5 kV,
and 13.2 kV, another thermoaocustic mode at 260 Hz becomes self-excited.
Therefore, now that an effective ultra-low-power actuator has been found
for sequential combustors in the form of NRPD in the sequential burner, a
significant part of the research efforts should concentrate on the develop-
ment of feedback control for ensuring optimum trade-off between global
thermoacoustic stability and NO emissions during steady and transient
operation. Finally, further investigations are required to demonstrate the
practicality of this NRPD actuation at elevated pressures, and to develop
predicting tools of the interaction between plasma kinetics and combustion
reactions in the thermochemical environment of the turbulent sequential
burner.
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3
B O AT S : B AY E S I A N O P T I M I Z AT I O N F O R A C T I V E
C O N T R O L O F T H E R M O A C O U S T I C S

If I have seen further, it is by standing on the shoulders
of giants.

— Isaac Newton

This chapter presents the use of safe Bayesian optimization (safeOpt) algo-
rithm and two adaptation of it for active control of thermoacoustic instabilities.
The main objective of the algorithms is to optimize the control parameters
while maintaining safety criteria. The proposed algorithms are data-driven and
therefore in principle do not require a model. However, if a model is available, it
could be added to the framework as a prior mean function. The performance of
the algorithms is evaluated in a numerical simulation and in two experimental
setups. The numerical simulation and the first experimental setup are the
well-known active control of thermoacoustics with loudspeaker actuation. The
controller is the classical phase-shifter or gain-delay (n − τ) controller. The
algorithms optimize control parameters iteratively. The second experiment
employs nanosecond repetitively pulsed discharges (NRPDs) to control the
thermoacoustics of a lab-scale sequential combustor. The proposed algorithms
help to find regions with low NO emissions that are unstable without NRPDs
actuation.

3.1 introduction

Active and passive control strategies have been extensively studied in
the context of thermoacoustic control. Due to their simplicity, passive
control strategies have dominated the industrial gas turbine application.
Passive control strategies can be grouped into two categories. The first
category relies on the increase of the acoustic losses of the combustor [96].
Typical examples in this category are Helmholtz dampers and quarter-wave
resonators. The second category deals with reducing the acoustic driving
of the combustion process.

Quarter-wave and Helmholtz resonators are the most commonly used
devices, which belong to the first category. Pandalai et al. [52] showed

55
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an example of quarter-wave resonators placed in the cold section of the
combustor upstream of the premixers in a GE aeroderivative engine. The
authors noted that the resonator has logged more than 100000 hours of
engine operations in factory testing and commercial operation. Quarter-
wave resonators have the disadvantages of a typical narrowband response
and a length requirement which can be prohibitive for typical frequencies in
stationary engines [97]. Bellucci et al. [98] designed a Helmhotz damper that
was later used in a Silo compressor (ALSTOM GT11N2) and also presented
a nonlinear model to predict the loss coefficient and the natural frequency
of the resonator.

Significant research has been conducted in the recent years to optimize
the design of acoustic dampers for gas turbine combustors. For example,
Bourquard and Noiray compared the volume and purge flow requirements
of Helmholtz and quarter-wave resonators, and also showed that the op-
timum linear stability is achieved when these dampers are tuned to an
exceptional point of the thermoacoustic system [99]. Later, Miniero et
al. [73] studied the effect modelled and investigated experimentally the
generic problem of periodic hot gas ingestion into Helmholtz dampers
mounted on combustion chambers. They presented an analytical model
for robust damper design, which can be used to limit the risk of passive
control failure due to dynamic change of nonlinear damping and detuning.

Examples of the passive control strategy in the second category can be
found in [100, 101]. In [100], burners with fuel injection at different axial
locations are used to suppress acoustic pulsation. Such an axial staging
leads to a bimodal distribution of the time delay corresponding to the
convection of coherent equivalence ratio perturbations from the burner
to the flame. The dynamic phase converter presented by Noiray et al.
in [51] is also based on an axial staging principle, but it relies on the
bimodal time delay distribution of another type of convective coherent
perturbations between the burner and the flames: the hydrodynamic ones.
In fact, it works by converting long-wavelength acoustic perturbations into
short-wavelength hydrodynamic perturbations thanks to diaphragms in the
injection channels. The positions of the diaphragms are staggered to cancel
out the fluctuating response of one-half of the reaction zone with the other
half. The stagger distance should be tuned to achieve effective cancelation at
a target frequency. A more recent example is presented in [102] that is based
on the alteration of flame transfer functions by modifying the geometry of
the axial swirler and its position relative to the burner outlet.
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One of the disadvantages of passive control strategies is that they require
extensive engine testing to acquire accurate knowledge of the system. For
example, the instability frequency for different operating conditions must be
known in order to design the appropriate damper geometry. Modifications
to the burner geometry, either by adding diaphragms or changing the
swirler geometry, might lead to additional unwanted pressure head loss.

Active control strategies, on the other hand, could adapt to the changes in
operating conditions. Seume et al. [79] presented an active control strategy
with pilot fuel flow modulation for the V84.3A gas turbine model. The
control parameters consisted of gain and phase change (n − τ controller),
and the actuators were multiple direct drive valves (DDV). The system was
applied to a Siemens V94.3A heavy duty gas turbine and logged 18000
operating hours [103]. However, the bandwidth of the actuator is limited
to 400 Hz. Another notable application of adaptive control in the GE aero
derivative engine is presented in [52], where the combustor pulsation was
measured with piezo sensors, and the control actuation is achieved through
the splitting of the fuel between the inner, pilot, and outer rings of the
burner.

Active control algorithms have been extensively studied for thermoa-
coustic stabilization. Gelbert et al. [104] demonstrated for the first time the
application of Model Predictive Control (MPC) to stabilize a turbulent swirl-
stabilized combustor. The MPC requires a suitable model to work, in which
the authors identified a priori. It was also noted that the system had to be
in a stable state first, by adjusting their control parameters, for the MPC
to work properly. There was no constraint implemented in both the states
and the input variables; hence, the resulting Quadratic Programming (QP)
problem can be solved in one step, enabling them to run the MPC algorithm
with a sampling step of 1 ms. Adding input or state constraints might com-
plicate optimization problems and increase the sampling time [105]. MPC
algorithm can also be robust with respect to some uncertainties; however, it
always trades off between robustness and optimality [105]. Nevertheless,
the main drawback of model-based control is to find suitable models that
can capture all the relevant operating conditions in gas turbines. The identi-
fication of the model parameters might be challenging and time consuming.
Another control paradigm that addresses this issue is the adaptive control
strategy.

An example of adaptive control is the Extremum Seeking Controller
(ESC). The demonstration of ESC for thermoacoustic stabilization was
presented in [106]. In that study, the actuator is a loudspeaker equipped
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with a gain-delay controller. The ESC is used to adaptively tune the gain
and delay parameters. ESC works by constantly perturbing the parameters
with a low-amplitude sinusoidal function and subsequently computing the
gradient of the objective function with respect to the control parameters. The
gradient information is then used to drift the mean value of the parameters.
The ESC algorithm was improved in [54] by encoding the slope information
of the objective function so that the optimizer does not fall into a local
maximum with zero gradient. However, there was no constraint encoded in
the optimizer.

A more recent adaptive control method for thermoacoustic stabilization
with a loudspeaker is presented in [107], where an active disturbance rejec-
tion control (ADRC) is implemented. The ADRC algorithm was originally
introduced in [108] and works by treating the unknown plant dynamics as a
disturbance that is tracked by an extended state observer (ESO). In principle,
the ADRC algorithm is model-insensitive and can handle nonlinearities in
the system. However, as demonstrated in [107], tuning its free parameters
would require proper modeling of the thermoacoustic system to obtain
reasonable values.

Most control synthesis methods, such as MPC, ARDC, and sliding mode
controller (SMC) [109], typically assume that all states are observable. If
some states are not observable, an observer-based method can be employed
such as Extender Kalman Filter (EKF). However, such an observer would
require a model to work, and if the system is nonlinear, the convergence of
the estimator might be an issue. Furthermore, the input action is typically
assumed to be affine to the system, and can be written in the form of:

ẋ = F(x) + G(u), (3.1)

where x ⊂ Rn contains the state variables, F : Rn → Rn is some (non)-linear
function of x and G : Rm → Rn is some (non)-linear function of the input
forcing u ⊂ Rm.

Research in [90] has shown that the application of NRPD changes the
flame response with respect to acoustic perturbations or, in other words, the
flame transfer function (FTF). It is also demonstrated in [110] that NRPD
can stabilize a sequential combustor with continuous forcing and hence
without a feedback loop. Therefore, these results hint that the NRPD forcing
is not affine to the dynamics of the system. Therefore, most of the control
synthesis methods are not directly implementable in this case. In addition
to that, the exact mechanism of thermoacoustic stabilization of a sequential
combustor with NRPDs actuation is not yet well understood, making the
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development of a simplified, low-order model a complex task. Therefore,
adaptive control algorithms are more suitable for this application

To address the issues, this chapter proposes an adaptive control method
that is based on safe Bayesian optimization (safeOpt) which was first pre-
sented in [111]. This method is fundamentally data-driven, employing
Gaussian Process Regressions (GPR) to approximate both objective and con-
straint functions. In that study, the safeOpt algorithm was used to optimize
the parameters of a proportional derivative (PD) controller of a quadcopter.
They showed that an optimum parameter combination could be found
while also satisfying the safety constraint. The algorithm is further detailed
in [112], where they showed that, by using context, the knowledge about
good control parameters obtained at low tracking speeds can be transferred
to fast tracking speeds. Khosavi et al. [113] implement the same algorithm
to optimize the gains of the PID cascade controller of a computer numerical
control (CNC) grinding machine through both numerical and experimental
tests. Their results showed that the algorithm performs 20% better than
the nominal approach. Finally, it is worth mentioning the recent work of
Reumschussel et al. [114], who employed a Bayesian optimization-like strat-
egy, albeit not based on the safeOpt algorithm, for experimental combustor
design.

The present study introduces the safeOpt algorithm and two modified
versions of the algorithm for active control of thermoacoustic instabili-
ties in turbulent combustors. The algorithms are demonstrated in both
numerical and experimental settings. The safeOpt algorithm will first be
demonstrated in a numerical setup by employing a low-order thermoacous-
tic network model. Subsequently, the safeOpt algorithm and two additional
modifications of it will be demonstrated in the experimental swirl-stabilized
turbulent combustor setup. Finally, the safeOpt algorithm is demonstrated
in a sequential combustor equipped with NRPD as the actuator.

The suitability of the safeOpt algorithm for thermoacoustic applications
arises from its data-driven methodology (and hence does not require a
model of the problem at hand), ability to adhere to constraints such as e.g.
pollutant emission levels, input signal to actuators, turbine inlet temper-
ature, etc., and straightforward implementation. Although the algorithm
can incorporate information from a model into the prior mean function
of the Gaussian Process Regression (GPR), our focus in this study is on
scenarios where no such model is available, relying solely on measurements
for optimization.
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3.2 background theory

A detailed explanation of the safeOpt algorithm is outlined in [112]. There-
fore, only a brief overview of the theoretical foundation is explained in this
section. The problem statement is briefly outlined in Section 3.2.1. A brief
overview of the Gaussian Process is discussed in Section 3.2.2. Afterward,
the safeOpt algorithm and its modifications are explained in Section 3.2.3
and Section 3.2.4, respectively. Finally, the Bayesian context framework is
discussed in Section 3.2.5.

3.2.1 Problem Statement

The goal of the proposed algorithm is to find control parameters p which
optimize a scalar objective function O, under a certain constraint condition
which is described by a constraint function C. The control parameters belong
to a domain P ⊂ Rn. The objective function is defined as a map from the
control parameter space to a scalar value: O(p) : P → R. Similarly, the
constraint function is defined as: C(p) : P → R. Furthermore, it is assumed
that there is an upper threshold value T ∈ R in which the system can be
classified as safe: C(p) ≤ T. Note that the framework can be extended to
include multiple constraint functions as described in [112].

Both the objective function O and the constraint function C are not known
a priori but can be approximated by measurements for a given combination
of control parameters p. The algorithm will perform iteration updates
and try to find the optimum point(s) of the aforementioned constrained
optimization problem while ensuring that the safety condition is satisfied
at each iteration N. Note that the objective is to minimize the pressure
pulsation; hence, this boils down to a minimization problem. Therefore, the
optimization problem can be summarized as follows:

min
p∈P

O(p) subject to C(p) ≤ T (3.2)

Since both the objective and constraint functions are not known a priori,
an initial safe parameter set would need to be acquired. The set can be
identified through simulations, expert domain knowledge, or some pre-
liminary points evaluations. In this study, it is identified by performing
multiple points evaluation in the domain P to obtain the initial set of safe
parameters Si ⊂ P .

To expand knowledge of the safe parameter set beyond Si, the algorithm
needs to infer whether some parameters p∗ that have not been evaluated
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are safe or unsafe. The Gaussian Process (GP) model is employed to ap-
proximate both the objective and constraint functions. Therefore, some
regularity assumptions must be introduced for O and C [112]. By using
GP, a reliable confidence interval over O and C can be constructed, thus
enabling the satisfaction of the safety condition throughout the iterations
with high probability. Ô and Ĉ denote the GP approximation of O and C,
respectively. More precisely, since every measurement is contaminated by
noise the GP approximations are defined as:

Ô(p) = O(p) + ϵo, ϵo ∼ N (0, σ2
o )

Ĉ(p) = C(p) + ϵc, ϵo ∼ N (0, σ2
c )

(3.3)

where ϵo and ϵc are gaussian random noise with zero mean and variance
σo and σc, respectively.

Note that due to the safety constraint condition, the algorithm might
not be able to find the global optimum, however, it will aim to find the
optimum parameters that are reachable from the initial safe set Si.

3.2.2 Gaussian Process

In this work, GPs are used to approximate the objective function O(p) and
constraint function C(p). GPs are non-parametric regression models that
assume that the function values of the approximated function are random
variables that have a joint Gaussian distribution [115]. A GP is described
by a prior mean function and covariance function. The latter describes a
covariance between two different parameter values: p, p′ ∈ P . The most
commonly used term for the covariance function is kernel. In this study, a
constant K ∈ R is used as the prior mean function and squared exponential
kernels or Gaussian kernels as the covariance function. Note that the choice
of the kernels is problem-dependent, a detailed overview of possible kernels
is available in [115]. The squared exponential kernel is defined as:

k(p, p′) = θ exp
(
− d2(p, p′)

2

)
(3.4)

d2(p, p′) = (p − p′)⊺L−2(p − p′) (3.5)

where L is a diagonal matrix of positive real numbers representing the
length scales: L = diag(l), l ∈ Rn

+. Note that n is the dimension of the
control parameter space. The parameter θ represents the range of expected
values of the difference in the value of the function and the previous
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mean function: |K − O(p)| ≤ 2θ with 95% probability. The length scales
l represent how fast the covariance between neighboring points decays
with respect to their distance in the control parameters space P . The last
set of hyperparameters is the variance of measurement noise σ2

o and σ2
c

in eq. (3.3). In principle, the hyperparameters can also be optimized every
time new data is acquired. However, as shown in [116], this can lead to
a poor result when using the maximum likelihood estimate to update
the hyperparameters. Therefore, in the framework of safeOpt, the kernel
hyperparameters are fixed from the beginning and treated as prior over
functions. Hence, this represents the user’s knowledge about the functions
that are modeled.

GPs can predict the function values O(p∗) and C(p∗), for any p∗ ∈ P
based on the acquired data in the previous N measurements. Until the end
of this section, the notation of N is shortened to n for brevity. Conditioned
on the measurements, the posterior distribution of the objective function
(and equivalently the constraint function) is also Gaussian with the mean
and variance as follows:

µn(p∗) = kn(p∗)(Kn + Inσ2
o )

−1Ôn + K (3.6)

σ2
n(p

∗) = k(p∗, p∗)− kn(p∗)(Kn + Inσ2
o )

−1k⊺
n(a∗) (3.7)

where Ôn is the vector n observed values, σo is the standard deviation of
the observation noise, kn(p∗) is the covariance vector between the new
point p∗ and the observed data points, and Kn ∈ Rn×n is the covariance
matrix of the observed data points, and In is an n by n identity matrix. It is
worth mentioning that the kernel function k for the objective and constraint
functions may not have the same hyperparameters. For the remainder of
the text ko(p, p′), and kc(p, p′) denote the kernel function for the objective
and constraint function respectively.

3.2.3 Safe Bayesian optimization (SafeOpt)

The SafeOpt algorithm, initially introduced in [117] and later extended
in [111, 112], is visually represented in Figure 3.1. This algorithm operates
by employing Gaussian Process Regressors (GPRs) to model the system’s
response in terms of objective and constraint function values. Utilizing
uncertainty bounds, it calculates important sets, including the safe set
S ⊂ P , the expander set E ⊂ P and the minimizer set M ⊂ P . While
fundamentally a Bayesian Optimization algorithm, safeOpt distinguishes
itself by incorporating safety criteria throughout the entire iterative process.
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Figure 3.1: Visualization of the safeOpt algorithm: Gaussian process regressors
model system responses at various control parameter values. Lever-
aging uncertainty bounds, the algorithm computes safe minimizer
and expander sets. The union of these sets is input to an acquisition
function, determining the next evaluation point. Objective and con-
straint function values are fed back to update the GPs.

During each iteration, the algorithm seeks to identify the optimum point
within the current safe set or expand the size of the safe set. This trade-off
between exploration and exploitation is managed by selecting the point
with the highest uncertainty in the objective function value. This ensures
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the adherence to additional safety criteria beyond optimizing the entire
domain.

