
diss . eth no. 30083

E P I S T E M I C U N C E RTA I N T Y Q UA N T I F I C AT I O N
A N D 3 D P O I N T C L O U D G E N E R AT I O N U S I N G

E X P L I C I T G E N E R AT I V E M O D E L S

A thesis submitted to attain the degree of

doctor of sciences

(Dr. sc. ETH Zurich)

presented by

janis gerhard postels

MSc in Robotics, Cognition, Intelligence,
Technical University of Munich

born on 10 June 1990

accepted on the recommendation of

Prof. Dr. Luc Van Gool
Prof. Dr. Stephan Günnemann

Prof. Dr. Hao Wang

2024

Janis Gerhard Postels: Epistemic Uncertainty Quantification and 3D
Point Cloud Generation Using Explicit Generative Models, © 2024

To Shimeng

A B S T R A C T

This thesis covers two related topics - the application of explicit
generative models to epistemic uncertainty quantification and 3D
point cloud modeling. Firstly, we target efficient epistemic uncer-
tainty quantification in neural networks. Quantifying the epistemic
uncertainty of a neural network is a prerequisite for safety-critical
applications. Epistemic uncertainty arises from choosing the parame-
ters of a neural network using limited information or applying an
unsuitable model class. Given a recent trend towards larger neural
networks, quantifying epistemic uncertainty efficiently becomes in-
creasingly important. Therefore, this thesis investigates epistemic
uncertainty quantification using explicit generative models trained
on the intermediate representations of a neural network.

Initially, we introduce an approach to quantify the epistemic un-
certainty of a neural network based on the distribution of its hidden
representations. Specifically, we use the log-likelihood of represen-
tations observed at test time as a proxy for uncertainty. Moreover,
we introduce a regularization approach that ensures that these repre-
sentations are suitable for uncertainty quantification. The latter is an
essential part of the method.

Then, we empirically investigate the previously introduced method
- and similar approaches which we term Deterministic Uncertainty
Methods - regarding the quality of their uncertainty estimates and the
impact of their regularization techniques. We find that the uncertainty
estimates obtained by these methods are often poorly calibrated and
the consistency of their regularization techniques varies.

Lastly, the application of explicit generative models to uncertainty
quantification leads us to investigate normalizing flows - a family of
such models. We specifically focus on their application to 3D point
clouds which are an increasingly important data modality. We recog-
nize the challenges arising from the invertibility of normalizing flows

iv

and propose an approach for generating samples with improved
perceptual quality.

v

Z U S A M M E N FA S S U N G

Diese Arbeit beinhaltet zwei verwandte Themen - die Anwendung
expliziter generativer Modelle zur Quantifizierung epistemischer
Unsicherheit und zur Modellierung von 3D-Punktwolken. Zunächst
konzentrieren wir uns auf die effiziente Quantifizierung epistemi-
scher Unsicherheit in neuronalen Netzwerken. Die Quantifizierung
der epistemischen Unsicherheit eines neuronalen Netzwerks ist ei-
ne Voraussetzung für sicherheitskritische Anwendungen. Epistemi-
sche Unsicherheit entsteht durch die Auswahl der Parameter eines
neuronalen Netzwerks mittels begrenzter Informationen oder die
Anwendung einer ungeeigneten Modellklasse. Angesichts des aktu-
ellen Trends zu größeren neuronalen Netzwerken wird die effiziente
Quantifizierung epistemischer Unsicherheit zunehmend wichtiger.
Deshalb untersucht diese Arbeit die Quantifizierung epistemischer
Unsicherheit unter Verwendung expliziter generativer Modelle, die
auf den Features eines neuronalen Netzwerks trainiert wurden.

Zunächst stellen wir einen Ansatz vor, um die epistemische Unsi-
cherheit eines neuronalen Netzwerks anhand der Verteilung seiner
Features zu quantifizieren. Insbesondere verwenden wir die Log-
Likelihood der Features zur Testzeit als Indikator für Unsicherheit.
Darüber hinaus führen wir einen Ansatz zur Regularisierung ein,
der sicherstellt, dass diese Features für die Quantifizierung von Unsi-
cherheit geeignet sind. Letzteres ist ein wesentlicher Bestandteil der
Methode.

Dann untersuchen wir empirisch die zuvor vorgestellte Methode -
sowie ähnliche Ansätze, die wir Deterministic Uncertainty Methods
nennen - hinsichtlich der Qualität ihrer abgeschätzten Unsicherheit
und den Auswirkungen ihrer Ansätze zur Regularisierung. Wir stel-
len fest, dass die abgeschätzte Unsicherheit, die mit diesen Methoden
erreicht wird, oft schlecht kalibriert ist und die Konsistenz ihrer
Ansätze zur Regularisierung schwankt.

vi

Abschließend führt uns die Anwendung expliziter generativer Mo-
delle zur Quantifizierung von Unsicherheit dazu, Normalizing Flows
- eine Kategorie solcher Modelle - zu untersuchen. Wir konzentrie-
ren uns speziell auf ihre Anwendung auf 3D-Punktwolken, die eine
zunehmend wichtige Datenmodalität darstellen. Wir erkennen die
Herausforderungen, die sich aus der Invertierbarkeit von Normali-
zing Flows ergeben, und entwickeln einen Ansatz zur Generierung
von Samples mit verbesserter visueller Qualität.

vii

P U B L I C AT I O N S

The following publications are included in part or as a whole in this
thesis (∗ denotes equal contribution):

• Janis Postels∗, Hermann Blum∗, Yannick Strümpler, Cesar Ca-
dena, Roland Siegwart, Luc Van Gool, and Federico Tombari.
“The Hidden Uncertainty in a Neural Networks Activations”.
In: arXiv e-prints, abs/2012.03082, 2020

• Janis Postels*, Mattia Segu*, Tao Sun, Luca Sieber, Luc Van Gool,
Fisher Yu and Federico Tombari. “On the Practicality of Deter-
ministic Epistemic Uncertainty”. In: International Conference on
Machine Learning (ICML) 2022

• Janis Postels, Martin Danelljan, Luc Van Gool, and Federico
Tombari. “ManiFlow: Implicitly Representing Manifolds with
Normalizing Flows”. In: International Conference on 3D Vision
(3DV) 2022

Furthermore, the following publications were part of my Ph.D. re-
search, but not included in this thesis.