The safe set S is obtained by looking at the upper confidence bound of
the GP estimate of the constraint function Uc

n = µc
n + 2σc

n, and taking the
points which are below the threshold value T:

Sn = Si ∪ {p′ ∈ P∥Uc
n(p

′) < T} (3.8)

The choice of 2σc
n can be roughly interpreted as guaranteeing the safety

with 95% probability per iteration.
The potential minimizers which compose the minimizer set E is obtained

by looking the upper bound of the objective function Uo
n = µo

n + 2σo
n and

the lower bound of the objective function Lo
n = µo

n − 2σo
n which are inside

the safe set Sn that satisfies the following:

Mn = {p ∈ Sn|Lo
n(p) < min

p′∈Sn
Uo

n(p
′)} (3.9)

which implies that the potential minimizers are the points in the safe set
whose current lower bound estimate of the objective function is lower than
the best upper bound.

Following [111], in order to define the expander set En, an indicator
function en is first defined as follows:

en(p) = |{p′ ∈ Sn|Uc
n,(p,Lc

n(p))
(p′) < T}|, (3.10)

where Uc
n,(p,Lc

n(p))
is the upper bound estimate of the constraint function

based on the n measurement points and an artificial measurement of
(p, Lc

n(p)). The indicator function en(p) computing the size of the previ-
ously unsafe sets Sn that could potentially become safe if one hypothetically
evaluated the point p and measured Lc

n(p)) as the constraint function value.
The expander set is therefore defined as:

En = {p ∈ Sn|en(p) > 0}. (3.11)

Essentially, the expander set comprises of the points that could potentially
enlarge the current safe set.

The next evaluation point pn+1 is acquired by taking the most uncer-
tain point across the objective function which are inside the union of the
potential minimizer set and the expander set:

pn+1 = arg max
p∈En∪Sn

Uo
n(p)− Lo

n(p). (3.12)
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The chosen acquisition function is widely known as "maximum uncer-
tainty". The choice of the acquisition function will lead to a more exploratory
behavior initially, which is caused by the fact that the most uncertain ele-
ment typically lies on the boundaries of the safe region. Once the points
close to the safety threshold T are evaluated, the algorithm will evaluate
the points in the potential minimizer and potential expanders alternatively.
The proposed safeOpt algorithm is summarized in Algorithm 1.

For demonstration purposes, the algorithm is tested by performing an
optimization in a one-dimensional space P ⊂ [0, 10]. The domain P is
discretized with 200 points, an objective function, featuring two minima
and a constraint function containing one minimum, are selected as follows:

O = 100(3 sin(2(p + 1)0.8)− 0.4p + 7)

C =
10

(p + 2)0.4 + 0.1(p − 3)2 − 4
(3.13)

The performance of the algorithm is depicted in figure 3.2. Note that
the initial points for the algorithm are close to the first minimum point in
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Figure 3.2: Demonstration Safe Optimization (safeOpt) algorithm after 1,10,20
and 30 iterations. ( ): safe set, ( ): minimizer, ( ): expander, ( ):
mean prediction, ( ): next evaluation point, ( ): measurement points,
( ): safety constraint, ( ): real curve. The uncertainty of the predic-
tion (2σ) is represented by the cyan shaded region.
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the objective function which is not the global optimum. An optimization
algorithm that relies on the local gradient of the function, such as the
Extremum Seeking Controller (ESC), will easily be trapped in the first
minimum. The algorithm spends the first 10 iterations to safely explore the
parameter space. After about 20 iterations, the points with the constraint
function value close to the threshold have been evaluated, and the algorithm
starts evaluating a region around the global minimum within the domain.

Note that, as mentioned before, the algorithm will try to find the optimum
location which is reachable from the initial safe set Si. Hence, the algorithm
might encounter a problem when the safe set in the parameter space
comprises of some disjoint sets and the initial safe set Si does not contain
some of the disjoint sets. To illustrate this issue, the same objective function
is kept and the constraint function in equation 3.13 is modified as follows:

O = 100(3 sin(2(p + 1)0.8)− 0.4p + 7)

C =
10

(p + 2)0.4 + 0.1(p − 4)2(1 − 0.7 sin(0.55p))− 4
(3.14)
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Figure 3.3: Demonstration Safe Optimization (safeOpt) algorithm with disjoint
safe sets (see equation 3.14) after 1,10,20 and 30 iterations. ( ): safe
set, ( ): minimizer, ( ): expander, ( ): mean prediction, ( ): next
evaluation point, ( ): measurement points, ( ): safety constraint, ( ):
real curve. The uncertainty of the prediction (2σ) is depicted by the
cyan shaded region.
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Algorithm 1 safeOpt Algorithm
Require:

-Control parameters domain P
-GP kernel for the objective and constraint functions
-GP prior mean constants Ko and Kc

-Safety threshold T
-Initial safe set Si ▷ In this study, it is generated by evaluating Ninit

initial points
for N = 1,... Nmax do

Find Sn (eq. 3.8)
Get potential minimizer set (eq. 3.9)
Get possible expander set (eq. 3.11)
Get the next evaluation point pn+1(eq. 3.12)
Obtain Ô(pn+1) and Ĉ(pn+1) through measurement
Update GPs with the new measurement data.

end for
Select the best evaluated points p∗

The parameter space is now from 0 to 16, P ⊂ [0, 16]. The constraint
function is slightly modified so that there are two disjoint safe sets in the
whole domain. The performance of the safeOpt algorithm in this situation is
shown in Figure 3.3. As can be seen, there are two safe regions in the domain
S ⊂ [0.5, 9], [12.5, 15]. Using the same initial safe set and hyperparameters,
the algorithm is able to find the same minimum point safely. However,
because the global minimum at p = 14, is located in the second safe region,
which is not reachable from the initial information in Si, the algorithm
cannot reach it. However, if Si included some points in the neighborhood
of the global minimum, then the algorithm could have found the global
minimum. Such a situation could indeed occur in an experimental setting;
unless the algorithm is allowed to explore some unsafe point during the
iterations or the initial safe set includes some points in all disjoint safe sets,
the global minimum in the domain may not be uncovered. Nevertheless,
the safeOpt algorithm will optimize the control parameter safely.

3.2.4 Modifications of safeOpt

Two types of modifications are proposed to adapt the algorithm to be more
suited for thermoacoustic control. The modifications are named stageOpt
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and the shrinkAlgo. The stageOpt algorithm follows the one presented
in [118]. It works by splitting the exploration and exploitation parts sepa-
rately. In this study, the safeOpt algorithm is set to work until ns iterations.
The superiority of SafeOpt is used initially to minimize and explore the
objective function safely; afterwards, the acquisition function in iteration
ns + 1 is changed to the minimum lower confidence bound (LCB):

pn+1 = min
p∈Si

µ(p)− 2σ(p) (3.15)

The second modification involves incorporating a threshold in the ob-
jective function itself to give a second constraint. For the first ns iterations,
safeOpt with a single constraint on the constraint function will be employed,
afterwards a second constraint on the objective function To is applied. The
additional constraint would change the safe set and shrink its size. There-
fore, it is named “Shrinking" algorithm and abbreviate it as shrinkAlgo.
More formally, the safe set after ns iterations is defined as:

Sn = {p′ ∈ P|Uc
n(p

′) < T ∩ Uo
n(p

′) < To}. (3.16)

The motivation behind this is due to the fact that during the exploration
phase, the algorithm could still evaluate points with high objective function
values to enlarge the safe set. This situation could be undesirable if one
wants to minimize the pressure pulsation as this will lead to the operating
the system under high pulsation condition for long duration. Additionally,
the computation of the expander set could be skipped to restrict the ex-
ploration of the points in the minimizer set, hence the choice of the next
evaluation points can be written as follows:

pn+1 = arg max
p∈Sn

Uo
n(p)− Lo

n(p). (3.17)

The choice of skipping the computation of the expander is optional, it
could be done if the user is confidence that the current minimizer set could
perform well and only fine exploration is required. The two proposed
modifications are summarized in Algorithms 2 and 3.

3.2.5 Bayesian Context

Bayesian context is a framework that allows us to model the dependency
of the approximated functions with respect to additional external param-
eter(s) which are called context variables z [119]. The idea is to include
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Algorithm 2 stageOpt Algorithm
for N = 1,... Ns do

Follow algorithm 1
end for

for N = Ns+1,... Nmax do
Find Sn (eq. 3.8)
Get potential minimizer set (eq. 3.9)
Get possible expander set (eq. 3.11)
Get the next evaluation point pn+1(eq. 3.15)
Obtain Ô(pn+1) and Ĉ(pn+1) through measurement
Update GPs with the new measurement data.

end for
Select the best evaluated points p∗

Algorithm 3 shrinkAlgo Algorithm
for N = 1,... Ns do

Follow algorithm 1
end for

for N = Ns+1,... Nmax do
Find Sn (eq. 3.16) ▷ Safe set shrinks due to additional constraint
Get potential minimizer set (eq. 3.9)
if Use Expander is TRUE then

Get possible expander set (eq. 3.11)
Get the next evaluation point pn+1(eq. 3.12)

else
Get the next evaluation point pn+1(eq. 3.17)

end if
Obtain Ô(pn+1) and Ĉ(pn+1) through measurement
Update GPs with the new measurement data.

end for
Select the best evaluated points p∗

the functional dependence and to keep it fixed when selecting the next
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points to evaluate [112]. In the thermoacoustic context, this could be a small
change in operating points such as fuel flow, air flow, and hydrogen blend-
ing level. Assuming that the frequency of the oscillation does not change
significantly, the information from the previously optimized parameters in
another condition can be transferred to the current one. This could speed
up the optimization process as the previously information can be seen as
measurement points with enlarged uncertainties. The dependence on the
external parameter is modeled by creating a new kernel kc(z, z′) which will
be multiplied by the kernel over the parameters defined in eq. (3). The total
kernel is then defined as follows:

k([p, z)], [p′, z′)]) = k(p, p′)× kϕ(z, z′). (3.18)

Hence, assuming one has evaluated the objective and constraint functions
and approximated them with GP at the context variable z, the information
can be carried out to the next context variable z′. The uncertainty will be
enlarged depending on the kernel values of kϕ(z, z′).

3.3 experimental setup

3.3.1 Single stage combustor

The cut view of the experimental setup can be seen in Figure 3.4. The
experimental setup is similar to that in chapter 4. The experimental setup
consists of an inlet plenum, adjustable inlet orifice, a loudspeaker, an axial
swirler, and an adjustable piston at the end of the test rig. The ducts are
made up of 250 mm × 62 mm × 62 mm modules which are connected in
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 Motor
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Inlet Damper 

dSpace 
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Adjustable Nozzle
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Damper

Figure 3.4: Side view of the experimental setup. A loudspeaker is placed inside
of an enclosure upstream of the burner.
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OP ṁCH4 [g/s] ṁH2 [g/s] ṁair [g/s] ϕ [-] fo [Hz]

1 0.57 0.02 15.35 0.684 200

2 0.64 0.01 15 0.753 180

3 0.44 0.05 16 0.575 230

Table 3.1: Operating conditions for single stage combustor setup. f0 denotes the
instability frequency.

series. The adjustable piston at the end of the test rig allows for a variation
of the outlet orifice area. The presence of both inlet and outlet adjustable
orifices allows the adjustment of the nominal thermoacoustic stability of the
setup. A microphone is placed inside a water-cooled flush mounted plate
in the combustion chamber module. In the technically premixed mode, the
air is injected from the inlet plenum module whereas the fuel, which is a
mixture of H2 and CH4, is injected from the lance and delivered through 8
small holes downstream of the axial swirler inside the burner.

The signal from the microphone is connected to a dSpace board (DS1104)
where the controller is programmed to give an output voltage signal for the
loudspeaker. In this study, the gain delay controller is employed; hence, the
manipulation consists of delaying the microphone by τ milliseconds and
multiplying the signal by a gain n.

Three different operating conditions are considered, and they are enumer-
ated as OP1, OP2, and OP3. The summary of important quantities for each
operating condition is summarized in table 3.1. The instability frequencies
for all operating conditions are around 200 Hz.

3.3.2 Sequential combustor

The lab-scale sequential combustor is depicted in figure 3.5. The setup
consists of a plenum, a 4 × 4 array of jet flames anchored on a matrix burner,
a combustion chamber with a cross section of 62 × 62 mm2, a dilution air
section, a sequential burner featuring a mixing channel with a cross section
of 25 × 38 mm2, a sequential or second-stage combustion chamber equipped
with a motor-driven adjustable outlet orifice. This variable outlet geometry
enables an online tuning of the acoustic reflection coefficient, and thus an
independent control of the thermoacoustic instabilities, which is key for
validating the NRPD-based control.
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Figure 3.5: Lab-scale sequential combustor test-rig. CC- Combustion chamber,
HVG- High Voltage Generator, BCS- Back Current Shunt.

The first stage combustor is fed with a mixture of natural gas and air, with
the air preheated to 230°C and supplied from the plenum. A piezo sensor
is placed on a flush mounted plate to monitor the acoustic pressure inside
the first stage and denoted as Mic. 1 in the figure. A massflow of 18 g/s of
dilution air at 25 C is introduced from the dilution air port and mixes with
the hot gases from the first stage. A mixture of hydrogen and natural gas
is injected into the sequential injector. The sequential injector features an
X-shaped vortex generator to enhance the mixing process. The total thermal
power of the two flames is 73.4 kW. A pin-to-pin electrode configuration,
with an inter-electrode distance of 5 mm, is located 10.3 cm downstream
from the sequential fuel injector, and a gas analyzer probe is placed at 45 cm
from the outlet of the second-stage burner to monitor the NO emissions.
Another piezo sensor is placed downstream of the sequential flame to
monitor the acoustic pressure pulsation in the second combustion chamber.
The exhaust gas analysis is conducted using an ABB EL3040 gas analyzer
equipped with an Uras26 infrared photometer, operating at a sampling
rate of 1 Hz. Automatic calibration with integrated calibration cells and
sealing tests of the propagation line were performed before the start of each
measuring set. The device exhibits a relative extended uncertainty of 7.9%
for NO measurements within the range of 0–200 mg/m3.

3.4 thermoacoustic network model

The safeOpt algorithm is first tested in a numerical setup, where the lab
scale single stage combutor in figure 3.4 is modeled with low order thermoa-
coustic network model. The network diagram is shown in figure 3.6. The
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purpose of this study is not to model exactly each subsystem, the acoustic
boundaries, flame transfer functions, and the pressure losses across the area
expansions are tuned so that the system becomes unstable at around 200 Hz,
which is the instability frequency of the setup. The network formulation
follows the one presented in [42, 120].

Each duct element is modeled as a perfect one-dimensional acoustic wave
guide with velocity perturbations, u′, as input, and normalized acoustic
pressure fluctuations p′/(ρc) as output. The acoustic perturbations can
then be decomposed as forward- and backward-propagating waves, and
expressed as follows:

p′

ρc
= f + g (3.19)

u′ = f − g, (3.20)

where ρ and c are the gas density and the speed of sound, respectively.
The area jumps are modeled as compact area discontinuities with an

equivalent length of Leq and a mean flow velocity in the orifice Un. By
denoting (.)d, (.)u, (.)n as the acoustic quantities downstream, upstream of
the area jump element, and inside the orifice, respectively, the governing
equations can be written as:

Adu′
d = Auu′

u = Anu′
n (3.21)

p′u − p′d
ρc

− Un

c
ζu′

n =
Leq

c
du′

n
dt

. (3.22)

The equations above are widely known as L − ζ model.
The flame is modeled as a compact element and isentropic assumption

is employed for the components upstream and downstream of the flame.
By using the Rankine-Hugoniot relation and linearizing to get the acoustic
perturbations, the resulting flame transfer matrix can be written as:[

( p′
ρc )d

u′
d

]
=

 (ρc)d
(ρc)u

0

0 1 + ( Td
Tu

− 1)FTF(ω)

 [( p′
ρc )u

u′
u

]
(3.23)

where Td and Tu are the temperature downstream and upstream of the
flame respectively. Note that the T12 and T21 elements above are equated to
zero due to the low Mach number assumption. The Flame Transfer Function
FTF(ω) is modeled with a first-order low-pass filter with a delay τf :

FTF(ω) =
exp(−iωτf )

i ω
ωb

+ 1
, (3.24)
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Figure 3.6: The thermoacoustic network model diagram. The blue arrow denotes
the acoustic velocity perturbation u′, and the black arrow denotes the
normalized acoustic pressure perturbation p′/(ρc). Ad is the down-
stream admittance boundary. The network model is implemented in
MATLAB Simulink.

where ω = 2π f is the angular frequency, and ωb the bandwidth of the low
pass filter. For the time domain simulation, a tangent hyperbolic saturation
function on the velocity perturbations upstream of the flame is utilized to
saturate the amplitude of the downstream acoustic pressure fluctuations.

The loudspeaker is modeled as a velocity perturbation located on the
plenum side. Utilizing the pressure continuity in the junction element
and the mass conservation, the relation between the acoustic quantities
upstream and downstream of the junction is written as follows:

p′u = p′d (3.25)

u′
u = u′

d + u′
LS, (3.26)

where u′
LS is the acoustic velocity perturbations generated by the loud-

speaker. Note that, the loudspeaker cavity and the electro-acoustic prop-
erties of the loudspeaker need to be taken into account if one wants to
properly simulate the loudspeaker response as demonstrated in [121, 122].
However, it is not done in the numerical experiment performed in this sec-
tion of the paper since this study does not aim to quantitatively reproducing
the dynamics observed experimentally.

The controller takes the signal of the normalized acoustic pressure per-
turbations p′/(ρc) downstream of the flame and then delays it by τ mil-
liseconds and multiplies it by a gain n, the signal is then placed into a
saturation block, L[a] = a for |a| < 5 and L[a] = sgn(a)× 5 when |a| ≥ 5,
so that the final output is bounded between −5 and 5. This saturation
function represents the threshold voltage that is applied in the experiments
to protect the loudspeakers from breaking due to high voltage values. The
voltage output is then converted to u′

LS by multiplying by a static gain,
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Figure 3.7: Maps of the eigenvalues of the system with varying gain (n) and the
time delay (τ) of the gain-delay controller. The red shaded region
indicates the linearly unstable region.

KLS, of −0.6. More precisely, the voltage and velocity perturbations of the
loudspeaker are expressed as:

VLS = L
[

n ×
(

p′(t − τ)

ρc

)
d

]
(3.27)

u′
LS = KLSVLS (3.28)

It is worth mentioning that real loudspeakers will always have an effective
frequency bandwidth in which the membrane will vibrate most efficiently.
Since this behavior is not modeled in our case, all frequencies will pass
through the loudspeaker without any attenuation. Hence it will be more
probable in this numerical experiment that another acoustic mode is excited.
By varying both parameters (n and τ), the system eigenvalues can be
changed and will eventually shift all eigenvalues to the stable region. Figure
3.7 shows the eigenvalues variation with respect to changes in both n and τ
of the controller. As seen, the unstable poles are around f = 200 Hz and
400 Hz.

3.5 results

In this section, the applications of the proposed algorithms are presented
in both numerical and experimental settings. Section 3.5.1 discusses the



76 boats : bayesian optimization for active control of thermoacoustics

results obtained in the numerical setup, while Section 3.5.2 shows the
results from the experiments. In the numerical setup, only the safeOpt
algorithm (Algorithm 1) is employed, while, in the experimental setup with
loudspeakers, all algorithms are employed. For both setups, optimization
starts first with one parameter and then with two parameters.

3.5.1 Numerical validation

For the gain-delay controller, the associated length scale L in eq. (3.5) can
be cast into the following form:

L =

[
ln 0

0 lτ ,

]
(3.29)

where ln is the length scale of the gain parameter and lτ is the length scale
of the time delay parameter.

First, only one parameter is optimized, which in this case is the gain n.
The time delay of the controller is fixed at 1.55 ms. The objective function
is the root mean square of the pressure pulsation after the flame, and the
constraint function is the root mean square of the loudspeaker voltage. Both
quantities are computed over a period of five seconds. Three initial points
are fed to the algorithm, the initial points are n = {−1.5, 0, 3.5}, the initial
safe set Si is then obtained by fitting a Gaussian Process Regressor (GPR)
to both the objective and the constraint function values. The domain of
control parameters P , which in this case contains only the n, is discretized
by 100 uniform grid points from -1.5 to 4. The hyperparameters are listed
in table 3.2. The length scale and the prior variance of the kernel of the

Hyperparameters
O

(n Opt)

C

(n Opt)

O

(n − τ Opt)

C

(n − τ Opt)

θ [Pa - V] 450 0.65 450 0.65

ln [-] 0.2 0.4 0.2 0.4

lτ [ms] - - 0.75 0.75

σ [Pa - V] 15 0.05 30 0.05

Table 3.2: Hyperparameters of the Gaussian Process Regressors. Opt: optimiza-
tion, O: objective function, C: constraint function
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Figure 3.8: Controller n optimization with safeOpt after 1,10,20 and 40 iterations,
the time delay, τ, is fixed at 1.55 ms. ( ): safe set, ( ): minimizer,
( ): expander, ( ): mean prediction, ( ): next evaluation point, ( ):
measurement points, ( ): safety constraint. The cyan-shaded region
represents the uncertainty of the prediction (2σ). The global optimum
of the objective function is already found within 10 iterations.

objective function ko(n, n′) are set to 0.2 and 450 respectively. This can be
interpreted that a distance of gain around 0.2-0.4 would yield completely
different behavior, and the expected deviations from the mean value are
900 Pa. Whereas, the length scale and the prior variance of the kernel of
the constraint function kc(n, n′) are set to 0.4 and 0.65V, respectively. Noise
variances σo and σc are set to 15 Pa and 0.05V, respectively.

The gain optimization of the (n - τ) controller from the thermoacoustic
network model is shown in Figure 3.8. As seen, the algorithm can safely
find the global optimum in 10 iterations. After 20 iterations, more points
close to the optimal location are evaluated. Additionally, the algorithm also
tries to expand the safe set during the process. The size of the safe set, as
shown by the blue rectangle in the bottom plot, increases throughout the
iterations until the 20th iteration. Subsequently, until the 40th iterations, the
algorithm evaluates almost exclusively the region close to the minimum.
In the simulation, the modes at 200 Hz and at 400 Hz can be excited
depending on the value of n. Figure 3.9 shows the time trace, frequency
spectra, and the histogram of the filtered acoustic pressure pulsation around
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the instability frequencies. Without any control action, the system is unstable
and the instability frequency is 200 Hz. When the gain is equal to 3.5, the
higher mode at around 400 Hz becomes self-excited. The best evaluated n
after 10 and 20 iterations, denoted by n∗

10 and n∗
20 exhibit almost the same

performance in terms of pressure pulsation. This indicates that, in principle,
10 iterations are enough to optimize the gain safely.

The optimization of the two control parameters optimization is shown
in Figure 3.10. The domain of control parameters is a 50 × 50 uniform
grid points with n spanning from 0 to 2.5 and the τ ranges from 0.5 ms to
7 ms, P ⊂ R[0 2.5]×[0.5 7]. All kernel parameters are set the same as in the
case with n only optimization, with the addition of the length scale for τ.
The length scale for τ in ko(p, p′) is set to 0.4 ms, whereas for the kc(p, p′)
they are set to 1 ms. Because the mode at around 400 Hz could be excited
and the number of control parameters is now two, more initial points are
required to initialize the algorithm for the computation of Si. Note that,
as previously mentioned, the initial safe set could be given directly by the
user if the user has some preliminary information. Eleven initial points are
given to the algorithm, six points are on the left and right boundaries of the
domain, and five points are around the middle of the domain. The number
of iterations is set to 34 iterations which then amounts to 45 evaluated
points in the domain. The algorithm spends the first 17 iterations to expand



3.5 results 79

4

0
000

1

2

3

3

3

6

6

2.52.52.5
0.5

0.5

1.251.251.25

200

900

1600

2300

n (−)n (−)n (−)

Pa
V

N = 1 N = 17 N = 34
τ

(m
s)

τ
(m

s)

Figure 3.10: n − τ optimization with safeOpt algorithm after 1, 17, and 34 itera-
tions. The mean prediction of the surface map of the objective func-
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the safe set and essentially evaluate the left half-plane of the domain. After
reaching 17 iterations, the algorithm starts to evaluate points with low
pulsations. The best evaluated point after 34 iterations is (n, τ) = (1.8, 1.5).

Despite the simplification of the thermoacoustic network model, the
performance of the algorithm gives a preliminary indication that it could
potentially work in the real system. The algorithm is applied to the experi-
mental setup shown in figure 3.4 in the next section.

3.5.2 Experimental validation

3.5.2.1 Single-stage combustor with loudspeaker actuation

It is worth mentioning that, in contrast to the numerical simulation in
Section 3.5.1, the experimental setup shown in Figure 3.4 only has one
unstable acoustic mode over the whole control parameter space. Three
operating conditions with different instability frequencies are considered
and summarized in table 3.1. The three algorithms explained in Section
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Hyperparameters
O

(n Opt)

C

(n Opt)

O

(n − τ Opt)

C

(n − τ Opt)

θ [Pa - V] 450 0.65 450 0.65

ln [-] 0.2 0.4 0.2 0.4

lτ [ms] - - 0.3 1

σ [Pa - V] 15 0.05 30 0.075

Table 3.3: Hyperparameters of the Gaussian Process Regressors. Opt: optimiza-
tion, O: objective function, C: constraint function

3.2 are employed and compared with each other. Similarly to Section
3.5.1, the algorithms are first tested with one parameter optimization and
continue with two parameters optimization. Additionally, the Bayesian
context algorithm in Section 3.2.5 is applied to transfer the knowledge
between different operating conditions to enhance the convergence speed
of the algorithm.

The hyperparameters for the Gaussian Process Regression (GPR) are
detailed in Table 3.3. Notably, all values closely align with those employed
in the numerical test cases. A specific adjustment is made for lτ in the
constraint function, where it is now configured to be 1 ms. This adjustment
is made because of the presence of a single unstable mode, allowing for an
expectation of a larger correlation distance. Furthermore, σc is set to 0.075
V intentionally to induce greater uncertainty in the measurements. This
deliberate increase in uncertainty promotes a more conservative algorithmic
behavior, thereby ensuring that the safety criterion is not violated.

The gain optimization of the gain-delay controller with safeOpt algorithm
is shown in figure 3.11. Similarly to the numerical simulation, the control
parameter space domain is discretized with 100 uniform grid points with n
ranging from −1.5 to 4. Three initial points are given at n = {−1.5, 0, 4.5}.
Note that in this case, one of the initial points is not inside the considered
domain. As the purpose of the initial points is only to construct the initial
safe set Si, this will not create any problem. The root mean square of the
acoustic pulsation and the loudspeaker voltage are calculated by recording
both signals for five seconds and then applying the RMS operator. The
safety threshold for the constraint function is T = 1V.

Similar to the numerical simulation, the algorithm initially spends the
first 10 iterations expanding the safe set, as evident from the growth in
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Figure 3.11: Controller n optimization at OP1 (see table 3.1) with safeOpt al-
gorithm after 1,10,20 and 40 iterations, the time delay, τ, is fixed
at 1.5 ms. ( ): safe set, ( ): minimizer, ( ): expander, ( ): mean
prediction, ( ): next evaluation point, ( ): measurement points, ( ):
safety constraint. The cyan-shaded region depicts the uncertainty of
the prediction (2σ).

its size. After these initial 10 iterations, the algorithm shifts its focus to
evaluating points with low pulsation. It is worth noting that, in contrast
to the numerical simulation, when the gain values fall within the range
of 1.5 to 3.5, the resulting pressure root mean square (RMS) values are
nearly identical. Figure 3.12 provides visual representations of the time
trace, frequency spectra, and the scaled probability density function of
the acoustic pressure signal. Specifically, Figure 3.12c illustrates that the
system stabilizes after just 10 iterations with the best-evaluated value of
“n". However, after 20 iterations, a more favorable “n" in terms of pressure
RMS is found.

As the iterations progress beyond 20, there is no improvement in pressure
RMS. The algorithm continues to evaluate different values of “n", but the
pressure RMS remains the same, as indicated in Figure 3.11.

The inherent nature of the safeOpt algorithm involves a continuous
trade-off between exploring or expanding the safe set and minimizing the
objective function throughout all iterations. Consequently, the algorithm
occasionally evaluates points with high RMS values, even when the optimal
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point is unlikely to be found in this region. For example, in Figure 3.11, at
the 20th iteration, the algorithm chooses a safe value of n which is likely to
have a high objective function value. This characteristic can be advantageous
in escaping local optima if they exist. However, it may be undesirable when
such local optima are absent, resulting in the combustor operating with
high pulsation with no tangible benefits. Therefore, to solve this issue,
stageOpt and the shrinking algorithm, which are explained in Algorithm 2,
and Algorithm 3, respectively, are used.

Figure 3.13 shows the results of the gain optimization with the shrinking
algorithm. Following Algorithm 3, the first 10 iterations employ the regular
safeOpt algorithm, at iteration Ns = 11, an additional constraint To is added
to the objective function itself with a value of 450 Pa. Note that, in Figure
3.13, N is restarted to 1 once the additional constraint is applied. As seen,
the additional constraint leads to a shrinkage of the safe set. Additionally,
the expander is not used; however, as iterations progress, the safety set is
still growing because the acquisition function is the maximum uncertainty
as described in eq 3.17. In this case, the benefit is clear, the algorithm does
not evaluate points with high pressure pulsations since these points are
now classified as unsafe. Note that, if the additional constraint is applied
too early in the iterations, it may not be able to find a safety set, as the
points with pressure RMS value below the threshold To have not yet been
found. These results highlight the flexibility of algorithms to incorporate
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Figure 3.13: Controller n optimization at OP1 (see table 3.1) with shrinkAlgo after
1, 5, and 10 iterations. Note that N displayed has been restarted to 1
once the additional constrain was activated after the 11th iteration.
The time delay, τ, is fixed at 1.5 ms. ( ): safe set (the safe set
fulfills both constraints on O and C), ( ): minimizer, ( ): mean
prediction, ( ): next evaluation point, ( ): measurement points, ( ):
safety constraint. Expander computation is excluded. The shrinking
algorithm was activated after 10 iterations of SafeOpt. The safe set
immediately shrinks after a secondary constraint on the objective
function is applied.

additional constraints. In principle, multiple constraints can be used, the
only modifications would be to add additional Gaussian process regressors
and incorporate them in the calculation of the safe set.

The application of the stageOpt algorithm is shown in figure 3.14. Simi-
larly to the shrinking algorithm, the first 10 iterations employ the safeOpt
algorithm and then the acquisition function is switched to the minimum
lower confidence bound of the objective function as described in eq. 3.15.
After the switch of the acquisition function, it is clear that the algorithm
always evaluates points with the lowest lower confidence bound, thereby,
points with high pulsation values are not evaluated.

The evolution of the values of the objective function, the gain, and the
constraint function, with the application of the three algorithms, is shown
in Figure 3.15. Note that the safe constraints are indicated by the dashed
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Figure 3.14: Controller n optimization with stageOpt algorithm after 1, 5, and
10 iterations. Note that N displayed has been restarted to 1 once
the additional constrain was activated after the 11th iteration. The
time delay, τ, is fixed at 1.5 ms. ( ): safe set, ( ): minimizer, ( ):
expander, ( ): mean prediction, ( ): next evaluation point, ( ):
measurement points, ( ): safety constraint. The StageOpt algorithm
was activated after ten iterations of SafeOpt. The algorithm always
chooses the minimum of the lower confidence bound of the objective
function for the next evaluation point.

line, and the constraint on the objective function is only applicable to the
shrinking algorithm. As seen, in the 18th iteration, the safeOpt algorithm
evaluates points with high pulsation. On the contrary, both the stageOpt
and shrinking algorithms do not have this behavior. Due to the removal
of the expander, the shrinking algorithm slowly expands the safe set, as
can be seen by the slowly increasing gain after the 11th iteration. The
choice of algorithms might depend on the system of interest and the user’s
preference.

The Bayesian context is applied to transfer the knowledge obtained from
OP2 to OP1. The safeOpt algorithm was first performed on OP2 for 15
iterations. Afterwards, the combustor is operated to OP1 and by adding
a context variable, which in this case the equivalence ratio, z = ϕ, the
information from OP2 can be transferred to OP1. The length scale for the
kernel kϕ is set to 0.1, which implies that a 0.1 difference in the equivalence
ratio will lead to completely different behaviors. Figure 3.16 shows the
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Figure 3.15: The evolution of the objective function, gain, and the constraint func-
tion with respect to the number of iterations. The safety constraint
on the objective function is only applied to the shrinking algorithm.
The first iteration contains no evaluation point.

results of the Bayesian context. The shrinking algorithm is used, and the
threshold values are the same as in Figure 3.13. As seen, in the first iteration,
the uncertainties in the objective and constraint function are scaled up. The
algorithms are now more uncertain about the information collected from
OP2, which is indicated by the (+) sign. This is due to the introduction of
kϕ in the kernel function of both objective and constraint functions. Because
of the possibility of transferring the information, the algorithm is now more
sample-efficient as the points with low pulsation values are now known.
This is a clear advantage as small changes in the operating conditions of
the combustor will not require the algorithm to restart again from zero.

The framework is now extended to optimize both the n and τ parameters.
The control parameter space is discretized uniformly with 50×50 grid
points, with n ranging from 0 to 3.5 and τ ranging from 0.5 to 6 ms,
P ⊂ R[0 3.5]×[0.5 3.5]. As a result of the increased number of parameters,
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Figure 3.16: Context with shrinkAlgo after 1, 5, and 10 iterations. The algorithm
makes use of the information obtained at OP2 to optimize the n
at OP1. The time delay, τ, is fixed at 1.5 ms. ( ): safe set, ( ):
minimizer, ( ): mean prediction, ( ): next evaluation point, (+):
data points from OP2, ( ): evaluation points, ( ): safety constraint.

a greater number of initial points is required, similar to the case of the
numerical simulation. Since there is only one unstable mode observed in
the experiment, only six initial points are given. Figure 3.17 shows the
mean prediction of the objective function ¯o and the constraint function ¯c.
The initial points are shown in the first column of Figure 3.17. The safety
threshold values T and To are the same as those in the one parameter
optimization case. The total number of iterations is set at 30. For the first 15
iterations, the algorithm safely explores the parameter space and finds the
two regions with low pulsations, as shown in the third column of Figure
3.17. The first safe region is located on the bottom left region, and the second
one is on the top left region. This is possible because for a single-mode
instability at a frequency of f0, two different time delays τ2 and τ1 that are
related as τ2 = τ1 + 1/ f0 would give similar results because the phase of
the controller is the same for these two delays. The algorithm evaluates
more points in the bottom left region and the best evaluated point is located
at (n, τ) = (1.25, 1.7).