• Diego Martin Arroyo, Janis Postels, and Federico Tombari.
“Variational Transformer Networks for Layout Generation”. In:
Conference on Computer Vision and Pattern Recognition (CVPR)
2021

• Matthäus Heer, Janis Postels, Xiaoran Chen, Ender Konukoglu
and Shadi Albarqouni. “The OOD Blind Spot of Unsupervised
Anomaly Detection”. In: Medical Imaging with Deep Learning
2021

viii

• Janis Postels∗, Mengya Liu∗, Riccardo Spezialetti, Luc Van Gool
and Federico Tombari. “Go with the Flows: Mixtures of Normal-
izing Flows for Point Cloud Generation and Reconstruction”.
In: International Conference on 3D Vision (3DV) 2021

• Tao Sun*, Mattia Segu*, Janis Postels, Yuxuan Wang, Luc Van
Gool, Bernt Schiele, Federico Tombari and Fisher Yu. “SHIFT:
A Synthetic Driving Dataset for Continuous Multi-Task Do-
main Adaptation”. In: Conference on Computer Vision and Pattern
Recognition (CVPR) 2022

• Yannick Strümpler∗, Janis Postels∗, Ren Yang, Luc Van Gool
and Federico Tombari. “Implicit Neural Representations for
Image Compression”. In: European Conference on Computer Vision
(ECCV) 2022

• Mengya Liu, Ajad Chhatkuli, Janis Postels, Luc Van Gool and
Federico Tombari. “Unsupervised Template Warp Consistency
for Implicit Surface Correspondences”. In: Computer Graphics
Forum 2023

• Janis Postels, Yannick Strümpler, Klara Reichard, Luc Van Gool
and Federico Tombari. “3D Compression Using Neural Fields”.
In: arXiv e-prints, abs/2311.13009 2023

ix

A C K N O W L E D G E M E N T S

The PhD journey has been a unique experience that would have been
impossible without the support of the many people accompanying
me over those last four years. First and foremost, I want to thank
my adviser Luc Van Gool for providing me with the unparalleled
opportunity to join the Computer Vision Lab.

I am incredibly grateful for the continued support and guidance
by Federico Tombari. Federico has been mentoring me from the start
of my master thesis in Munich and throughout the PhD adventure.
He enabled me to conduct my research at the intersection between
ETH and Google, and gave me the freedom and means to succeed
on this journey.

Moreover, I want to thank all the amazing collaborators without
whom my research would not have been possible. Most notably, I
would like to thank Yannick Strümpler who has been collaborating
with me ever since his semester project three years ago despite the oc-
casionally harsh realities of academia. Further, I would like to thank
Hermann Blum for the frequent exchange of ideas. What our projects
lacked in success, I gained in experience from our interaction. I am
also grateful to Mattia Segu for the frequent and fruitful discussions
and joint projects. My gratitude also extends to all the other collabo-
rators not mentioned so far: Martin Danelljan, Tao Sun, Mengya Liu,
Diego Arroyo, Ren Yang, Ajad Chhatkuli, Xiaoran Chen, Cesar Ca-
dena, Shadi Albarqouni, Matthäus Heer, Riccardo Spezialetti, Klara
Reichard and everybody else.

I am thankful for the inspiring atmosphere at CVL. I would partic-
ularly like to thank Kris, Christina and Christine for their continuous
effort to keep the lab running. I would also like to thank Anton,
Gustav and Ferjad for the abundant chats about research and beyond.
Moverover, I am grateful to everybody else crossing my path and
whom I did not mention before.

x

I also thank the entire Semantic Perception team and everybody
else at Google who have been accompanying me throughout this
journey. My gratitude especially extends to Alessio, Fabian Mentzer,
Eirikur, David, Dawid, Keisuke, Fabian Manhardt, Henri, Liesbeth,
Enis, Nathalie, Marta, Petra, Yongqin and everybody else.

I would also like to thank my parents, Gerhard and Kordula,
who always have my back. Last but not least, I am grateful for the
unconditional support of my wonderful wife Shimeng.

xi

C O N T E N T S

1 Introduction 1

1.1 Deterministic Uncertainty Quantification 1

1.2 Normalizing Flows for 3D Point Clouds 4

2 Related Work 6

2.1 Uncertainty Quantification 6

2.2 Normalizing Flows for 3D Point Clouds 9

3 The Hidden Uncertainty in a Neural Network’s Activations 12

3.1 Introduction . 12

3.2 Uncertainty from Informative Representations 14

3.3 Experiments . 20

3.4 Conclusion . 32

3.5 Appendices . 35

4 On the Practicality of Deterministic Epistemic Uncertainty 43

4.1 Introduction . 43

4.2 Taxonomy for Deterministic Uncertainty Quantification 45

4.3 Experiments . 51

4.4 Conclusion . 60

4.5 Appendices . 65

5 ManiFlow: Implicitly Representing Manifolds with Nor-
malizing Flows 87

5.1 Introduction . 87

5.2 Method . 90

5.3 Experiments . 94

5.4 Conclusion . 106

5.5 Appendices . 108

6 Conclusion 115

6.1 Contributions . 115

6.2 Outlook . 116

Bibliography 118

xii

1
I N T R O D U C T I O N

This chapter outlines the research conducted in this thesis. Firstly,
we are concerned with quantifying epistemic uncertainty of neural
networks (NNs) efficiently. Therefore, we will focus on methods for
quantifying the epistemic uncertainty using a point estimate of the
parameters of a NN. To this end, we proposed an approach to quan-
tifying the uncertainty of NN based on the distribution of its hidden
representations (see Chapter 3). We parameterize the distribution
using explicit generative models. Subsequently, we empirically in-
vestigate the properties of the uncertainty estimate obtained by our
approach and related methods (see Chapter 4).

This leads us to dive deeper into the shortcomings of one family
of explicit generative models - namely Normalizing Flows (NFs).
Hereby, we particularly focus on their application to 3D point clouds
and propose an approach to improve the perceptual quality of gen-
erated samples (see Chapter 5). We further demonstrate that our
method can be applied to higher dimensional domains, such as
images.

1.1 deterministic uncertainty quantification

Quantifying the uncertainty of a NN is both a prerequisite for safety-
critical applications and useful for downstream tasks such as active
learning [1], reinforcement learning [2, 3], continual learning [4, 5]
and out-of-distribution (OOD) detection [6].