The results obtained through the use of the shrinking algorithm to op-
timize the two parameters are presented in figure 3.18. In the initial 15
iterations, the algorithm employs the safeOpt approach, followed by the
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Figure 3.17: n − τ optimization with safeOpt algorithm after 1, 15, and 30 it-
erations. The mean prediction of the surface map of the objective
function (top) and constraint function (bottom). ( ): evaluation points.
(OP1)

introduction of an additional constraint applied to the objective function.
Similarly to the previous scenario that involves single-parameter optimiza-
tion, the expander is eliminated. This change results in a more constrained
focus on evaluating points in the bottom-left region. Due to the absence
of expanders, the assessed points in the lower left region are positioned
closely together, significantly limiting the algorithm’s ability to expand.
Nevertheless, the safe-set region continues to grow throughout the itera-
tions. It is important to note that the majority of the evaluated points exhibit
thermoacoustic stability. However, they tend to have slightly higher root
mean square (RMS) values compared to the best-evaluated point obtained
with the safeOpt algorithm. One potential approach to enable more ag-
gressive exploration would involve reintroducing the expander into the
decision-making process for the next point evaluation. Nevertheless, the
primary objective here is to illustrate that there can be drawbacks when the
exploratory aspect is curtailed.
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Figure 3.18: n − τ optimization with shrinkAlgo after 1, 7, and 15 iterations.
The first iteration is taken from the 15th iteration of the safeOpt.
The mean prediction of the surface map of the objective function
(top) and constraint function (bottom). ( ): evaluation points. The
expansion of the parameter space becomes more restricted due to
an additional constraint on the objective function.

The results obtained using the stageOpt algorithm are depicted in figure
3.19. Similarly to the shrinking algorithm, the initial 15 iterations employ
the safeOpt algorithm for a cautious exploration of the parameter space.
Similarly to the scenario involving single-parameter optimization, following
the transition to a different acquisition function, the algorithm refrains
from assessing points associated with high pulsation values. The stageOpt
algorithm, however, evaluates regions with τ values akin to those targeted
by the safeOpt algorithm, falling within the range of 0.5 to 2 milliseconds.
Notably, the stageOpt algorithm extends its evaluations to higher gain
values. This expanded exploration of the parameter space is facilitated
because the alternative safe region, characterized by low pulsation values
at τ around 6 milliseconds, remains unexplored. As a result, with an equal
number of total iterations, the stageOpt algorithm efficiently allocates more
iterations to the assessment of points in the lower left region of the domain.
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Figure 3.19: n − τ optimization with stageOpt algorithm after 1, 7, and 15 itera-
tions. The first iteration is taken from the 15th iteration of the safeOpt.
The mean prediction of the surface map of the objective function
(top) and constraint function (bottom). ( ) evaluation points. The
algorithm picks more points on the lower left plane of the parameter
space. (OP1)

The figure 3.20 presents the progression of various parameters, including
the objective function, gain n, delay τ, and the constraint function. It’s
evident from the graph that the safeOpt algorithm explores a region where
τ is approximately 6.2 milliseconds, from iteration N 22 to 27. In contrast,
both the stageOpt and shrinking algorithms consistently assess regions
where τ is less than 2.5 milliseconds. This difference arises because, as
mentioned earlier, within the first 15 iterations of the safeOpt algorithm, the
region characterized by low objective function values with τ around 6.2 mil-
liseconds has not yet been discovered. Consequently, both the stageOpt and
shrinking algorithms remain unaware of this particular region. However, it’s
worth noting that the region with τ around 6.2 milliseconds is expected to
yield performance similar to that of τ around 1.5 milliseconds. As a result,
the stageOpt and shrinking algorithms do not suffer any disadvantages
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Figure 3.20: The evolution of the objective function, gain, and the constraint func-
tion with respect to the number of iterations. The safety constraint
on the objective function is only applied to the shrinking algorithm.
The first iteration does not contain an evaluation point.

in terms of failing to identify the global minimum, given that this region
eventually provides equivalent performance.

In different scenarios, increasing the value of Ns in both Algorithm 3
and Algorithm 2 could provide a more comprehensive overview of the
parameter space for the algorithm. However, it is important to emphasize
that the choice of Ns is problem-specific and contingent on the particular
case at hand. Consequently, users should establish their expectations before
initiating the optimization process.

Bayesian context is applied for two-parameter optimization, and three
operating conditions are considered. The shrinking algorithm is applied
first to OP2 with the number of iterations equal to 30 and Ns = 15, the
expander is used to acquire the next point evaluation.c Subsequently, the
information obtained from both OP2 and OP1 is transferred to OP3, and the
shrinking algorithm with the total number of iterations set to 8 and Ns = 1 is
applied. The kernel parameters of the objective and constraint functions, as
well as the safety threshold values, are the same as in the previous case. The
mean prediction of the objective function for the three operating conditions
is shown in figure 3.21, whereas the normalized uncertainty of the objective
function is shown in figure 3.22.

As can be seen from the first row of Figure 3.21, the algorithm can safely
explore the parameter space and the evaluation points are less closely
packed compared to the result in Figure 3.18. This is due to the inclusion
of the expander in the shrinking algorithm which allows the algorithm
to explore more aggressively while still respecting the safety threshold
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Figure 3.21: n − τ optimization with context. The algorithm uses the context
variable to transfer the knowledge between each operating point.
The mean predictions of the objective function from OP2, OP1, and
OP3 are displayed in the second, first, and third rows, respectively.
+: evaluation points from OP1, *: evaluation points from OP2,( ):
evaluation points from OP3.

in both the objective and constraint functions. Because the frequency of
the instability at OP2 is lower than at OP1, the other region with low
pulsation values as in figure 3.17 lies outside the domain. After completing
30 iterations at OP2, the information is carried out to OP1 with the Bayesian
context. As clearly seen from the second row of figure 3.21, the algorithm
evaluates points in the vicinity where the previous operating point exhibits
low pulsation and is safe.

Following the completion of eight iterations at OP2, the combustor tran-
sitions to OP3, with information from both OP2 and OP1 being carried over
to OP3. In the graph displayed in figure 3.22, it becomes evident that, at
OP3, the algorithm exhibits increased uncertainty regarding the informa-
tion derived from OP2 in comparison to that from OP1. This heightened
uncertainty is attributed to the fact that the context variable of OP1 is closer
to OP2 than it is to OP3. A similar pattern emerges at OP3, where the algo-
rithm now recognizes the safe region with low pulsations and consistently
evaluates points within this low-pulsation region. While it is possible that
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Figure 3.22: Map of the normalized uncertainty of the objective function for
n − τ optimization with context. The algorithm uses the context
variable to transfer the knowledge between each operating point.
The mean predictions of the objective function from OP1, OP2, and
OP3 are displayed in the first, second, and third rows, respectively.
+: evaluation points from OP1, *: evaluation points from OP2,( ):
evaluation points from OP3.

eight iterations may be insufficient for the algorithm to thoroughly explore
the parameter space, the primary aim here is to illustrate that with the
aid of Bayesian context, direct access to a safe region with low pulsation
values can be achieved without the necessity of restarting the algorithm
from scratch.

3.5.2.2 Sequential combustor with NRPD

In the sequential combustor configuration, the sequential flame is stabilized
with the help of NRPD. The objective function is the NO emission in parts
per million by volume, dry (ppmvd), and the constraint function is the RMS
pressure in the sequential combustion chamber, measured by the mic. 2 in
figure 3.5. The two control parameters are the voltage output of the high
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Figure 3.23: Bayesian optimization using shrinkAlgo. The objective function is
the NO emissions, and the constraint function is the RMS pressure.
(top) The mean prediction of the objective function. (bottom) The
mean prediction of the constraint function. The blue dots show the
evaluation points.

voltage generator and the allocation of power between both flames. It is
important to note that the overall thermal power of the flames remains at a
constant value of 73.4 kW, and the mass flow rates for both the first-stage
air and dilution air are also maintained at a consistent level. The term
"power splitting" is defined as the percentage representing the proportion
of the total power directed towards the second stage flame. For example,
if the power splitting is set to 60 %, this means that the second stage
flame thermal power is 60% of the whole thermal power, which equates
to 44.04 kW. Regarding the fuel composition, it is important to note that
the first stage exclusively uses 100% natural gas, while the second stage
employs a mixture consisting of 10.45% hydrogen and 89.55% natural gas
by mass. The emission analyzer requires a continuous operation of about
100 seconds to converge, whereas, the RMS pressure is computed after
recording the pressure signal for five seconds.

The control parameter space is discretized with the power splitting rang-
ing from 40% to 56% with a step of 2%, whereas the generator voltage is
from 7.5 kV to 9 kV, with 100 points in between. The length scale matrix L
is now written as:
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Hyperparameters O C

θ [ppmvd - Pa] 15 300

lV [kV] 0.5 0.5

lPS [%] 2 2

σ [ppmvd - Pa] 1.2 20

Table 3.4: Hyperparameters of the Gaussian Process Regressors.

L =

[
lV 0

0 lPS,

]
(3.30)

where lV is the length scale of the plasma generator voltage and lPS is the
power splitting. The hyperparameters are listed in Table 3.4.

The shrinkAlgo algorithm is utilized and six initial points are used to
get the initial safe set for the algorithm. The initial points can be seen in
the first column of figure 3.23. The safety threshold for the pressure RMS
is set at 500 Pa, and the safety threshold for the NO emission, which is
active only after 8 iterations (Ns = 8), is 10 ppmvd. As can be seen, a
power splitting of 56% with a voltage of 7.75 kV exhibits low NO emissions
but high amplitude acoustic pressure. Therefore, this point is classified as
unsafe. As the iteration progresses, the algorithm safely explores the control
parameter space by evaluating the region in the middle of the domain.
Afterward, the algorithm evaluates the region on the top right part of the
domain. After 12 iterations, the optimization process is terminated, and the
safe minimum point is found at a power split of 56% and voltage of 9 kV.
As mentioned in [110], the application of NRPD can significantly alter the
mean sequential flame position andits heat release rate response to acoustic
perturbations, which subsequently affect the thermoacoustic stability of
the whole system. However, the main objective of this study is to optimize
the control parameters solely, and the discussion about the stabilization
mechanism will be investigated in a separate study.

These results highlight the flexibility of the algorithm in optimizing
different control parameters for thermoacoustic control. The control struc-
ture does not have to be affine feedback control based; as demonstrated
here, the NRPD is operated in a continuous fashion without feeding the
pressure signal to the controller as in the previous section. Moreover, the
versatility of the algorithm extends to the straightforward inclusion of addi-
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tional constraint variables, such as exhaust temperature, carbon monoxide
(CO) emissions, and so on. These variables can be readily incorporated
as constraint functions by configuring Gaussian Process Regression with
appropriately tuned kernel parameters. Furthermore, NRPD equipped with
the proposed algorithms is shown to be an effective actuator for control-
ling both the pulsation of a sequential combustor and accessing operating
conditions with low NO emissions.

3.6 conclusions and outlook

This study has effectively showcased the practicality of employing safe
Bayesian optimization algorithms for thermoacoustic control. Three distinct
algorithms, specifically tailored for thermoacoustic systems, were intro-
duced and implemented, demonstrating their efficacy through numerical
simulations and experimental applications. In all setups, the algorithm does
not employ any model and relies on the obtained measurements to update
the regressors.

In the first phase, encompassing both numerical simulations and the
first experimental setup, the adaptive optimization of feedback control
parameters within a single-stage combustor utilizing loudspeaker actuation
is illustrated. These proposed algorithms facilitate the transfer of knowledge
between varying operating conditions, resulting in a significant acceleration
of the optimization process.

In the second experimental scenario, the same algorithm was applied
to a sequential combustor using nanosecond repetitive pulsed discharges
(NRPD). This setup differs significantly from the previous one in terms
of combustor architecture, control actuation, and safety criteria, yet the
proposed algorithms proved to be versatile and effective across these diverse
contexts.
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4
E N T R O P Y T R A N S F E R F U N C T I O N M E A S U R E M E N T W I T H
T U N A B L E D I O D E L A S E R A B S O R P T I O N S P E C T R O S C O P Y

Do not stop to think about the reasons for what you are
doing, about why you are questioning. The important
thing is not to stop questioning. Curiosity has its own
reason for existence.

— Albert Einstein

Tunable diode laser absorption spectroscopy (TDLAS) combined with wave-
length modulation spectroscopy (WMS) is a proven method for measuring
gas temperature and species concentration in combustion environments, mak-
ing it ideal for assessing temperature fluctuations in the mixing section of
a sequential burner. In this chapter, the TDLAS-WMS is studied and devel-
oped. This chapter employs TDLAS-WMS to measure coherent temperature
fluctuations in a turbulent swirled flame, a setup less complex than that of
the sequential combustor. Two distributed feedback (DFB) lasers target H2O
absorption near 7185.59 cm−1 and 6806.03 cm−1. The absorption signal
is converted to temperature at a rate of 5 kHz. The focus of this chapter is
on the Entropy Transfer Function (ETF), which at low Mach numbers links
upstream acoustic perturbations to downstream temperature fluctuations, at
three different operating conditions. This chapter presented novel results on
the peculiar entropic response of a turbulent swirled frame at high frequencies.

4.1 introduction

Unsteady processes in the reactive flow of turbulent combustors give rise to
the generation of entropy fluctuations in the hot combustion products [123].
Along with vorticity and compositional perturbations, they are responsible
for the generation of indirect combustion noise [123, 124]. Indirect noise
has been a significant concern in modern jet engines since it contributes
to the noise emission of the engines [125]. Furthermore, when entropy
fluctuations result from coherent flame dynamics due to the thermoacoustic
interaction, coherent temperature fluctuations, known as entropy waves, can
be generated [126]. If the waves do not significantly disperse in the turbulent
flow of the hot products and survive until the combustion chamber outlet,

97



98 etf measurement with tdlas-wms

and if this outlet exhibits a high Mach number, acoustic energy is produced
at the corresponding frequency [127], which can substantially enhance the
coherent flame dynamics. This phenomenon can constitute a key feedback
mechanism for some thermoacoustic instabilities [33]. The presence of
entropy waves might stabilize and destabilize the thermoacoustic dynamics
of a combustor, as demonstrated in [128]. Therefore, understanding the
principle of the generation and transport of entropy waves is essential.

Some experimental studies have recently been published concerning the
transport and dispersion of entropy waves. Giusti et al. [129] measured the
entropy waves generated by a turbulent flame with thermocouples placed in
the combustion chamber. However, the thermocouples could only measure
the coherent fluctuations up until 80 Hz. Wassmer et al. [130] measured
the temperature fluctuations of a swirled flame with an acoustic time of
flight approach by employing a spark plug protruding the combustor’s
wall and seven microphones equally distributed along the circumference of
the can combustor wall. De Domenico et al. [131] measured entropy waves
propagation using Laser-Induced Thermal Grating Spectroscopy. More re-
cently, Weilenmann et al. [126] performed an experimental study on the
linear and non-linear ETF in a turbulent combustor with OH laser-induced
fluorescence (LIF) thermometry. However, in that case, the temperature
measurement method is unsuitable for analysing a wide range of operating
conditions since the data are cross-sectional; hence, it consumes a large
amount of storage and requires tedious post-processing treatment. Wang
et al. [132] measured the entropy waves of a turbulent swirled flame with
tunable diode laser absorption spectroscopy (TDLAS) using the direct ab-
sorption spectroscopy (DAS) method. However, the DAS method is less sen-
sitive than the wavelength modulation spectroscopy (WMS) method [133],
and it will be further explained in the remaining of this paper.

This study aims at introducing the TDLAS-WMS for entropy waves
measurements which offers several advantages: (i) TDLAS is a pointwise
line-of-sight thermometry, and hence the data size is compact; (ii) the tem-
perature can be inferred from the absorbance data in an accurate manner;
(iii) the measurement rate in the order of kHz and MHz can be achieved; (iv)
in contrast to the DAS method, the WMS does not require a baseline fitting,
provides higher sensitivity and is more robust against non-absorption losses
[133, 134].

The TDLAS-WMS method has been widely applied to combustion di-
agnostics to measure temperature, species concentration, pressure, and
velocity in practical combustors [133, 134, 135, 136]. It has been proven to be
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robust for in-situ combustion diagnostics with high accuracy and sensitivity.
More recently, Mathews et al. [137] demonstrated that the measurement
rate of TDLAS-WMS can be tuned to the MHz level and enables precise
measurements in particle laden combustion environments.

The TDLAS’s ability to measure time-resolved temperature fluctuations
is exploited in this work. We record coherent temperature fluctuations of a
turbulent swirled flame. The flame is acoustically perturbed by actuating a
loudspeaker, which generates equivalence ratio fluctuations and induces
temperature fluctuations downstream of the flame. By relating the temper-
ature fluctuations to the acoustic perturbation input, the entropy transfer
function (ETF) is obtained.

Key objectives of this study are to measure ETF with the TDLAS-WMS
technique and to show that the measured entropy transfer functions do not
decrease monotonically with respect to the forcing frequency.

4.2 experimental set-up

4.2.1 Turbulent Combustor

The schematic of the turbulent combustor setup is shown in Figure 4.1a.
The setup consists of 1) a plenum section composed of three modules
whose dimensions are 250 × 62 × 62 mm3, 2) a burner with axial swirler
and central lance for flame anchoring, 3) a combustion chamber comprising
four modules of the same kind as for the plenum, some of them featur-
ing quartz windows, others water-cooled aluminium walls, two of them
being equipped with special optical ports for TDLAS measurements, 4)
two loudspeakers mounted on the walls of the most upstream and down-
stream combustor modules, and 5) 14 flush-mounted water-cooled GRAS
microphones distributed upstream and downstream of the burner and the
flame. The combustor outlet is equipped with an adjustable orifice to ensure
thermoacoustically stable conditions. The optical access for the laser beam,
which is denoted as TDLAS-LOS (Line-of-Sight) and sketched in Figure 4.1,
is enabled through two wedged windows mounted on the sidewalls and
located 28 cm dowsntream of the burner outlet. This distance corresponds
to approximately four times the flame height.