Aleatoric/Epistemic Uncertainty. Uncertainty in a model’s predic-
tions can arise from two different sources [7, 8]. On the one hand,
aleatoric uncertainty encompasses the noise inherent in the data and
is, consequently, irreducible [7]. Even though aleatoric uncertainty

1

1.1 deterministic uncertainty quantification 2

is irreducible it can be incorporated into the model. On the other
hand, epistemic uncertainty quantifies the uncertainty associated with
choosing the model parameters based on limited information or
the underlying model class. It vanishes - theoretically - in the limit
of infinite data and is, thus, referred to as reducible. This work is
concerned with estimating epistemic uncertainty.

Probabilistic Methods for Estimating Epistemic Uncertainty. The
predominant approach for quantifying epistemic uncertainty requires
a probabilistic treatment of the parameters - e.g.using Bayesian Neural
Networks (BNNs) [9, 10] or ensembles [11, 12]. Instead of obtaining a
point estimate of the parameters θ of a NN, one obtains the posterior
distribution over the parameters p(θ|D) given a dataset D. Subse-
quently, epistemic uncertainty can be obtained as the conditional
mutual information between the parameters and the predictions y
given an input x in the case of classification [1, 13]

I(y, θ|x) = H(y|x)−H(y|x, θ) (1.1)

where H(x) denotes the entropy of x. H(y|x, θ) is the aleatoric
uncertainty. In the case of regression, one can use the law of total
variance to extract epistemic uncertainty [13]:

Var
θ

[E[y|x, θ]] = Var[y|x]− E
θ
[Var[y|x, θ]] (1.2)

E
θ
[Var[y|x, θ]] denotes the aleatoric uncertainty. In practice, this

requires sampling, and consequently multiple evaluations of the
underlying NN, to quantify epistemic uncertainty which is often
prohibitively expensive. Moreover, estimating the posterior distribu-
tion p(θ|D) can be challenging. Thus, extensive research has been
conducted towards reducing the computational footprint [12, 14, 15]
and combining the estimation of p(θ|D) with existing approaches to
optimizing large NNs [16–18].

A Deterministic Treatment of the Parameters. With an increasing
demand for large NNs, it is of practical relevance to investigate

1.1 deterministic uncertainty quantification 3

approaches to further reduce the computational requirements. In
fact, another line of research investigates the estimation of epistemic
uncertainty from a point estimate of the parameters θ [19–22]. The
greatest common factor shared by these works is the assumption that
the internal representations of appropriately regularized NNs allow
quantifying epistemic uncertainty - e.g.using an explicit generative
model [20, 21, 23, 24] or distances [19, 25, 26] of its hidden representa-
tions. Subsequently, the log-likelihood or distance to reference points
of novel data points is used as an estimate of epistemic uncertainty.
While various approaches that fall in the above categorization have
been developed, there remains an essential question that needs to be
answered before widespread adoption. Namely, does the distribution
of hidden representations entail information about the uncertainty
of the predictions of a NN? Intuitively, hidden representations that
reside far away from representations observed on the training data
are more likely unfamiliar territory for the NN and, thus, lead to
uncertain predictions. However, there is a difference between per-
forming OOD detection and quantifying the uncertainty related to
a discriminative task. The latter requires information about the ex-
pected predictive performance given the input. In other words, the
uncertainty is required to be calibrated.

In this thesis, we first introduce an approach to quantify epistemic
uncertainty based on the distribution of hidden representations of
a NN (see Chapter 3). Therefore, we tackle two problems: 1) We
propose a simple and practical regularization scheme for obtaining
hidden representations that allow quantifying uncertainty and 2) we
identify suitable explicit generative models capable of learning the
distribution of hidden representations. Subsequently, we empirically
investigate the quality of the uncertainty estimate obtained by the
method proposed in Chapter 3 and similar approaches in more detail
(see Chapter 4). We particularly focus on the calibration of these
uncertainty estimates and the impact of their regularization methods.

1.2 normalizing flows for 3d point clouds 4

1.2 normalizing flows for 3d point clouds

Our study of explicit generative models for the hidden representa-
tions of NNs leads us to examine one particular family of models
more closely, namely Normalizing Flows (NF). NFs [27, 28] are based
on invertible neural networks. Assume we wish to model the distri-
bution pX on a domain X. Given a parametric distribution pZ on a
domain Z and a NF fθ comprised of weights θ, likelihood evaluation
of a data point x ∈ X in NFs is based on the change of variable
formula

pX(x) = pZ(fθ(x))
∣∣∣∣det

(
∂ fθ(x)

∂x

)∣∣∣∣ (1.3)

and made feasible by designing invertible layers that allow evaluating
the determinant of their Jacobian efficiently. Since one can evaluate
pZ, Eq. 1.3 allows optimizing the parameters of NFs to directly
minimize the negative log-likelihood of the data. Samples from pX

can then be generated by sampling from pZ and applying the inverse
f−1
θ .

We here focus on the application of NFs to modeling 3D point
clouds. We view a point cloud as a set of samples from a distribution
representing the 3D structure. The benefit of an explicit generative
model is the ability to evaluate the likelihood of points which allows
outlier detection. However, there are two challenges when applying
NFs to arbitrary 3D data. Firstly, the 3D structure may be comprised
of disconnected components which renders the determinant term in
Eq. 1.3 unstable as it has to become very large in order to transform
pZ into pX. This problem has been tackled by the introduction of
mixtures of NFs [29]. Secondly, the fact that 3D structures often
reside on a 2D manifold embedded in 3D space leads to similar
instabilities resulting from the determinant. This problem is often
tackled by training on a noisy version of the original 3D structure [30–
32] which leads to reduced perceptual quality. In Chapter 5 we tackle
this problem by introducing a strategy for generating samples on the
underlying manifold given a NF trained on a noisy version of the

1.2 normalizing flows for 3d point clouds 5

data. Our method assumes knowledge of the noise used to perturb
the data.

2
R E L AT E D W O R K

This chapter provides an overview of research relevant to the covered
topics and relates the research presented in this thesis to it. Sec. 2.1
presents related work on uncertainty quantification with a focus
on deterministic approaches. Sec. 2.2 discusses relevant work on
modeling 3D point clouds and approaches to modeling manifolds
using NFs.

2.1 uncertainty quantification

2.1.1 Probabilistic Methods.

Bayesian Deep Learning (BDL) [33–35] is the predominant way to
quantify uncertainty. It treats aleatoric as well as epistemic uncer-
tainty in a principled manner (see Eq. 1.1 and Eq. 1.2). Due to well
known difficulties of applying BDL to large neural networks, numer-
ous scalable variants have been proposed [14, 16, 17, 36, 37].

Efficient Probabilistic Methods. Methods based on stochastic reg-
ularization are particularly compatible with common optimization
methods [16, 17, 36, 38, 39]. By keeping stochasticity at inference time,
they estimate uncertainty using multiple forward passes. These meth-
ods have been, for instance, developed based on dropout [16], batch
normalization [17] or stochastic gradient descent [18]. Another line of
work estimates the posterior distribution of BNNs using the Laplace-
approximation [40–42]. Moreover, efficient ensemble methods were
proposed which capture an ensemble in a single model [12, 43–47].
For instance, these require only an ensemble of the last layers [43],
factorize weight matrices into shared and separate components [12]
or train ensembles as disjoint subgraphs of a single NN [46, 47].

6

2.1 uncertainty quantification 7

Despite promising results on large-scale tasks and parameter reduc-
tion, these methods still require sampling through the model, which
can render them impractical given limited compute. To estimate un-
certainty in real-time and resource-demanding tasks, recent work
has focused on providing uncertainty estimates with a single forward
pass. One line of work proposes a principled approach for variance
propagation in NNs [14, 15, 48, 49]. While these approaches require
only a single forward pass, they differ from the methods discussed in
this work since they treat the parameters probabilistically and only
approximate sampling by propagating moments.

Notably, a parallel line of work uses the predictive conditional dis-
tribution of neural networks to quantify aleatoric uncertainty [50–52].
However, these approaches are problematic outside of the training
data distribution. Furthermore, neural networks have been found to
be poorly calibrated [53], which poses a challenge to all uncertainty
estimates.

2.1.2 Deterministic Uncertainty Quantification

It has been suggested that a deterministic NN with suitable regular-
ization can represent uncertainty. [54] uses the distance to the closest
class centroid in the feature space of a NN. They outperform the
softmax entropy and Monte-Carlo (MC) dropout [16] when regu-
larizing the latent space. DUQ [55] replaces the softmax activation
function with a class-wise Gaussian distribution with fixed variance
for classification. They further constrain the bi-Lipschitz constant
of the NN using a two-sided gradient penalty on the input yield-
ing distance-aware representations. They refer to the distance to the
closest class centroid as epistemic uncertainty and evaluate it on
OOD detection. SNGP [26] also enforces the representations of a
NN to be distance-aware by constraining its bi-Lipschitz constant
using spectral normalization, which inspired several extensions [21,
56]. Spectral normalization reduces the large memory and runtime
overhead at training time compared to a two-sided gradient penalty

2.1 uncertainty quantification 8

if operated using a single power iteration. However, it also constrains
the architecture of the underlying NN. Chapter 3 introduces a new
regularization technique that is 1) agnostic to the underlying ar-
chitecture/task and 2) empirically observed to correlate with OOD
detection performance. Moreover, we estimate uncertainty using
the negative log-likelihood of hidden representations which is also
applicable to any NN architecture/task.

The approach to uncertainty quantification proposed in 3 has been
extended with distance-aware hidden representations [21] and ap-
plied to explaining the origin of failure modes of NN predictions [24].
Moreover, it has been proposed to use the Mahalanobis distance
induced by the covariance matrix of a Gaussian fitted to the hidden
representations for uncertainty quantification and OOD detection [23,
57, 58].

Chapter 4 categorizes these methods and investigates the calibra-
tion of their predicted uncertainty and the impact of the proposed
regularization technique empirically.

2.1.3 Out-of-Distribution Detection Using the Distribution of Hidden
Representations.

Density estimation is an established technique for OOD detection.
While research also developed alternative methods [59, 60], genera-
tive models are particularly appealing, since they denote a principled,
unsupervised approach to the problem by learning the data distri-
bution [61, 62]. However, concerns have been voiced regarding their
effectiveness [63] and, in particular for explicit generative models,
vulnerability to OOD samples [64]. Ensembles of generative mod-
els [65] have been proposed to solve the latter, as well as considering
the distribution of log-likelihoods [66, 67]. Another line of research
further applies machine learning approaches to the latent space of
neural networks [68–70]. In particular, [70] fits a Gaussian mixture
model (GMM) to the representations of a neural network. However,
they rely on the availability of OOD data limiting its applicabil-

2.2 normalizing flows for 3d point clouds 9

ity. [71] trains a normalizing flow on the latent space and uses its
log-likelihood to detect anomalies. Further, [72] improves OOD detec-
tion using NFs on the hidden representations of a NN by mitigating
the problem of topological mismatch between the source and the tar-
get distribution. In contrast, we demonstrate that this also estimates
uncertainty and introduce additional regularization to counteract
feature collapse. Moreover, [73] uses the rate term in the Information
Bottleneck (VIB) [74] for OOD detection. Further, [75] uses a class-
wise Gaussian distribution paired with contrastive pretraining based
on SimCLR [76] to detect novel inputs. Unfortunately, contrastive
pretraining requires gigantic batch sizes rendering this regularization
approach not applicable to problems of practical size.

2.2 normalizing flows for 3d point clouds

Firstly, we discuss related work on modeling 3D point clouds - in par-
ticular using NFs. We then continue by discussing relevant research
on representing manifolds with NFs.

2.2.1 Modeling 3D Point Clouds

Latent GAN [77] models the latent space of a pretrained autoen-
coder using a Generative Adversarial Network [78]. AtlasNet [79]
learns to map 2D patches onto surfaces in 3D by minimizing the
Chamfer distance. They also propose to post-process reconstruc-
tions by performing Poisson surface reconstruction. Therefore, they
densely sample points from their reconstructed mesh and generate
oriented normals by shooting rays from infinity on the point cloud.
In contrast, our approach yields oriented normals more efficiently
with fewer points, since the direction perpendicular to the surface
is readily available as the gradient of the log-likelihood of the NF
(see Chapter 5). ShapeGF [80] models 3D point clouds using score
matching [81]. Therefore, they train a NN to estimate the gradient
of the log-likelihood of the distribution of points. At inference time,

2.2 normalizing flows for 3d point clouds 10

they perform temperature annealed Langevin dynamics [82, 83] to
transform a random set of points into realistic 3D shapes. Recently,
Diffusion Probabilistic Models (DPMs) [84] have shown strong per-
formance on point clouds [85]. Similar to ShapeGF, they transform an
initial set of random points into realistic 3D point clouds. However,
instead of relying on an unnormalized density function, DPMs learn
to approximately invert a diffusion process. Similar to DPMs and
ShapeGF, our method also post-processes an initial estimate of the
point cloud by maximizing the log-likelihood of the points. However,
we require fewer update steps compared to ShapeGF, since our initial
estimate of the point cloud is more accurate. Moreover, our method
has the advantage of an explicit generative model. For instance, this is
useful when attempting anomaly detection or when post-processing
the generated point cloud with Poisson surface reconstruction (Sec.
5.2.3).