A sketch of the burner block is shown in Figure 4.1b, it consists of a
central lance with a diameter of 20 mm with an axial swirler inserted in
cylindrical section of diameter 34.5 mm, creating an annular section into
which swirled air and gaseous fuel are mixed. The fuel, which consists
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Figure 4.1: a) Schematic of the turbulent flame experimental setup for ETF and
FTF measurements. b) Sketch of the swirler block. All dimensions are
in mm. Stiff-injection of the fuel and mixing are done inside the block.
c) Schematical arrangement of the optical setup for TDLAS.

of a mixture of natural gas and hydrogen, is delivered through the lance
and injected from 8 small holes which are axially staged at two different
locations (4 at 50 mm and 4 at 22 mm from the burner outlet). The diameter
of each hole is 0.8 mm, creating an acoustically stiff injection for the gas
mass flows considered in this work. The air is injected at the plenum inlet
and mixes with the fuel inside the burner.

The flame of this technically premixed configuration is forced with the
loudspeakers in order to measure the ETF and the FTF. For ETF measure-
ments, only the upstream loudspeaker is actuated. The acoustic velocity
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perturbation at the burner inlet is reconstructed from the microphones
upstream of the flame. For FTF measurements, both the upstream and
downstream loudspeakers are used to actuate the flame. The flame transfer
matrix is then reconstructed from the multi-microphone method (MMM),
with six microphones upstream and eight microphones downstream of the
flame.

4.2.2 Optical Setup

The optical system for TDLAS is sketched in Figure 4.1c. Two infrared
diode lasers (DFB-NEL) centered at 1392 nm and 1469 nm are used to
probe the absorption spectra of water vapour around 7185.59 cm−1 and
6806.03 cm−1, respectively. The current is supplied by laser diode controllers
(LDC 501m), which are modulated by a function generator (Tektronix
AFG31000). The laser emitting near 1392 nm and 1469 nm are sinusoidally
scanned at 5kHz and modulated at 150 kHz and 200 kHz with modulation
depths of 0.09 cm−1 and 0.092 cm−1, respectively. The combinations of
the two wavelengths have been widely used in the literature to infer the
temperature of gases, see [133, 137, 138]. The laser beam from both lasers
is then combined with a fiber combiner and subsequently collimated to
a beam diameter of 3 mm with a fiber collimator (Thorlabs F280APC-C).
Two optical windows with a wedge angle of 2° enable the emitted beam to
probe the hot products of the flame. It is worth mentioning that the wedge
angle is required to eliminate etalon interference. The gap (4 cm) between
the fiber collimator and the optical window is purged with N2 to minimize
background absorptions from the water vapour under room conditions.
The partially absorbed beam then goes through another N2-purged gap and
is then collimated further with a convex lens and detected by a photodiode
(Thorlabs PDA05CF2). The signal of the photodiode is sampled at 20 MS/s
with a 16-bit data acquisition card (GaGe).

4.3 methodology

4.3.1 Laser Absorption Spectroscopy (LAS)

LAS is based on the absorption spectrum of the chemical species under
investigation at particular wavelengths [139]. When a laser light passes
through a gas sample, a fraction of it is absorbed by the absorbing species.
If the laser’s wavelength is modulated (by modulating the supplied current
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to the laser), typically, several transition lines will be covered. As a result,
the contributions of different absorption lines have to be taken into account.
The absorption can be modeled using Beer-Lambert’s law:

τ[ν(t)] = exp
(
−
∫ L

0

N

∑
j=1

Sj(T)ϕj[ν(t)]PXadl
)

= exp
(
− α[ν(t)]

) (4.1)

where τ[ν(t)] is the ratio between the transmitted laser intensity It and
the incident laser intensity Io, Sj(T) is the jth transition linestrength at
temperature T, ϕ is the transition lineshape, L is the absorption path length,
ν is the wavenumber, P is the pressure and Xa is the mole fraction of the
absorbing species, and α is the absorbance. The lineshape ϕ is modeled by a
voigt function that considers two broadening types: collisional broadening
and Doppler broadening. Note that the dependencies of ϕ with respect to
T, P and Xa are not explicitly defined in equation (4.1).

4.3.2 Wavelength Modulation Spectroscopy (WMS)

In the WMS method, the laser light is modulated with a modulation fre-
quency fm, thereby encoding the absorption information to fm and its
harmonics. In this work, we employ the same calibration-free WMS strategy
as in [133]; therefore, only a brief summary of WMS is presented here.

When the laser current is sinusoidally modulated, both the wavelength
emitted by the laser as well as the incident laser intensity will vary with
respect to time. The wavelength variation is modeled as:

ν(t) = ν + am cos(ωmt) (4.2)

where am is the modulation depth, ν is the mean laser wavelength, and
ωm = 2π fm is the angular frequency of the modulation signal. The param-
eters are a priori identified with a Fabry-Perot interferometer (Thorlabs
SA30-144). The laser intensity is modeled by taking into account the funda-
mental and the first harmonic component of the sinusoidal signal:

Io(t) = Io
[
1 + i1 cos(ωmt + δ1)

+ i2 cos(2ωmt + δ2)
] (4.3)

where Io is the average laser intensity, i1 and i2 are the amplitude of the
fundamental and first harmonic of the nonlinear intensity modulation (nor-
malized by the average laser intensity Io), respectively. δ1 and δ2 are the
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phase shifts between the wavelength modulation and the fundamental and
first harmonic component of the nonlinear intensity modulation, respec-
tively. The parameters are also identified a priori by passing the laser beam
into a nitrogen purged duct and fit the measured intensity signal with
equation (4.3).

The absorption process can be modeled by expressing the transmission
coefficient τ(t) in terms of Fourier cosine series spanned by the harmonics
of the modulation frequency as:

τ[ν(t)] =
∞

∑
k=0

Hk(ν, am) cos(k ωmt) (4.4)

where the H terms can be numerically calculated by projecting the simulated
transmission coefficient to the corresponding cosine basis.

As a result, the transmitted laser intensity, It = Io(t)τ[ν(t)], will also con-
tain the higher harmonics. By multiplying the transmitted laser intensity
with a reference cosine, cos(kωmt), and subsequently applying a low-pass
filter, the in-phase component, Xk f , of the signal can be obtained. Simi-
larly, multiplication with a reference sine, sin(kωmt), would recover the
quadrature component,Yk f , of the signal.

Using Eqs. (4.3) and (4.4), the X1 f and Y1 f components can be derived
analytically:

X1 f = G
Io

2

[
H1 + i1

(
H0 +

H2

2

)
cos(δ1)

+
i2
2

(
H1 + H3

)
cos(δ2)

] (4.5)

Y1 f =− G
Io

2

[
i1

(
H0 −

H2

2

)
sin(δ1)

+
i2
2

(
H1 − H3

)
sin(δ2)

]
,

(4.6)

where G is the electro-optical gain of the system, which does not have to be
measured or known, as a normalisation procedure will be done in the next
step. Similarly, by changing the reference cosine and sine into cos(2ωmt)
and sin(2ωmt), the X2 f and Y2 f can be obtained:

X2 f = G
Io

2

[
H2 +

i1
2

(
H1 + H3

)
cos(δ1)

+ i2

(
H0 +

H4

2

)
cos(δ2)

] (4.7)
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Y2 f = − G
Io

2

[
i1
2

(
H1 − H3

)
sin(δ1)

+ i2

(
H0 −

H4

2

)
sin(δ2)

] (4.8)

The magnitude of the n f component of the transmitted laser intensity is
then obtained by taking the root sum-square between Xn f and Yn f :

Rn f =
√

X2
n f + Y2

n f . (4.9)

By taking the ratio between R2 f and R1 f , the dependency on G is canceled
out. Note that the background signals due to nonlinear intensity modulation
and/or background absorption have to be subtracted from the absorption
signals:

R2 f /1 f =

([(X2 f

R1 f

)
raw

−
(X2 f

R1 f

)
bg

]2

+

[(Y2 f

R1 f

)
raw

−
(Y2 f

R1 f

)
bg

]2
) 1

2
(4.10)

where the sub-script “raw” and “bg” denote the corresponding filtered
signal obtained from the raw absorption signal with and without the
presence of the absorbance, respectively. In the simulation step, the “bg”
terms are obtained by simulating zero absorption signal. The “raw” terms
are obtained by simulating the absorption signal at relevant gas conditions.

In order to increase the robustness of the method against wavelength drift
of the laser [137], an additional sinusoidal signal with a lower frequency
than the modulation signal is supplied to the laser. The additonal frequency
is denoted as scanning frequency, fscan. Therefore, the laser intensity pa-
rameters Io, i1, and i2 in equation (4.3) will also vary in time. Hence, they
have to be measured at the point where the peak of R2 f occurs. The laser’s
wavelength will have an additive component due to the sinusoidal scan,
however, the am is assumed to be unaffected.

The simulated R2 f /1 f spectra of water vapour with uniform gas com-
position and at relevant gas conditions for wavenumber around 7185.59
cm−1 and 6806.03 cm−1 are shown in Figure 4.2a and 4.2b, respectively.
The simulation requires some spectroscopic parameters (e.g., linestrengths
at reference temperature, broadening coefficients, temperature exponents),
which have been experimentally determined in [138]. The simulation takes
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Figure 4.2: Simulated WMS(2f/1f) spectra of H2O for transitions centered around
a) 7185.59 cm−1 and b) 6806.03 cm−1 at a relevant gas condition for
the current study with XH2O = 0.185, P = 1 atm, and L = 6.2 cm. The
unshaded regions depict the scanning region swept by the laser. c)
The ratio betwen the peak of R2 f /1 f at around 6806.03 cm−1 and
7185.59 cm−1. The shaded region corresponds to the uncertainty due
to the uncertainties in the spectroscopic parameters from the database.

into account different laser’s center wavelength ν to emulate the effect of
the scanning signal. The scanning range of the lasers are depicted in the
unshaded region in Figure 4.2. Note that since the scanning signal used in
this study is sinusoidal, the same wavelength range will be swept during
the upward and downward direction of the scan denoted as upscan and
downscan, respectively.

The R2 f /1 f ratio of the two different peaks are then computed and shown
in Fig 4.2c. As seen, the peak ratio varies linearly in this case. Note that the
linearity depends on the temperature range and the laser’s parameters.

The uncertainties in the spectroscopic parameters, which are indicated
in the database, propagate further to the final peak ratio and hence to the
inferred temperature. The uncertainty region is plotted in Fig 4.2c. This
information will be used in the subsequent analysis to quantify the error in
the temperature inference.
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The gas temperature can be inferred by taking the ratio between the peak
of R2 f /1 f at around 6806.03 cm−1 and 7185.59 cm−1 from the measurement
and then comparing it to that of the model. Although the R2 f /1 f peak ratio
is insensitive to the mole fraction of water vapour, the individual R2 f /1 f
of each laser varies proportionally with the mole fraction of water vapour.
Therefore, for the temperature inference process, an iterative procedure is
applied by providing an initial guess of the mole fraction to the model,
calculating the temperature with the simulation, updating the mole fraction,
and repeating the process not more than twice. The TDLAS-WMS method
has been validated with plasma emission spectroscopy measurement in [68].

4.3.3 Entropy Transfer Function

Through the linearized thermodynamic relations and a low Mach number
assumption, which is valid in the present configuration, the temperature
fluctuations are linked to the entropy perturbations as follows, provided that
the acoustic-induced (isentropic) temperature fluctuations are negligible [47,
140]:

T′

T
=

s′

cp
, (4.11)

where the (·)′ and (·) denote the small perturbation and the mean value
of the quantities. In the case of technically premixed flame, temperature
fluctuations downstream of the flame are generated by the equivalence
ratio fluctuations produced upstream of the flame front [141].

The resulting equivalence ratio fluctuations at the fuel injection location
are a function of the acoustic velocity perturbations at the burner inlet:

ϕ′

ϕ
= F

(u′

u
)

(4.12)

If the region of the fuel injection is convectively compact, that is, the re-
sulting fluctuations are uniform with respect to the distance at the relevant
frequency range, the right-hand side simplifies to −u′/u. In our setup,
although the injection holes are distributed at two different axial positions,
the distance between them can still be considered as convectively compact
for the operating conditions and the frequency range of interest. The equiv-
alence ratio perturbations are then convected to the burner outlet and might
exhibit a complex frequency dependency as described in [142].
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Nevertheless, we are interested in the relation between the temperature
fluctuations downstream of the flame to the acoustics perturbation input at
the inlet of the burner. We then define the ETF as:

ETF(ω) =
T′/T
u′/u

(4.13)

where ω = 2π f is the angular frequency. T′ and T are measured at 28
cm from the burner outlet. The choice of this location is motivated by the
following reasons: First, it must be sufficiently far from the recirculation
zone. Second, it should give enough temperature fluctuations such that
they can be measured. Third, the contribution of entropy waves to the
indirect and direct noise is significant only if they survive until the end
of the combustor. The measurement location is approximately four flame
heights which is close to the typical gas turbine combustors.

4.3.4 Flame Transfer Function

The FTF linearly relates the heat release rate fluctuations to the incoming
flow perturbations:

FTF(ω) =
Q′/Q

u′
up/uup

(4.14)

where Q′, Q, u′
up, uup, and ω are the heat release rate fluctuations, the mean

heat release rate, the velocity fluctuations upstream of the flame, the mean
bulk velocity upsteram of the flame, and the angular frequency, respectively.

In this work, the FTF is obtained from the flame transfer matrix, denoted
as T, which is reconstructed with the MMM [143]. The T22 element de-
scribes the relation between the velocity perturbations downstream (u′

do)
and upstream (u′

up) of the flame. For low Mach numbers it can be expressed
as:

T22 =
u′

do
u′

up
= 1 +

(
Tdo

Tup
− 1
)

FTF (4.15)

where, Tdo and Tup are the mean temperature upstream and downstream
of the flame, respectively.

4.4 results and discussion

For all cases, the fuel blend ratio between hydrogen and natural gas is
constant at 0.45 by volume. This ratio allows us to operate the combustor
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Figure 4.3: averaged and instantaneous OH∗ flame chemiluminescence at acous-
tic forcing frequency = 220 Hz at different thermal powers: a) Power
= 34 kW, b) Power = 51 kW. The mixture equivalence ratio is kept
constant in all operating conditions. White and black corresponds to
the maximum and minimum intensity, respectively.

without thermoacoustic instability. The mean equivalence ratio is also kept
constant at 0.86. The thermal power of the combustor is varied and results
in three different operating conditions, namely 34 kW, 43 kW, and 51 kW.

The phase averaged and instantaneous OH∗ chemiluminescence images
of the flame are shown in Fig 4.3. As expected, the flame becomes more
elongated as the power increases due to the increase of mean bulk velocity.
The maximum emission intensity value also increases with power due to
the increase of heat release rate.

The raw signals from the photodiode are pre-multiplied with reference
cosine and sine and then fed into a Butterworth fourth order infinite impulse
response (IIR) low-pass filter. The cut-off frequency is set to 20kHz and
30kHz to recover the 2 f and 1 f signals, respectively. Because the laser
emitting near 1392 nm is modulated with fm = 150 kHz, the frequencies of
the reference cosine and sine for the spectra around 7185.59 cm−1 have to
be set to 150 kHz and 300 kHz to get the 2f and 1f component, respectively.
Similarly, for the spectra at around 6806.03 cm−1 the frequencies are set
to 200 kHz and 400 kHz. This highlights the benefit of the TDLAS-WMS
method: it allows frequency-multiplexing of the two different absorption
peaks. Thereby, only one detector is needed to recover the WMS spectra at
two different wavelengths.

A short snapshot of the R2 f /1 f and the raw signal from the photodiode
is shown from the measurement is shown in Figure 4.4. In principle,
the laser’s temperature and current can be tuned to make the downscan
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Figure 4.4: Time trace of the WMS-2f/1f signals of an acoustically perturbed
flame at 43 kW thermal power and 120 Hz acoustic frequency. Only
the upscan peaks are used to infer the temperature.

and upscan peaks to be further apart, and separated by close to half of
scanning period. However, we decided not to do it because this results in a
lower number of etalon peaks during the identification procedure, thereby,
sacrificing the accuracy of am determination. Since the detector signal is
stronger at the upscan section, only the R2 f /1 f peak ratio at the upscan
section is used to infer the temperature.

The inferred temperature and its Fourier transform are shown in Fig-
ure 4.5. A snapshot of the temperature time trace and its filtered component
around the forcing frequency are plotted in the inset. As seen, the coherent
temperature fluctuations are buried in the noise. However, the Fourier
transform shows a distinct peak at f = 120 Hz which corresponds to the
acoustic forcing frequency of the upstream loudspeaker.

The perturbations amplitude at each forcing frequency is then divided by
the mean temperature to get the percentage level of perturbation as shown
in Figure 4.6 a. The error bars of each temperature measurement correspond
to 95% Confidence Interval (CI). They are obtained by considering the
uncertainties in the spectroscopic database and the amplitude error due to
the measurement noise. The induced temperature fluctuations are in the
order of 1% and down to 0.3 % for all operating conditions. The lowest
measured coherent temperature fluctuation is 5 K and this highlights the
capability of TDLAS in measuring small amplitude coherent temperature
fluctuations.
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Figure 4.5: Inferred temperature of an acoustically perturbed flame at 43 kW
thermal power and 120 Hz acoustic frequency. a) Time-resolved tem-
perature, dashed line shows the mean temperature T. The inset shows
the first 60 ms of the raw temperature time trace (black) and its
narrowband-filtered content around the forcing frequency (blue). b).
Fourier transform of the inferred temperature.