Normalizing Flows for 3D Point Clouds. NFs have been applied to
3D point clouds. In pioneering work, PointFlow [31] demonstrated
promising performance by applying continuous NFs. Later, Discrete
PointFlow (DPF) [32] improved upon PointFlow by using discrete
NFs, namely RealNVPs [28], which are computationally more effi-
cient while providing better performance. Concurrently, C-Flow [86]
proposed a novel conditioning scheme for conditional NFs which
they applied to point clouds. More recently NFs have been applied
to a few downstream tasks on point clouds. NFs have been applied
to single view reconstruction paired with an additional perceptual
loss [87]. Further, they have been applied to upsampling [88] and
denoising [89] of 3D point clouds. The authors of [29] and [90] pro-
posed simultaneously to model point clouds using a mixture of NFs
which lead to better reconstruction performance.

2.2.2 Normalizing Flows on Manifolds

Real world data often resides on lower dimensional manifolds embed-
ded in high dimensional space. This is a well-known problem when

2.2 normalizing flows for 3d point clouds 11

applying NFs to model realistic data distributions [91–96]. In [91],
the authors propose an approach to explicitly learn NFs on spheres
in n-dimensional space. More recently, Brehmer and Cranmer [93, 97]
proposed an alternating optimization approach that simultaneously
learns the data distribution and the underlying manifold. Further-
more, [92] propose an end-to-end trainable approach to learning
distributions on manifolds. Horvat and Pfister [96] add noise to the
data distribution and explicitly split the dimensions of a NF into two
sets, where one is assumed independent of the noise. Overall, most
methods make explicit assumptions about the underlying structure
and dimensionality of the manifold. In contrast, this work does not
make any assumptions about the dimensionality of the manifold and
only requires the manifold to be sufficiently smooth compared to the
magnitude of the noise used to inflate the data distribution. Most
relevant to this work is the recently proposed SoftFlow [95]. The
authors model manifolds using NFs by training a NF conditioned
on the standard deviation σ of the Gaussian noise added to the data
distribution. During inference they set σ = 0 to sample from the
original manifold. This work shows that one can achieve similar or
better performance without training a model on all possible noise
magnitudes. We achieve this by recognizing that a NF trained on
noisy data implicitly represents the manifold in regions of maximum
likelihood.

3
T H E H I D D E N U N C E RTA I N T Y I N A N E U R A L
N E T W O R K ’ S A C T I VAT I O N S

This work introduces a general method for estimating the predictive
uncertainty of a neural network (NN) in a single-forward pass. To
this end, we apply a simple regularization technique during train-
ing enforcing the hidden representations of a NN to be informative
about its input. Post training, we use the negative log-likelihood
of such informative representations as a proxy for uncertainty. We
demonstrate that our approach excels at out-of-distribution (OOD)
detection and, moreover, correlates with epistemic uncertainty ob-
tained from Bayesian neural networks and deep ensembles which,
while being computationally more expensive, have strong theoretical
support. In contrast to prior work, our method only requires minor
changes to the training procedure, is agnostic of the neural network’s
architecture and can be applied to classification as well as regression.
Furthermore, we empirically show that the strength of our regular-
ization technique correlates with the performance on OOD detection
which allows practitioners to reason about the regularization strength
in the absence of OOD data.

3.1 introduction

The recent success of deep NNs in a variety of applications [98, 99]
has been primarily driven by improvements in predictive perfor-
mance, while progress on safety-related issues remained relatively
slow [100–102]. Thereby, quantifying the uncertainty associated with
the predictions of a NN is a central challenge and a prerequisite
for their broader deployment. The predominant framework for esti-
mating uncertainty is BDL [9, 35]. However, scaling BDL to neural
networks of practical size remains an open research question. Al-

12

3.1 introduction 13

though recent research proposed various scalable approaches [11, 14,
16, 36, 37, 103], they still fall short of delivering a widely adopted
practical solution applicable to compute-limited environments.

To bypass these limitations a parallel line of work estimates uncer-
tainty using a deterministic treatment of a NN’s parameters. Impor-
tantly, this estimates uncertainty in a single-forward pass through
examination of the NN’s activations. A major challenge of these ap-
proaches is feature collapse [55] where the hidden representations of
OOD data become indistinguishable from the ones of in-distribution
(ID) data. To prevent this, the hidden representations can be regular-
ized to preserve information about the input data [26, 55]. In addition
to such regularization, the final softmax layer in models trained on
classification is replaced with a distance-aware function, e.g. RBF
kernel or Gaussian process (GP). Independently, another line of work
showed that the distribution of hidden representations in a NN can
be used to detect OOD data [62, 69, 73, 75]. This work operates at
the intersection of both directions yielding an efficient method for
estimating uncertainty in a single-forward pass applicable to any
NN.

We show that the negative log-likelihood of hidden representa-
tions not only enables strong OOD detection performance (Sec. 3.3.2)
but also correlates with the uncertainty of a model which allows
reasoning about the expected performance on novel data. We demon-
strate that this is the case for the negative log-likelihood of deep
features (Sec. 3.3.3.3 and Sec. 3.3.5). In contrast to prior work this
uncertainty estimate is task-agnostic and can be applied to classifi-
cation as well as regression (Sec. 3.3.3). While prior work constrains
the bi-Lipschitz constant of a NN enforcing hidden representations
to be distance-aware with respect to a specific distance metric, we
enforce the network to be able to reconstruct the input given its rep-
resentations. This regularization technique is architecture-agnostic
and widely applicable, since it leaves the original model and training
procedure unchanged. Moreover, we observe that it trades OOD
detection performance off with predictive performance (Sec. 3.3.4).
This allows practitioners to reason about the regularization strength.

3.2 uncertainty from informative representations 14

The rest of this work is structured as follows. Sec. 3.2 introduces
the proposed framework and discusses its properties and imple-
mentation. Then, Sec. 3.3 empirically verifies that the distribution of
informative representations excels at OOD detection (Sec. 3.3.2) and
correlates with predictive performance of the underlying NN under
continuous distributional shifts (Sec. 3.3.3.3). Further, we demonstrate
that the proposed method is applicable to regression (Sec. 3.3.3) and
investigate the impact of the regularization strength (Sec. 3.3.4) and
the depth of the hidden representations (Sec. 3.3.5).

3.2 uncertainty from informative representations

This section first introduces our method - i.e. how uncertainty is
quantified and hidden representations are regularized (Sec. 3.2.1).
Subsequently, we motivate the proposed uncertainty estimate as well
as the underlying layer choice and further discuss its relation to
aleatoric uncertainty (Sec. 3.2.2). Finally, we discuss how the method
can be implemented in practice (Sec. 3.2.3).

3.2.1 Method

3.2.1.1 Uncertainty Quantification

This section introduces uncertainty quantification based on the hid-
den representations of a NN. Typically, novel data can lead to the
observation of different activation patterns compared to training
time. Thus, this work quantifies the uncertainty of a NN using the
distribution of hidden representations observed at training time.
Therefore, consider a dataset D = {X, Y} and a NN which is trained
on the discriminative task of estimating the conditional distribution
p(y|x). Further, the NN can be written as a composition of its L layers
fNN = fL−1 ◦ ... ◦ f0. After training, we estimate the distribution p(zl)

of representations at layer 0 ≤ l ≤ L− 1 and use the negative log-
likelihood of samples under this distribution observed at inference

3.2 uncertainty from informative representations 15

time as a proxy for uncertainty. Formally, we define the uncertainty
of a NN uNN as

ul
NN = − log p(zl) (3.1)

where the superscript l indicates that uncertainty is estimated based
on the distribution of representations at the l-th layer. We motivate
this definition in a subsequent analysis where we also further dis-
cuss the layer choice before providing empirical evidence in the
experiment section.

3.2.1.2 Enforcing Informative Representations

An obstacle for quantifying uncertainty based on hidden represen-
tations is feature collapse [55]. This results in hidden representations
that are not informative about the input to a NN and can lead to
OOD data being indistinguishable from ID data. While related work
countered feature collapse by enforcing distance awareness or using
contrastive pretraining, this work ensures informative representa-
tions by reconstructing the input given the hidden representations.
When estimating uncertainty based on the hidden representations zl
at layer l we augment the original training objective Lorig such that
we optimize

L = Lorig +
λ

D
||x− x̂||22 (3.2)

where x ∼ X and x̂ = fdec(fl−1 ◦ ... ◦ f0(x)) using a separate, dis-
posable NN fdec to decode the input given zl . Further, λ denotes a
hyperparameter and D the dimensionality of x.

3.2.2 Analysis

3.2.2.1 Motivating the Log-Likelihood of Hidden Representations as a
Proxy for Uncertainty

There are two sources of uncertainty in the predictions of a NN [10,
104]. Firstly, there exists inherent noise in the training data - aleatoric

3.2 uncertainty from informative representations 16

uncertainty - which can be incorporated into the model. Secondly,
epistemic uncertainty arises from a lack of information or an inad-
equate model. A common test case for the latter is that it should
increase when exposing the NN at inference time to OOD data.
However, OOD detection alone is not a sufficient evaluation for
uncertainty estimation methods. This becomes apparent when con-
sidering that OOD detection represents a model-agnostic task and
uncertainty should be aligned with a model’s ability to generalise.
High uncertainty is only expected for those OOD samples that lead
to worse model performance, while such OOD samples to which the
model generalises well are expected to have lower uncertainty. All in
all, we expect the second type of uncertainty to be related to the train-
ing data distribution p(x) as well as the weights θ of the NN since it
needs to reflect its generalization ability. With this in mind, consider
the distribution of hidden representations p(zl) at layer l observed
on the training data distribution p(x). Assuming a deterministic NN
and given an input x′, we can establish the following relationship
between our uncertainty estimate uNN(x′), the data distribution p(x)
and a NN’s parameters θ:

ul
NN(x

′) = − log p(zl)

= − log
(∫

pθ(z′l |x)p(x)dx
)

(3.3)

= − log
(∫

δ(z′l − fl ◦ ... ◦ f0(x))p(x)dx
)

where pθ(zl |x) denotes the conditional distribution parameterized by
the NN evaluated up to layer l. We exploited that for deterministic
mappings pθ(zl |x) represents a delta distribution. Thus, p(zl) can
be viewed as the training data distribution through the lens of the
NN - i.e. the information in p(x) that is regarded as relevant by the
learning algorithm for solving the underlying discriminative task.
Consequently, p(zl) contains the necessary ingredients - dependency
on θ and p(x) - for estimating epistemic uncertainty.

3.2 uncertainty from informative representations 17

3.2.2.2 Information-theoretic View on the Layer Choice

Defining the uncertainty of a NN according to Eq. 3.1 raises the
problem of choosing a layer. First, consider the data distribution
p(x). Using the negative log-likelihood − log(p(x)) as an uncer-
tainty estimate corresponds to solving the task of OOD detection
which can be achieved using the entire information present in the
data distribution. This information can be quantified as the entropy
H(p(x)) = Ex∼p(x) [− log(p(x))]. Assuming an underlying determin-
istic NN, we can make use of the data processing inequality and
write

H(p(x)) ≥ H(p(z0)) ≥ ... ≥ H(p(zL−1)) (3.4)

where p(zl) = p(fl ◦ ... ◦ f0(x)) denotes the distribution of represen-
tations at layer l when evaluating the NN on p(x). Thus, uncertainty
estimates of deeper layers are based on less information and, thus,
are expected to perform worse at the sole task of OOD detection.
We demonstrate this in Sec. 3.3.5. On the other hand, uncertainty
estimates derived from deeper layers depend more on the parameters
of the NN. Sec. 3.3.3.3 and Sec. 3.3.5 show that this coincides with
better alignment with a model’s generalization.