The amplitude of acoustic velocity perturbations obtained from MMM
are shown in Figure 4.6 b. These velocity perturbations are kept to be
around 8% to ensure the same signal quality and linearity of the response.

The ETF’s gain and its error bars are shown in Fig 4.6c. The error bars
of ETF gains are obtained by propagating the error in the temperature
fluctuations as this is the largest contributor of the error in ETF. The gains
of the ETFs at frequencies between 40-90Hz are similar to the one measured
in [126] with a very similar flame and setup but with the data-heavy
LIF thermometry. The phase information at P = 51 kW and P = 43 kW
are available, but not at P = 34 kW due to synchronization error during
the measurements. The phase of ETFs and their linear fit are shown in
Figure 4.6d. The error bars of the phase are vanishingly small and thus not
represented. The linear fit matches well with the measurement for the first
half of the frequencies. The slope of each line corresponds to the time delay
between the temperature and the acoustics perturbation, and they match
well with the expected convective time delay. As expected, the slope of the
red curve is less steep than that of the blue curve because the mean bulk
velocity is higher at P = 51 kW.

In contrast to the previous numerical and experimental investigations of
the ETF (e.g. [129, 130, 144]), the measured temperature fluctuations and
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fit (only P = 43 kW and P = 51 kW are shown due to synchronization
error at P = 34 kW).

the ETFs do not decrease monotonically with respect to the frequency. It is
worth mentioning that the acoustic frequency range in this work is wider
and reaches a significantly higher frequency than the one measured in [126,
129, 130] thanks to the higher bandwidth of the method. Because higher
frequencies can be reached, peculiar phenomena, which are manifested by
the minimum of ETF, are uncovered. This behavior is similar to the FTF of
a technically premixed swirled flame. To remove the velocity dependency
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Figure 4.7: a) Strouhal number dependence of ETF gain and b) phase. c) The
corresponding FTF gain and d) phase at the considered cases.

of the ETF, the gain and phase are plotted against the Strouhal number
in Fig .4.7. We employ two different definitions of the Strouhal number.
The first is St = f L/U, where f is the frequency, L is the reference length
which is the hydraulic diameter inside the swirler block (14.5 mm), and
U is the mean bulk velocity inside the swirler block which differs for all
operating conditions. This definition is the same as in [145]. The second
Strouhal number is Stz = f z/Udo, where z is the axial distance of the
measurement location from the burner outlet, and Udo is the mean bulk
velocity downstream of the flame. Stz essentially compares the convective
wavelength to the axial distance from the burner [130]. The measured
FTF are also plotted against the Strouhal numbers for the same reason.
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The collapse of the ETFs gain and phase in the Strouhal number space
indicates that the mechanism of entropy generation and transport scales
well with Strouhal number. The same observations were also reported
in [130] and [129].

The minimum location of each ETF curve collapses at the same Strouhal
number, which strongly suggests a physical mechanism behind this non-
monotonous behavior rather than measurement error or quality issues.
Moreover, the measured flame transfer functions exhibit low response
at the same Strouhal number. This might seem obvious because entropy
fluctuations are due to heat release rate fluctuations. However, entropy
fluctuations are predominantly caused by the part of the heat release
fluctuations that is caused by equivalence ratio fluctuations. The part of
the FTF caused by equivalence ratio fluctuations (FTFϕ) typically does not
feature pronounced minima or maxima [146].

Indeed, if one considers a dispersion of entropy waves due to turbulence,
one would expect a monotonic decline of temperature amplitude with
respect to frequency. The convective wavelength in all cases and frequencies
varies from 9 cm to 60 cm. However, the turbulent length scale is in the
order of the duct height which is 6.2 cm. Indeed, it was shown in [47] that
in addition to shear dispersion associated with the transverse gradient of
mean axial velocity [129, 140], the distortion of entropy waves by large
turbulent structures significantly contributes to the monotonic decay of
their amplitude.

It is thus suspected that the non-monotonic behavior of ETFs and the
similarity between the FTFs and ETFs is caused by a different mechanism.
Some possible mechanisms are outlined as follows. First, the system is
not adiabatic due to heat losses across the combustor walls. The effect
of heat loss on the entropy waves propagation has been studied in [147]
and [148]. Both studies showed that thermal boundary condition at the
walls has a significant effect on the decay of the entropy waves. In our case,
the velocity fluctuations downstream of the flame will follow the same
trend as the FTF as described in equation (4.14). Because the heat transfer
to the wall is strongly dependent on the velocity, a fluctuation of velocity
will cause a varying heat loss hence leading to temperature fluctuations.
Second, additional hydrodynamic perturbations might be generated right
after the swirler and can subsequently interact with the equivalence ratio
perturbations at the injection holes. The net effect of these perturbations can
alter constructively and destructively the equivalence ratio fluctuations at
the burner outlet depending on the convective delay of each perturbation.
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This is similar to the investigation done in [142]. Third, the existence of large
coherent structures in swirling flows can favor a specific frequency which
scales with the Strouhal number as reported in [145]. They can subsequently
disperse the entropy waves and affect the flame transfer function at the
same frequency.

The TDLAS-WMS method developed in this chapter has initiated a
research collaboration to further investigate, by means of numerical simula-
tion, the generation of entropy waves for the nonadiabatic combustor [149].
For that study, the combustor is operated in a fully premixed mode and the
flame thermal power is set to 51 kW with the same hydrogen mixing as in
this study. It is indeed confirmed that the generation of entropy waves in the
fully premixed combustor is caused by the heat loss to the combustor wall.
An additional mechanism that plays a non-negligible role is preferential
diffusion, which is relevant in this case due to the high level of hydrogen
blending (in volume).

Furthermore, the TDLAS-WMS method is also employed to measure
the temperature fluctuations inside the mixing channel of an atmospheric
sequential combustor operated with full hydrogen as sequential fuel, as
demonstrated in [150]. However, in that study, the flame transfer function
of the sequential flame was not investigated. In that study, the focus was on
the quantification of the effect of temperature fluctuations on the ignition
kernel generation of the sequential hydrogen flame under stationary and
transient operations.

4.5 conclusion

Entropy transfer functions (ETFs) of a technically premixed swirled flame
are measured with the TDLAS-WMS method. The method is able to capture
coherent low-temperature fluctuations at a measurement rate of 5kHz
accurately, highlighting its applicability for ETF measurements. This is the
first time that TDLAS-WMS is applied for ETF measurements. Due to the
high frequency range and the sensitivity of the method, peculiar features of
the ETF could be uncovered. Hence, the method could be considered for
future experimental studies on ETF investigations. It was demonstrated that
the ETF’s gain does not decrease monotonically with respect to the acoustic
forcing frequency in contrast to the previous studies in the literature that
were limited to a lower frequency range. Moreover, it is observed that the
ETFs measured at different operating conditions collapse to each other when
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plotted against Strouhal number. The developed TDLAS-WMS method in
this chapter has initiated further follow-up studies.
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5
P L A S M A A S S I S T E D T H E R M O A C O U S T I C
S TA B I L I Z AT I O N O F A T R A N S I E N T LY O P E R AT E D
S E Q U E N T I A L C O M B U S T O R AT H I G H P R E S S U R E

Shall I refuse my dinner because I do not fully
understand the process of digestion?

— Oliver Heaviside

In this chapter, the nanosecond repetitively pulsed discharges with pin-to-pin
configurion is employed to stabilize the constant pressure sequential combus-
tor at high pressure. This study demonstrates the control of thermoacoustic
instabilities with NRPD up to 6 bar, in both stationary and transient modes
of operation. Two types of transient scenarios are considered. In the first tran-
sient scenario, the combustor pressure is linearly increased from 4 to 5 bar,
which corresponds to an increase of the overall thermal power from 273 kW to
341 kW, while continuously employing NRPD to stabilize the system. In the
second transient case, the tunable outlet orifice of the sequential combustor
is progressively swept from 91.6 % to 100 % of its maximum area. In both
cases, the NRPD shows remarkable performance in suppressing the thermoa-
coustic instability at ultra-low plasma power compared to the thermal power
of the combustor, down to about 1 × 10−2%. This achievement opens the way
for further developments toward the commercial application of NRPD-based
plasma assisted combustion in sequential combustors.

5.1 introduction

Similarly to traditional single stage combustors, constant pressure sequen-
tial combustor (CPSC) is susceptible to thermoacoustic instabilities, which
constitute a key challenge in the development of gas turbines for power
and propulsion systems [26]. These instabilities can cause pressure fluc-
tuations that reach a significant fraction of the mean pressure, and can
cause structural damage due to induced vibrations [33]. Their mitigation
is still based nowadays on passive solutions and expensive trial-and-error
testing during the combustor development phase. Therefore, developing
cost-effective actuators to control them would have a pivotal effect on the
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development and operation flexibility of gas turbines. Furthermore, to meet
the fluctuating energy demand resulting from the intermittent production
of renewable sources, modern gas turbines need a fast reaction time [67],
and during transient operation, they can be temporarily brought to condi-
tions leading to thermoacoustic instabilities. Therefore, it is not surprising
that such problematic instabilities during transient operation have recently
drawn attention in the research community [151, 152, 153, 154].

Active control strategies can adapt to changing operating conditions,
but their implementation in real gas turbines faces challenges due to the
lack of robust and swift actuators [76]. Approximately three decades ago,
a successful active control approach involving rapid adjustments to fuel
mass flow was developed, which proved to be effective for liquid spray
systems [78] and natural gas setups [79]. The latter innovation was validated
in heavy duty gas turbines and entered commercial usage. However, this
mechanical solution with moving parts was not sufficiently cost-effective
to become a standard equipment on the gas turbine market, and today’s
turbines rely on less flexible, but more robust passive solutions. In this
context, the demonstration of an effective actuation system, without moving
parts, could change the control approach paradigm.

Consequently, several studies have explored the impact of nanosecond
repetitively pulsed discharges (NRPD) on the fluctuations of the flame heat
release rate [62] and on the lean blow-out extension of the flame [82, 155,
156], recognizing its significant influence on the kinetics of reactive mixtures.
In a single-stage swirled stabilized combustor, Lacoste et al. [62] observed
substantial effects of NRPD on the gain and phase of the flame transfer
function (FTF), hinting at potential implications for thermoacoustic stability.
A more recent study on the effect of NRPD to flame transfer function of a
turbulent swirled burner at elevated pressure was presented in [90]. In that
study, it was shown that the NRPD affects the flame dynamic by creating a
region where the heat release rate fluctuations of half of the flame are in
phase opposition with the other half, rendering a global reduction in the
heat release rate fluctuation. Besides, Moeck et al. [54] successfully used
nanosecond plasma discharges for active feedback control to stabilize a
linearly unstable combustor. They utilized the extended Kalman filter (EKF)
to estimate the instantaneous phase of acoustic pulsation, modulating the
plasma generator’s gate signal accordingly. In that study, the atmospheric
combustor was operated only in steady-state manner. Following the same
control architecture, Khalifa et al. [86] showed that glow discharge with
a plasma power of around 1 W could stabilize a laminar methane flame.
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Recently, Shcherbanev et al. [57] demonstrated the effectiveness of plasma
discharges in igniting a lean mixture of hydrogen and natural gas blending
in a sequential combustor. Another notable application of NRPD in an
atmospheric sequential combustion is presented in [110]. The study used
NRPD to stabilize the combustor in steady-state operation, extensively ex-
amining the influence of two plasma parameters, pulse repetition frequency
(PRF) and generator voltage, on acoustic pulsation and NO emissions. The
minimum plasma power that can effectively stabilize the combustor was
1.5 × 10−3% of the thermal power of the flames, which is ultra low and
attractive for practical application in real gas turbines.

The thermoacoustic stabilization of combustors under transient operation
remains unexplored in the literature. Moeck et al. [157] showed the ther-
moacoustic stabilization of a lab scale combustor under transient preheating
temperature variations by using loudspeakers. However, such actuators are
not applicable in a real engine. In this study, our objective is to demonstrate
and assess the performance of NRPD in stabilizing a sequential combustor
under high-pressure conditions and during transient scenarios. Two distinct
transient scenarios are investigated. In the first scenario, modifications to
the outlet acoustic end area are achieved using the motor-driven piston. In
the second scenario, there is a simultaneous ramp-up of combustor pressure
and power.

5.2 experimental set-up

The lab-scale sequential combustor setup is depicted in Fig. 5.1. The setup
consists of a plenum, a matrix burner for anchoring 4 × 4 turbulent jet
flames, a combustion chamber which also exhibits a 62 × 62 mm2 cross-
section, a dilution section, a mixing channel with 25 × 38 mm2 cross-section,
a secondary fuel injection, a sequential or second-stage combustion cham-
ber, and an adjustable orifice. The first-stage combustion chamber uses a
mixture of natural gas and air, with preheated air of 270 °C and introduced
from the plenum, while natural gas is added through the matrix burner,
creating a technically premixed mixture. A piezosensor is placed on a flush-
mounted plate to monitor the pressure pulsations inside the first stage
combustor denoted as Mic. 1 in the figure. Dilution air at temperature of
80 °C is introduced from the dilution air port and mixes with the hot gases
from the first stage flame. A mixture of 11 % hydrogen and 89 % natural gas,
by mass, is injected through the sequential injector. The sequential injector
features an X lobe-shaped vortex generator to introduce rotational move-
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Figure 5.1: Sketch of the lab-scale sequential combustor operated in the ETH
high pressure test rig shown above in the image. CC- Combustion
chamber, BCS - Back Current Shunt, HV - high-voltage generator. The
inset in the dashed rectangle display an image of the sequential flame
with plasma actuation in the mixing channel.

ment to the vitiated flow, which enhances the mixing process. A pin-to-pin
electrode configuration, with an inter-electrode distance of 5 mm, is located
downstream of the sequential fuel injector. Another piezo sensor is placed
downstream of the sequential flame to monitor the pressure pulsations
of the second combustion chamber. As indicated above, the outlet of this
chamber has an adjustable orifice to control the thermoacoustic stability
of the system. The outlet orifice is composed of a conical piston which is
connected to a DC motor. Adjusting the position of the piston horizontally
enables the variation of the exit area, and therefore a variatio of the out-
let reflection coefficient, which has a key influence on the thermoacoustic
stability. The sequential combustor is inserted in a large pressure vessel
equipped with a water-based heat exchanger, which cools the combustion
products before the large back-pressure that is used to control the operating
pressure of the combustor.

The optical access to the flames is enabled through wall-mounted quartz
windows on the combustor which are cooled with air jets and another set
of thick quartz windows on the high pressure vessel. Chemiluminescence
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from the OH∗ is used to analyze the sequential flame, with a camera
that captures a segment of the mixing channel located downstream of the
electrodes. An optical obstruction conceals the intense light emitted by the
plasma discharges. The recording configuration includes a LaVision Star X
high-speed CMOS Camera and a LaVision HS-IRO high-speed intensifier,
both fitted with a 45 mm CERCO UV lens (F/1.8 Cerco) and an Edmund
Optics optical bandpass filter (centered at 310 nm, FWHM 10 nm).

The plasma generator (FID) initiates the high voltage pulses with a
2-3 ns rise time and a pulsed width of 10 ns. In this study, the pulse
repetition frequency (PRF) is fixed at 10 kHz. Back current shunts (BCS)
are implemented into the outer shield of the transmission lines, positioned
both on the anode and cathode, each 7 m away from the electrode system.
These shunts serve to capture the incident and reflected pulses from each
source polarity. A mixed signal digital oscilloscope (Tektronix MSO54B)
was used to record the current and voltage signals at 1 GHz bandwidth
and 6.25 GHz sampling rate.

5.3 methodology

5.3.1 Plasma energy deposition

Fig. 5.2 presents the signals recorded by the BCS for the positive polarity
voltage waveform, with and without plasma (Vgen= 10 kV) at P = 4.5 bar.
The instantaneous cumulative energy of the pulse is:

E(t) =
∫ t

t0

V2(t′)× sign(V(t′))
Zc

dt′, (5.1)

where V is the recorded voltage time trace, Zc is the impedance of the
cable which in our case equals to 50 Ω. In equation 5.1, the voltage sign
distinguishes between incoming (positive) and reflected (negative) energy.
The deposited energy, denoted as ED, is the cumulative energy at the end
of each time instance, specifically ED = E(te), where te is the total duration
of the recorded signal. In an ideal scenario without plasma breakdown,
incident and reflected energy are equal. In practical cases, where losses
occur, a baseline measurement with the combustor off yields the energy loss
EDc . For plasma breakdown situations, the energy EDh is obtained through
the same procedure. Accounting for losses, the energy deposited in the
plasma, EDpl , is then:
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Figure 5.2: Waveform of the signals obtained with BCS for positive polarity 10 kV,
P = 4.5 bar (top) and the resulting distribution of 2000 consecutively
measured energy deposition (bottom).

EDpl = EDh − EDc . (5.2)

In this study, both polarities contribute to the total energy deposition.
In order to obtain enough statistics, 2000 consecutive pulses are obtained
in every measurement. The histogram in Fig. 5.2 shows the characteristic
distribution of the deposited energies. In the following paragraphs, EDpl
is abbreviated as ED for brevity. The mean plasma power is computed as
the product of the mean energy deposition and a fixed PRF of 10 kHz. The
ratio of the mean plasma power to flame thermal power is represented by
ηp.