3.2.2.3 Relation to the Predictive Distribution and a Model’s Aleatoric
Uncertainty

We now establish that the distribution of hidden representations
can in principle be used to extract aleatoric uncertainty. Note, that
we not explicitly incorporate this finding into the proposed method.
Typically, the predictive distribution p(y|x) of a NN can be used to
quantify aleatoric uncertainty [8] - e.g. using the softmax entropy.
Reusing the assumption of a deterministic neural network of L layers,
we can write ∀l ∈ [0, ..., L]

p(y|x) =
∫

p(ŷ|z’l)p(z’l |x)dz’l

=
∫

p(ŷ|z’l)δ(z’l − fl ◦ ... ◦ f0(x))dz’l = p(y|zl)

3.2 uncertainty from informative representations 18

where we used that for deterministic mappings p(z|x) represents
a delta distribution. Further, using Bayes’ formula yields p(y|x) =
p(y|zl) =

p(zl |y)p(y)
p(z) . Thus, by estimating the output conditional dis-

tribution p(zl |y) - e.g. using a separate GMM for each class - and
the marginal distribution p(y) - e.g. by counting class frequencies -
one is theoretically able to recover the predictive distribution using
the distribution of hidden representations. We provide experimental
evidence in the supplement. However, the quality of such uncertainty
is upper bounded by the entropy of the softmax in our experiments.
Therefore, it is recommended to estimate aleatoric uncertainty di-
rectly using the conditional distribution p(y|x) parameterized by
the NN (e.g. softmax entropy) if possible. We note that for some
classic tasks, such as regression or bounding box prediction, direct
parameterization of p(y|x) is uncommon and alternative approaches
for aleatoric uncertainty estimation can be useful. In summary, this
section shows that in addition to the model uncertainty of Eq. 3.1,
also aleatoric uncertainty can be estimated from zl , even tough it is
more of theoretical than practical relevance.

3.2.3 Implementation

3.2.3.1 Pseudocode

Alg. 1 describes the estimation of the distribution of hidden repre-
sentations. After training with objective Eq. 3.2 and a decoder fdec,
we fit a density model pω(zl) with parameters ω to the distribution
p(zl) of representations observed when evaluating on the training
data. Note that we normalize representations to unit length prior to
estimating the distribution which we observe empirically to improve
performance (see Sec. 3.3.2). At inference time we do not use the
decoder. Given novel input x′, we rather perform a normal forward
pass of the NN yielding predictions p(y|x’) and the representations
z’l . Subsequently, we normalize z’l and uncertainty is estimated by
evaluating Eq. 3.1.

3.2 uncertainty from informative representations 19

Algorithm 1 Learning the probablity density of hidden representa-
tions at layer l.

Input: Randomly initialized NN of L layers, training data
D = {X, Y}, layer index l ∈ [1, ..., L−]
Output: Trained NN, density pω(zl)

1: Initialize decoder fdec for reconstructing x given zl
2: while not converged do
3: Train NN using objective in Eq. 3.2
4: end while
5: Initialize density model pω(zl) with parameters ω

6: Zl ← Evaluate NN on training data X
7: Normalize entries in Zl to unit length
8: Fit Zl using density model pω(zl)

9: return NN, pω(zl)

3.2.3.2 Density Estimation

We distinguish between classification and regression. In the case of
classification we estimate the class-conditional distribution p(zl |y)
using a single multivariate Gaussian with full covariance per class.
p(zl) is obtained by marginilization over y. In line with prior work we
find that representations following an affine transformation of each
class are well represented by a multivariate Gaussian. We hypthesize
that this is, firstly, due to the classification training enforcing clusters
in the feature space and, secondly, a byproduct of the central limit
theorem. When handling NNs trained on regression we find that
multivariate Gaussians are not sufficient for modeling p(zl). Thus, for
regression models we estimate p(zl) using a NF based on coupling
layers [28]. For more information regarding NFs we refer to [28] and
the supplement.

3.3 experiments 20

3.2.3.3 Normalized Representations

We find for classification that normalizing hidden representations zl
to unit length before estimating p(zl), improves OOD detection. Thus,
the orientation encodes information for distinguishing between ID
and OOD data. We demonstrate this empirically in our experiments.

3.3 experiments

We evaluate the proposed approach. Firstly, we measure its perfor-
mance on OOD detection (Sec. 3.3.2). Moreover, we show that our
approach can also be applied to regression problems (Sec. 3.3.3).
Finally, we perform two sensitivity analyses - on the impact of the
regularization strength (Sec. 3.3.4) and on the depth of the layer used
for uncertainty estimation (Sec. 3.3.5). Further, we investigate the
behaviour on continuous distributional shifts using the corrupted
versions of CIFAR10/100 (CIFAR10/100-C) [106] (Section 3.3.3.3).

3.3.1 Experimental Setup

3.3.1.1 Baselines

We compare our method with well-established variants of BNNs -
Monte-Carlo (MC) dropout [16] and deep ensembles [11]. While these
methods yield good uncertainty estimates, they require multiple
forward passes for a single inference. Further, we compare our work
with two other recent methods that estimate uncertainty using a
single-forward pass - DUQ [55] and SNGP [26]. These methods are
most relevant to this work since they also treat the weights of the NN
deterministically and explicitly regularize the hidden representations
of a NN to be informative about its input.

3.3 experiments 21

Tr
ai

ne
d

on
M

N
IS

T
Tr

ai
ne

d
on

Fa
sh

io
nM

N
IS

T

M
et

ho
d

A
cc

.
Fa

sh
io

nM
N

IS
T

O
m

ni
gl

ot
T T 0

A
cc

.
M

N
IS

T
O

m
ni

gl
ot

T T 0

M
C

D
0
.9

8
1

0
.9

1
4

0
.9

1
9

-
0

.8
8
6

0
.8

8
1

0
.8

8
2

-

D
E

0.
98

7
0
.9

2
4

0
.9

7
7

-
0.
90

4
0

.8
9
6

0
.9

1
7

-

D
U

Q
0
.9

6
8

0
.8

7
9

0
.9

1
3

1
8
0

%
0

.8
6
0

0
.9

3
0

0
.9

4
1

1
8
8

%

SN
G

P
0
.9

8
5

0
.9

5
3

0
.9

5
7

1
2
5

%
0

.8
9
1

0
.9

0
1

0
.9

0
2

1
2
8

%

O
ur

s*
0
.9

8
2

0
.9

6
7

0
.9

3
2

1
1
4

%
0

.8
8
3

0
.9

6
6

0.
96

4
1
2
5
%

O
ur

s
0
.9

8
2

0.
98

4
0.
98

3
1
1
4
%

0
.8

8
5

0.
98

5
0

.9
6
3

1
2
5

%

Ta
b

l
e

3
.1

:C
om

p
ar

in
g

th
e

O
O

D
d

et
ec

ti
on

p
er

fo
rm

an
ce

of
M

C
d

ro
p

ou
t

(M
C

D
),

d
ee

p
en

se
m

bl
es

(D
E

),
D

U
Q

,
SN

G
P

an
d

ou
r

m
et

ho
d

(O
u

rs
)