5.3.2 Operation of the sequential combustor

The operation of the setup is enabled through a control software which
regulates all the mass flow controllers for the air, fuel, and cooling water, and
monitors the temperature and static pressure probes at different locations
in the setup. The piston position for the adjustable acoustic end boundary is
also controlled by the same software in real-time. The variability of the outlet
allows us to stabilize or destabilize the combutor on demand. Adjusting the
outlet area does not significantly change the pressure level of the combustor.
The combustor pressure is mainly regulated through a back pressure valve,
strategically positioned outside the high pressure vessel and downstream
of a water-based heat exchanger for cooling the hot gas. It serves as a
pivotal component in maintaining pressure equilibrium. In addition, the
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operating pressure can be finely adjusted by regulating the flow of cooling
air employed for the optical quartz windows of the combustion chamber.
The interplay of these two mechanisms ensures precise control, allowing
a comprehensive investigation into the intricacies of combustion under
varying conditions. In this study, the back pressure valve is set to a specific
value and the pressure can be linearly tuned simply by increasing the mass
flow of the air, fuel, and the cooling air simultaneously. Therefore, the
volumetric flow rates are the same for different combustor pressures.

In this study, the thermal power of the second stage flame amounts to
52% of the total thermal power of the flame. The combustor pressure and
the total thermal power of the flames, Wth, are related as:

Wth[kW] = K[kW/bar]× P[bar], (5.3)

where K is a constant and equals to 68.25. The combustors are operated
from p= 4 to 6 bar, hence, the total thermal power of the flames ranges
linearly from 273 to 409.5 kW, whereas, the equivalence ratios of the first
stage and sequential flame remain constant at 0.7 and 0.55, respectively.

Two microphones are used to characterize the thermoacoustic stability of
the combustor. The definition of the acoustic power spectrum of the signal
is:

Spp(ω) = 20 log10

(
p̂rms(ω)

2 × 10−5Pa

)
, (5.4)

where ω is the angular frequency, p′rmsis the root mean squared (RMS) of
the acoustic pressure p′, ·̂ denotes the Fourier transform and Spp(ω) is the
power spectrum. The main instability frequency occurs at around 400 Hz
for all cases.

5.4 results and discussion

5.4.1 Steady-state mapping

As stated previously, the ultimate objective is to achieve thermoacoustic
stabilization of the combustor under conditions of transient combustor pres-
sure increase and outlet area variation. Therefore, the acoustic pulsations of
the sequential combustor are initially analyzed across different combustor
operating pressure and outlet area during steady-state operation.

The outlet area undergoes a gradual sweep, ranging from 86% to 100%
of its maximum value in 5% increments, while the combustor pressure
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Figure 5.3: Surface maps of the RMS acoustic pressure pulsations in the first stage
combustion chamber as a function of the combustor pressure and
outlet orifice area (Top) and the associated peak frequency (bottom).
The blue crosses show the measurement points.

is systematically varied from 4 to 6 bars with 0.5 bar increments. They
all amount to 25 grid points. For each point, the signal is recorded for 30
seconds to ensure statistically converged values. The surface maps of p′rms,
and the peak frequency of the signal are shown in Fig. 5.3. As observed, the
acoustic pulsation amplitude increases monotonically with the outlet orifice
area for each p. Conversely, for a constant outlet orifice area, an increase in
p results in a non-monotonic behavior of p′rms. The maximum p′rmsoccurs at
p = 5 bar with an outlet area of 100%. However, the peak frequency exhibits
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the opposite trend. Under fixed operating conditions, the acoustic pulsation
amplitude and peak frequency show a negative correlation. This could be
attributed to a correlation between acoustic pulsation and the mean flame
length (not shown here). When the acoustic pulsation is high, the mean
flame length also increases, thus increasing the characteristic time delay τ
of the acoustic perturbations to the flame front. The increase in time delay
would result in a lower frequency of instability. However, it is not the focus
of this study to analyze possible mechanisms to fully explain the trends.

As the highest pulsation is observed at p= 5 bar, the selected path for the
transient scenario involves a trajectory from P = 4 bar to p= 5 bar, with the
outlet area set at a constant 100%. In the alternate transient case, premains
fixed at 5 bar, while the outlet area undergoes a transient sweep, ranging
from 91.6% to 100%.

The performance of NRPD at high pressure is first evaluated at p= 5.5 bar
and Vgen= 10 kV. In this condition, the plasma power equals to 29 W, and
hence ηp = 7.7 × 10−3%. The results are shown in Fig. 5.4. The discharge
is initiated at t = 500 ms. Before the initiation, the combustion chamber
exhibits high acoustic pulsations, and both the flame length and intensity
change dramatically within half of the acoustic cycle. After the plasma
actuation starts, the amplitude of the acoustic pressure starts to decay,
and the instability disappears within 50 ms. Consequently, the sequential
flame becomes more steady, and due to the presence of the discharge, some
ignition kernels appear in the mixing channel (see Fig. 5.4f and 5.4g).

The most interesting regime in terms of characterization of plasma effect
on acoustic pulsations is at p∼ 5 bar, which will be the focal point of
this study. The same procedure is performed at lower p’s, and the power
spectrum of the acoustic pulsation inside the second stage combustion
chamber without and with NRPD are plotted in Fig. 5.5 a) and b). Without
plasma discharge, the combustor exhibits a limit cycle with a high amplitude
and narrow spectral peak around the frequency of 400 Hz. Notably, the
higher harmonics are also pronounced. The scaled probability density
functions (pdf) are plotted in the inset and show bimodal distributions,
which is a typical feature of a system in the limit cycle (see e.g. [158]).
The spectra with the plasma discharge actuation look rather different; the
higher harmonics are not present anymore, and the main peak is at lower
power and becomes wider. The scaled pdf has a quasi-Gaussian distribution,
which is a typical feature of a stochastically forced linear stable system.

The energy deposition measurements under various conditions are plot-
ted in Fig. 5.6, together with p′rmsand ηp. Figure 5.6a shows the energy
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deposition at constant Vgen = 10 kV for different combustor pressures. As
seen, at a fixed voltage, the energy deposition decreases with pressure due
to the corresponding increase in the gas density, ρ, resulting in reduction of
the specific electric field values (E/ρ). At this generator voltage, the energy
deposition exponentially decays from 22.62 mJ at p = 4 bar to 2.91 mJ at
p = 5.5 bar. Consequently, ηp varies from 8×10−2% down to 7.7×10−3%.
Note that as the pressure of the combustion chamber increases, the thermal
power of the flame also increases; therefore, the reduction ηp is caused
by both a reduction in ED and an increase in Wth. To study the effect of
generator voltages, further energy deposition measurements are performed
at p = 4 bar and p = 5 bar and are plotted in Fig. 5.6b) and c). In both cases,
the generator voltage is progressively lowered from 10 kV until there is no
discharge initiated. As expected, for both p, the energy deposition increases
monotonically with respect to Vgen, while p′rmsdecreases monotonically
with respect to the generator voltage.
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5.4.2 Transient operation

The first transient operation involves a linear increase in the combustor
pressure from four to five bars and, consequently, in the thermal power of
the flames from 273 kW to 341 kW. This is done by locking the proportion of
air and fuel mass flows at p = 4 bar and then entering the total mass flows
at p = 5 bar as the set point. The control software automatically creates a
linear ramp whose rate is limited to ensure safety operations. The outlet
area of the adjustable orifice is set to 100% in this transient case.

The results of the first transient thermoacoustic stabilization are shown
in Fig. 5.7. In the first five seconds of the recording, the setup is operated
without any discharge, the system is unstable and can be confirmed by
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looking at the corresponding scaled pdf in Fig. 5.7d). At t = 5 s, the plasma
discharge is initiated with Vgen= 10 kV, resulting in ηp = 0.08%. As can be
seen from Fig. 5.7c), the acoustic pulsation amplitude decreases instantly.
The signal spectrogram shown in Fig. 5.7 shows an intense peak at a
frequency of around 395 Hz for t ≤ 5 s. Subsequently, after the plasma
initiation, the peak frequency of the signal jumps to a higher value of around
420 Hz. However, the spectra become more spread across the frequency
space. So far, the behavior is in good agreement with the steady operation
experiments shown in Fig. 5.5. At t = 10 s, the set point that corresponds
to the state at p= 5 bar is entered into the control software. As seen in
Fig.5.7a), the thermal power of the flame starts to increase earlier than the
combustor pressure. This is due to the faster response time of the fuel mass
flow controller compared to air. During the initial moments of the transient
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Figure 5.8: Outlet area variation at p = 5 bar. a) Time trace of the outlet area
of the combustor during transient operation. b) Time trace of the
acoustic pressure pulsation inside the sequential combustion chamber
(Mic 2 in Fig. 5.1). The pulsations are colored with three different
colors, indicating three disctinct regimes. c). Scaled probability density
function (pdf) of the corresponding acoustic pressure pulsation in b).

phase, the combustor operates with a slight variation in equivalence ratio.
However, plasma actuation is still effective in suppressing instability during
transient operation. Looking at the scaled pdf of the signal within the
corresponding transient regime in Fig. 5.7, one can see that the combustor
is indeed thermoacoustically stable. At p= 5 bar, ηp equals to 0.01%. At
t = 95 s, the NRPD is turned off, and the system immediately becomes
unstable again, and the instability frequency is very similar to the one at
the beginning of the recording. This outcome serves as a compelling proof
of concept, demonstrating that NRPD enables the seamless operation of a
sequential combustor during power ramp-up conditions with a very low
plasma power.

In the second transient case, the adjustable outlet orifice is linearly in-
creased from 91.6% to 100% of the maximum area while maintaining the
combustor pressure at five bars. The principle operation is the same as
before, the dedicated software regulates the rate of ramping of the outlet
orifice piston. Changes in the outlet orifice area affect consequently acoustic
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losses. Such a change in acoustic losses could occur in a real system, for
example, in a situation where the installed Helmholtz damper in a gas
turbine fails due to periodic hot gas ingestion [73]

The results of the second transient study are shown in Fig. 5.8.Similar to
the previous condition, prior to plasma actuation, the system exhibits pro-
nounced acoustic pulsation. Looking at the scaled pdf of the corresponding
regime in Fig. 5.8d), intermittent instability is evident in the system [158].
The intermittency is also confirmed by looking at the magnified time trace
data (not shown here). The signal spectrogram, shown in Fig. 5.8, shows a
relatively intense peak at around 410 Hz for t < 10 s. Plasma discharges
with the same parameter as the first transient case are initiated at t = 10 s.
As seen, the pulsation immediately drops, and, similarly to the previous
case, the peak frequency also goes up to around 420 Hz, also with a broader
distribution over the frequency space. After the initiation of plasma, the
area of the outlet orifice area is immediately increased, as shown in Fig .5.8.
Additionally, it can be seen that the combustor pressure remains unaffected
by the value of the outlet orifice area in the considered range. The setpoint
is reached within 50 s. As seen on the scaled pdf curve during the ramp up,
the system is indeed linearly stable. At t = 65 s, the control is turned off
and the system immediately becomes unstable with a pulsation higher than
that of the starting point, and a decrease in the peak frequency value can be
observed. The changes in pulsation amplitude and frequency are consistent
with the maps in Fig. 5.3. This result further strengthens our claim that
NRPD is a suitable tool to cope with changes in the combustor parameters.

5.5 conclusion

This study demonstrate the capability of NRPD as an actuator for suppress-
ing thermoacoustic instabilities in a high-pressure sequential combustor at
plasma power that is about 4 order of magnitude lower than the combustor
thermal power. Indeed, successful stabilization is achieved at a maximum
combustor pressure of 5.5 bar, with NRPD exhibiting effective control at
a mean plasma power of 7.7 × 10−3% relative to the thermal power of the
flames. Notably, this marks the first application of NRPD for stabilizing
thermoacoustic instabilities at pressures exceeding four bar. Furthermore,
the study demonstrates the ability of NRPD to effectively stabilize the com-
bustor under transient operations, which is highly relevant for gas turbines,
yet it has remained unchartered in the literature. Using a voltage set at the
maximum attainable value of 10 kV during transient pressure increases,
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the mean plasma power relative to the thermal power of the flames varies
from 0.08% at 4 bar to 0.01% at 5 bar. Although there is potential for further
optimization of electrode geometry and positioning, the presented results
highlight the promising performance of NRPD, suggesting its potential
applicability in real systems.
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6
S U M M A RY A N D O U T L O O K .

Nothing in life is to be feared, it is only to be
understood. Now is the time to understand more, so
that we may fear less.

— Marie Curie

This thesis presents a multifaceted study on the use of nanosecond
repetitive pulsed discharges (NRPD) to control the thermoacoustics of a
constant-pressure sequential combustor (CPSC). This study includes per-
forming experiments under atmospheric and elevated pressure up to 6
bar. Thermoacoustic stabilization with NRPDs is studied under stationary
and transient operation of the combustor. Another key component of this
research is the development and meticulous study of novel safe Bayesian op-
timization algorithms. This algorithm is designed for real-time optimization
of NRPD and combustor parameters to effectively reduce NOx emissions
while maintaining stability. In parallel, the thesis delves into the develop-
ment of an advanced temperature probe sensor based on tunable diode
laser absorption spectroscopy with wavelength modulation spectroscopy
(TDLAS-WMS). This sensor is specifically designed to measure coherent
temperature fluctuations, a critical quantity in characterizing the response
of the sequential flame.

Thus, this thesis presents a comprehensive approach, tackling both the
practical demonstration of actuators and control algorithms, as well as the
development of a fast laser-based temperature sensor to experimentally
quantify the temperature fluctuations.

The experimental setup features a pin-to-pin electrode arrangement posi-
tioned within the mixing channel of the sequential combustor. Chapter 2
focuses on the thermoacoustic stabilization of the atmospheric CPSC
using NRPD. It examines the impact of various NRPD parameters, such
as voltage and pulse repetition frequency (PRF), on both the morphology
of the sequential flame and the thermoacoustic stability of the combustor
under atmospheric pressure condition. The study uncovers several novel re-
sults that are important for further research. The main findings in chapter 2
are listed as follows:
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• NRPDs actuator with ultra-low-power requirement. The research uncovers
that a mean plasma power, amounting to just 1.5× 10−3 percent of
the flame’s thermal power, is sufficient to effectively stabilize the
thermoacoustics in the sequential combustor, while causing only a
minimal increase in NO emissions.

• Trade-off between acoustic pulsation and NO emission. Increasing the
mean plasma power slightly reduces the root mean squared of the
acoustic pressure and accelerates the thermoacoustic decay rate, but
at the expense of higher NO emissions.

• Destabilizing effect of NRPDs. An intriguing finding is that certain
NRPD parameter settings cause the combustor to switch modes, mov-
ing from around 330Hz to 260Hz. After this switch, the pressure
pulsations at 260Hz are notably higher than those at 330Hz. During
the instability cycle, the plasma discharges are periodically bent in
the direction of the stream, in synchronization with the acoustic pul-
sations. Additionally, the plasma volume also varies with the acoustic
pulsations.

As a follow-up study described in chapter 2, novel optimization algo-
rithms based on the safe Bayesian optimization (safeOpt) algorithm are
developed and outlined in detail in Chapter 3. The algorithms are data-
driven, thereby, could work without models. The main purpose of the
algorithms is to find the optimum combination of control parameters in the
system while satisfying the safety criteria throughout the iterations. The
framework allows the transfer of knowledge between operating conditions,
which then reduces the number of iterations required to find the optimum
location or region. The main findings of chapter 3 are as follows:

• Two adaptations of safeOpt algorithm: shrinkAlgo and stageOpt. The safeOpt
algorithm works by approximating the objective and constraint func-
tion with Gaussian process regressors (GPRs). At each iteration, three
different sets are considered: safe set, potential minimizer set, and pos-
sible expander set. The shrinkAlgo algorithm and stageOpt algorithm
are based on the safeOpt algorithm. For the first few chosen number
of iterations, the framework is the same as the safeOpt algorithm, then,
the optimization process is modified such that the optimizer becomes
less exploratory. These modifications enable efficient identification of
optimum regions within the control parameter space without neces-
sitating the incorporation of models, although model integration is
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feasible and can potentially further reduce the number of required
iterations.

• Exploration of control parameter space for low NO emissions. It is a well-
known fact that plasma discharges could enhance the production
of NO. However, there could also be a situation where certain fuel
splitting values between the first and second-stage flame of a sequen-
tial combustor emit low NO but are thermoacoustically unstable. By
optimizing two control parameters, the power division between the
flames and the generator voltage of NRPDs, the algorithms could
find the optium regions. It was found that without the help of NR-
PDs, putting more power on the second-stage flame would increase
the acoustic pulsation. However, by increasing the generator voltage
while keeping the PRF at 10 kHz, the pulsation was reduced. The re-
gion with low NO emissions and low acoustic pulsations was located
where the power of the second stage was higher than 52% and the
generator voltage was higher than 8.5 kV. Therefore, the application
of NRPDs in a sequential combustor can help to find regions with
low NO emissions.

Characterizing the response of the sequential flame requires the mea-
surement of acoustic pressure, acoustic velocity, and temperature fluctua-
tions. Both acoustic pressure and acoustic velocity could be reconstructed
using the multi-microphone method. However, measuring temperature
fluctuations with a frequency in the range of 100 to 600 Hz requires an
advanced method. This issue is addressed in Chapter 4 by introducing
tunable diode laser absorption spectroscopy with wavelength modulation
spectroscopy (TDLAS-WMS) for measuring coherent temperature fluctu-
ations. The method is employed to measure the entropy transfer function
of a technically premixed turbulent swirled flame. The main findings of
chapter 4 are listed as follows:

• Measurement of low-amplitude coherent temperature fluctuations down to
5K. The method employs fast modulation, on the order of 100 kHz,
of the current powering the diode lasers. This modulation approach
improves the ability to reject noise, as it shifts absorption information
to higher frequencies where non-absorption related noise is signifi-
cantly lower. The absorption information is then converted to temper-
ature in the post-processing step at 5 kHz rate. Coherent temperature
fluctuations were generated by forcing the flame with an upstream
loudspeaker with frequencies ranging from 40 to 250 Hz. The lowest
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measured amplitude of the coherent temperature fluctuations was
around 5 K. High confidence in the accuracy of the method was
achieved by measuring multiple operating conditions and comparing
the consistency of the results.

• The gain of the entropy transfer function does not decay monotonically
with respect to frequency. In contrast to studies in the literature, it was
found that, for all the operating conditions considered, the measured
entropy transfer functions do not decrease monotonically with respect
to frequency. The trends resemble those of the flame transfer functions
(FTFs) which are also measured simultaneously. The ETF curves
collapse to each other when plotted against the Strouhal number, and
the slope of the phase matches the convective time delay.

In practice, gas turbines often operate under varying load conditions.
This motivated the study of the effectiveness of NRPDs in controlling
thermoacoustics under transient operation at high pressure, which is ex-
plained in Chapter 5. The experiments were carried out in the high-pressure
laboratory at CAPS LAB. The same CPSC configuration as that in the atmo-
spheric study was placed inside a high pressure vessel. The main findings
of chapter 5 are listed as follows:

• Effective control of thermoacoustics under high-pressure and stationary oper-
ations. The first part of the study involved the investigation of NRPDs
under stationary conditions. The combustor pressure considered for
the actuation of the NRPD ranges from 4 to 5.5 bar. In all combustor
pressures, NRPDs can effectively stabilize the thermoacoustics. Re-
markably, at the combustor pressure of 5.5, a mean plasma power of
around 7.7 × 10−3 percent of the total thermal power of the flame is
sufficient to effectively stablize the thermoacoustics.

• NRPDs allow smooth transient operation of the CPSC. Two different
transient scenarios are considered. In the first transient scenario, the
combustor pressure is linearly increased from 4 to 5 bar, which cor-
responds to an increase in thermal power from 273 kW to 341 kW,
while continuously employing NRPD to stabilize the system. In the
second transient case, the combustor is operated at 5 bar, and the
tunable outlet orifice of the sequential combustor progressively swept
from 91.6 % to 100 % of its maximum area. In both cases the ther-
moacoustics are successfully stabilized. It was found that after NRPD
actuation, the peak frequency of the acoustic spectra shifted to higher
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frequency. This could be attributed to changes in the mean flame
length.

This thesis has covered different aspects of thermacoustic control in
sequential combustor. However, there is scope for improvement and refine-
ment. Future research could explore the following potential topics:

• Entropy and flame transfer function of the sequential flame. Measuring
the entropy and flame transfer function of the sequential flame is
essential to predict the thermoacoustic instabilities of the system.
The TDLAS-WMS method developed in this thesis has demonstrated
adequate capability to measure temperature fluctuations. As a result, it
is principally possible to measure all relevant quantities. Experimental
campaigns in this area are currently being planned.

• Improvement of the safe Bayesian optimization algorithms. The ability
of the developed safe Bayesian optimization algorithms to find the
global optimization depends on the choice of initial information. This
problem could be tackled by adding an additional framework to allow
algorithms to quickly assess unsafe regions. Upon evaluation of these
unsafe regions, it is imperative that the algorithms rapidly analyze
the objective and constraint functions, subsequently returning to the
safe region. Consequently, the uncertainty associated with acquired
information must be adjusted, considering the reduced duration of
data collection. This approach may require more hyperparameters
to be introduced; however, this will make the algorithm to be more
independent of the initial safe set. Alternatively, if the measurement
of the flame transfer function of the sequential flame is available,
a low-order model could be constructed and incorporated into the
algorithms.

• The influence of fuel composition on NRPD effectiveness. During experi-
mental campaigns, NRPDs were observed to become less effective in
controlling thermoacoustics under some fuel mixture conditions. In
particular, when the sequential fuel is richer in natural gas. It would
be valuable to meticulously study this effect through experiments and
possibly plasma kinetic modeling.

• Optimization of the electrodes geometry and location. This study only
considers electrodes with a pin-to-pin configuration. It would be in-
teresting to investigate the configuration of different electrodes and
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analyze their effectiveness. Furthermore, the location of the electrodes
could be optimized as in the current configuration the sequential
could be partially entering the mixing channel close to where the elec-
trodes are. In addition, it would be interesting to place the electrode
pairs at different locations to allow further adaptation to changes in
operational conditions.



A
F E E D B A C K C O N T R O L O F T H E R M O A C O U S T I C I N A
S E Q U E N T I A L C O M B U S T O R W I T H N R P D

This appendix discusses some preliminary findings of a feedback control im-
plementation to control the acoustic pulsations of the sequential combustor
described in Chapter 5 with NRPD. The combustor is operated at a mean
pressure of 2 bar. The controller is similar to the gain-delay controller described
in Chapter 3. An extended Kalman filter (EKF) is employed to estimate the
instantaneous phase of the acoustic signal at the main frequency. The effect of
the NRPD duty cycle and actuation delay on acoustic pressure pulsations and
NO emissions is investigated.

a.1 introduction

In this Appendix, a feedback-based controller, which is similar to the phase
shifter controller in Chapter 3, is employed to actuate the NRPD in the
high pressure sequential compressor. The two control parameters of the
controller are the duty cycle and the actuation delay. In short, duty cycle
refers to the percentage duration of the actuation signal compared to the
reference acoustic cycle; e.g. duty cycle of 50 % means that the NRPD is
actuated 50 % of the time within one acoustic cycle. In this implementation,
the actuation delay or phase shift is expressed in degrees. Therefore, it is
relative to the main frequency present in the system. The implementation
is based on [54, 86] in which an extended Kalman filter (EKF) is used
to estimate the instantaneous phase of the acoustic cycle, θ(t), from the
microphone. When the value θ(t) is equal to the predefined phase shift ψ,
a square wave with the width corresponding to the predefined duty cycle
DC is generated. The square wave then acts as a gate signal for the plasma
generator, i.e. plasma discharges will be initiated if the gate signal value is
above zero.

In this study, the effect of both control parameters, DC and ψ, on the
acoustic pressure pulsation and NO emissions is investigated. Because
the emission analyzer requires about two minutes to converge, the NO
emission mapping procedure with respect to the control parameters is
aided by the Bayesian optimization algorithm described in Chapter 3. The
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hyperparameters of the algorithm is tuned such that the goal is to optimize
the information.

a.2 setup

a.2.1 Experimental setup

The experimental setup is similar to the one described in Chapter 5, hence,
it will not be explained in detail in this section. The fuel of the first stage
flame is pure natural gas with fuel and air massflows of 1.67 g/s and 35.9
g/s, respectively. The air is preheated up to 338 °C. The fuel for the second
stage flame is a blend of hydrogen and natural gas with mass flows of 0.094
g/s and 1.29 g/s, respectively. The mass flow of the dilution air is 36.2 g/s.

Mic.

FuelDilution
Air

Trig.

Gen
HVG

Envelope
detector

EKF

FFT

fo

θ(t)

a(t)

DC

ψ

Gate signal
generator

Implemented on
dSpace board

Figure A.1: Experimental setup showing only the second stage combustor and
the signal chain diagram. The main experimental setup can be seen
in Chapter 5 and Chapter 2. HVG: High voltage generator, Trig. Gen
: Trigger generator, FFT: Fast Fourier Transform, DC: Duty cycle,
ψ: Phase shift in degree, EKF: Extended Kalman filter. Elements in
gray boxes are implemented on a dSpace board (DS1104). The FFT
algorithm is not operating in real-time.



A.2 setup 141

The simplified version of the experimental setup and the signal chain
diagram of the feedback control implementation are shown in Figure A.1.
The elements in gray boxes are implemented on a dSpace board (DS1104).
The pulse repetition frequency (PRF) of the generator is fixed at 10 kHz.
The generator voltage is set to ± 13.5 kV when DC ≤ 80% and to ±12.5 kV
when continuous forcing is applied.

a.2.2 Extended Kalman filter

A detailed derivation of the Kalman filter equations can be seen in [159,
160]. Only the relevant equations are briefly outlined here. Because the
implementation of the filter is on a dSpace board which works in a discrete
time step, the state-space equations are written in discrete form. The time
index is denoted by k ∈ Z+. The sampling time of the board, Ts, is 0.1 ms.

The states vector, x, consists of the envelope of the acoustic pressure
signal a, the peak frequency of the signal fo, and the phase of the acoustic
signal θ = 2π fokTs: x = [a fo θ]T . The measurement output vector y consists
of a, fo, and the bandpass filtered acoustic pressure p: y = [a fo p]T . The
dynamic of the states, and the output measurement are described by the
following equations:

xk = Axk−1 + wk, w ∼ N (0, Q). (A.1)

yk = h (xk) + vk, v ∼ N (0, R), (A.2)

where w is the process noise with zero mean and covariance matrix Q, and
v is the measurement noise with zero mean and covariance matrix R. The
entries of the covariance matrices are hyperparameters of the filter that
can be tuned. Following the procedure in [161], the transition matrix A is
assumed to have the following structure:

A =

 1 0 0

0 1 0

0 2πTs 1

 , (A.3)

the measurement function h is expressed as:

h(xk) =

 x1,k

x2,k

x1,k sin x2,k

 . (A.4)
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Note that, in the measurement function above, the peak frequency, x2,k = fo,
is assumed to be measured in real-time. However, as previously mentioned,
the real-time FFT algorithm is not implemented. Hence, the frequency fo
is given as an adjustable input to the dSpace board that can be modified
via a user interface software. During the experiment, a separate LabVIEW
script is used to get the fo and then the value is fed to the user interface
software. This is similar to the implementation described in [54]. The benefit
of including fo in both the state and measurement vectors is that once the
real-time FFT algorithm is feasible, the Kalman filter implementation does
not have to be substantially changed.

Essentially, Kalman filter is a Bayesian solution to the problem of se-
quentially estimating the state of the dynamical system [159]. Because the
noise is assumed to be Gaussian distributed, the close form solution of
the posterior prediction could be attained. Due to the presence of noise,
the estimates of the states also follow the Gaussian distributions. Let the
subscript k | k − 1 denote the prior update step (prediction step) and the
subscript k | k denote the posterior update step after (measurement update
step) including the output measurement. Furthermore, let x̂ and P denote
the mean and the covariance matrix of the state distribution, respectively.
Assume that at time k − 1, the posterior mean, x̂k−1|k−1 and the variance
Pk−1|k−1 are available. After performing the prediction step, the mean and
covariance of the estimates of the states are expressed as follows:

x̂k|k−1 = Ax̂k−1|k−1, (A.5)

Pk|k−1 = APk−1|k−1AT + Q. (A.6)

In the measurement update step, the posterior distribution of the states
is calculated by combining the measurement likelihood, which is derived
from equation A.2, and the results from the prediction step. The posterior
mean and covariance are then expressed as follows:

x̂k|k = x̂k|k−1 + Kk(yk − Hk x̂k|k−1), (A.7)

Pk|k = Pk|k−1 − KkHkPk|k−1, (A.8)

where Kk and Hk are the optimal Kalman filter gain and the Jacobian matrix
of the measurement function, respectively:
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Kk = Pk|k−1HT
k (HkPk|k−1HT

k + R)−1, (A.9)

Hk =
∂h
∂x

∣∣∣∣
x̂k|k−1

. (A.10)

All equations are implemented on the dSpace board, which is pro-
grammed with SIMULINK. The controller parameters ψ and DC can be
changed during the test via a user interface software. When θ(k) = ψ, a
square signal with a width of DC × 1/ fo is created and fed to the trigger
generator.

a.3 results

The duty cycle and the phase shift are uniformly swept to see their effect on
the acoustic pressure pulsations in the sequential combustion chamber. The
duty cycle is swept from 10% to 80% and the phase shift is swept from 20°to
340°. Figure A.2 shows the frequency spectra of the acoustic pressure signal
in four different combinations of control parameters. When no control is
applied, the combustor exhibits high acoustic pressure pulsations of 168 dB
at 370 Hz.

When the duty cycle is set to 10% and the phase shift is set to 160°,
the peak frequency shifts to 327 Hz and the power is 148 dB, which is
20 dB less than the uncontrolled case. A secondary peak at around 410 Hz
also presents in the signal. After analyzing the signal histogram of the
bandpass-filtered signal around the peak frequency (not shown here), under
this condition, the system remains linearly unstable despite a significant
reduction in the pressure pulsations.

When the duty cycle is 80% and the phase shift is 140°, the peak frequency
changes to 380 Hz with a power of 146 dB, which is 2 dB lower than the
previous case. However, the plasma power is eight times more than in the
previous case.

The best performance in terms of pulsation reduction is obtained when
continuous forcing is applied. As seen, the peak around 370 Hz is com-
pletely eliminated.

To compare different combinations of control parameters, the measured
signal is bandpass filtered, and subsequently the root mean squared (RMS)
value is computed. The cut-on and cut-off frequencies of the bandpass filter
are shown by the black dashed lines in Figure A.2.
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Figure A.2: Acoustic spectra of the pressure pulsations inside the sequential
combustion chamber with different control parameters combinations.
Continuous forcing is equivalent to DC = 100%. The dashed lines
show the frequency range of the bandpass filter for the RMS com-
putation. The generator voltage in the continuous forcing case is set
to ± 12.2 kV, whereas, in the feedback control strategy it is set to
± 13.5 kV.

The resulting acoustic pressure RMS (p′rms) map as a function of the
control parameters is shown in Figure A.3. The red and blue lines in
Figure A.3 show the RMS pressure of the uncontrolled and continuous
forcing cases, respectively. There are in total 153 measurement points, each
with a recording length of four seconds to compute the RMS value. As can
be seen, at every DC value, there is a notable minimum p′rms located when
ψ = 140 − 180°.

On average, increasing the duty cycle leads to a decrease in the RMS
value. It should be noted that for some DC, depending on the value of ψ, the
acoustic pulsation could be higher than the uncontrolled case. The highest
RMS value occurs at DC = 10% and ψ = 20°, where the p′rms is 91 mbar.
The RMS value of the uncontrolled case is 63 mbar. The minimum value of
p′rms at DC = 10% is 14 mbar, whereas, at DC = 80%, the minimum value is
11 mbar. The RMS value of the continuous forcing case is 7.8 mbar. However,
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Figure A.3: Surface map of the acoustic RMS (root mean squared) pressure
in the sequential combustion chamber as a function of the control
parameters (duty cycle and phase shift). The crosses indicate the
measurement points. The red line indicates the pressure RMS value
without control, and the blue line shows the pressure RMS value
with continuous forcing.

note that in the continuous forcing case, the voltage of the generator is
± 12.2 kV instead of ± 13.5 kV. Therefore, looking only at the values of
p′rms, it is more advantageous to apply the continuous forcing strategy
instead of the feedback control, as it gives the lowest p′rms without the
need for hardware and software to implement the feedback controller.
However, when NO emission is also part of the consideration, situations
might change.

To obtain a surface map of the NO emission efficiently, the Bayesian opti-
mization algorithm in Chapter 3 is tuned to maximize the information gain
at every iteration. This is needed because the emission analyzer requires
about two minutes to converge, and hence obtaining 153 measurement
points as in the previous case is unfeasible. Figure A.4 shows the surface
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Figure A.4: Surface map of the NO emissions. The crosses indicate the measure-
ment points. The red line indicates the NO emission without control,
and the blue line shows NO emission with continuous forcing. The
uncertainty of the emission analyzer in this range is ± 0.8 ppmvd.

map of NO emissions. The number of measurements is 26 for this case.
Figure A.4 shows the resulting NO emission map. The uncertainty of the
emission analyzer in this range is ± 0.8 ppmvd. The highest NO emission
occurs when continuous forcing is applied, as shown by the blue line in
Figure A.4. In the feedback control case, NO emission increases on average
as DC increases. Almost all of the measurement points with feedback con-
trol strategy have a lower NO emission compared to the controlled case.
Therefore, this boils down to a trade-off between the p′rms and the NO emis-
sion. For example, if NO emission is not allowed to exceed 15 ppmvd and
the p′rms safety threshold is 15 mbar, indeed the feedback control strategy
with DC = 10% is the optimum choice, as at this condition, the power
requirement for the plasma generator is also the lowest.
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a.4 conclusion and outlook

The feedback control strategy has been implemented for the actuation of
NRPD in sequential combustor operated at a mean pressure of 2 bar. The
effect of the duty cycle and the phase shift of the controller on the acoustic
pressure pulsations and NO emissions is studied.

Depending on the combination of control parameters, the pressure pul-
sations can be amplified instead of suppressed. The optimum choice for
the controller phase change is between 140 and 160 °for all duty cycles.
However, the continuous forcing strategy outperforms the feedback control
strategy in terms of pulsation reductions. On the other hand, the continuous
forcing strategy performs the worst in terms of NO emission. Hence, the
trade-off between NO and p′rms should be considered in the selection of the
control strategy.

Future studies could include optimization of control parameters with
the Bayesian algorithm described in Chapter 3. For example, NO emission
could be treated as a constraint, and the objective is to minimize p′rms, or
vice versa. On the controller side, the real-time implementation of the FFT
algorithm could be studied. Doing so would allow the controller to track
the peak frequency of the acoustic pressure pulsation during, for example,
transient changes in operating conditions.
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