in
te

rm
s

of
A

U
R

O
C

an
d

re
la

ti
ve

p
er

sa
m

p
le

tr
ai

ni
ng

ru
nt

im
e

(
T T 0

,
T 0

:r
u

nt
im

e
of

va
ni

lla
so

ft
m

ax
m

od
el

)
w

it
h

p
ri

or
w

or
k

w
he

n
tr

ai
ni

ng
a

m
u

lt
i-

la
ye

r
p

er
ce

p
tr

on
on

M
N

IS
T/

Fa
sh

io
nM

N
IS

T.
O

n
M

N
IS

T/
Fa

sh
io

nM
N

IS
T

w
e

us
e

Fa
sh

io
nM

N
IS

T/
M

N
IS

T
an

d
O

m
ni

gl
ot

as
O

O
D

d
at

a.
O

ur
m

et
ho

d
is

ev
al

ua
te

d
w

it
h

(O
ur

s)
an

d
w

it
ho

ut
(O

ur
s*

)
no

rm
al

iz
at

io
n

of
hi

d
d

en
re

pr
es

en
ta

ti
on

s.

3.3 experiments 22

Tr
ai

ne
d

on
SV

H
N

Tr
ai

ne
d

on
C

IF
A

R
1
0

M
et

ho
d

A
cc

.
ST

L1
0

C
IF

A
R

1
0
0

C
IF

A
R

1
0

T T 0
A

cc
.

ST
L1

0
SV

H
N

C
IF

A
R

1
0
0

T T 0

M
C

D
0
.9

5
4

0
.9

5
2

0
.9

4
0

0
.9

4
9

-
0
.8

8
3

0
.6

8
6

0
.8

8
5

0
.8

2
-

D
E

0.
96

6
0.
97

4
0.
97

0
0.
98

0
-

0.
91

6
0.
87

5
0.
93

7
0
.7

5
8

-

D
U

Q
0
.9

4
6

0
.9

3
8

0
.9

1
7

0
.9

2
8

3
2
0
%

0
.8

5
9

0
.6

3
3

0
.8

4
3

0
.7

6
6

2
9
2
%

SN
G

P
0
.9

5
7

0
.9

3
6

0
.9

2
3

0
.9

2
8

1
3
6
%

0
.6

1
0

.7
4

0
.7

9
5

0
.6

8
6

1
5
4
%

O
U

R
*

0
.9

5
3

0
.9

3
6

0
.9

1
7

0
.9

2
7

1
1
2
%

0
.6

1
7

0
.7

2
0

.5
0
9

0
.6

2
1

1
1
7
%

O
U

R
0
.9

5
3

0
.9

6
5

0
.9

5
2

0
.9

5
9

1
1
2
%

0
.6

1
7

0
.7

8
9

0.
80

9
0
.6

6
3

1
1
7
%

Ta
b

l
e

3
.2

:C
om

p
ar

in
g

th
e

O
O

D
d

et
ec

ti
on

p
er

fo
rm

an
ce

of
M

C
d

ro
p

ou
t

(M
C

D
),

d
ee

p
en

se
m

bl
es

(D
E

),
D

U
Q

,
SN

G
P

an
d

ou
r

m
et

ho
d

(O
ur

s)
in

te
rm

s
of

A
U

R
O

C
w

ith
pr

io
r

w
or

k
w

he
n

tr
ai

ni
ng

a
R

es
N

et
5

0
[1

0
5

]
on

SV
H

N
/C

IF
A

R
1

0
.O

n
SV

H
N

/C
IF

A
R

1
0

w
e

us
e

C
IF

A
R

1
0

/S
V

H
N

,C
IF

A
R

1
0

0
an

d
ST

L
1

0
as

O
O

D
da

ta
.

3.3 experiments 23

Trained on CIFAR100

Method Test Acc. STL10 SVHN CIFAR10
T
T0

MCD 0.592 0.772 0.84 0.735 -

DE 0.622 0.801 0.741 0.756 -

DUQ - - - - 351%

SNGP 0.61 0.74 0.795 0.686 154%

OUR* 0.617 0.72 0.509 0.621 117%

OUR 0.617 0.789 0.809 0.663 117%

Table 3.3: OOD detection performance of MC dropout (MCD), deep
ensembles (DE), DUQ, SNGP and our method (Ours) in terms
of AUROC with prior work when training a ResNet50 on
CIFAR100. We use CIFAR10, SVHN and STL10 as OOD data.

3.3.1.2 Neural Network Architectures

Each method uses the same backbone architecture. When training
on MNIST [107], FashionMNIST [108] and the regression tasks (see
Sec. 3.3.3) the backbone is a MLP of 4-layers with ReLU activation
functions and 100 hidden units. In the case of CIFAR10/100 [109] and
SVHN [110] we train a ResNet-50 [105]. Note that for the ablation
on the depth of the hidden representations used for uncertainty
estimation, we train a ResNet-8. Method-specific final layers (e.g.
RBF-kernel (DUQ)) are applied to the backbone’s output. Full details
are in the supplement.

3.3.1.3 Decoder Architectures

For the MLP backbone the decoder is a MLP of 2-layers with ReLU
activation functions and 100 hidden units taking the output of the
backbone model as an input. The final layer has the dimensionality of
the input and a linear activation function. In the case of the ResNet-50

3.3 experiments 24

backbone the decoder is a reverse ResNet-8 replacing convolutions
with transpose convolutions and reversing the number of channels.
Its input is the penultimate layer of the backbone model (i.e. the
output of that last layer prior to global average pooling). Full details
are in the supplement.

3.3.1.4 Hyperparameter Optimization

We choose method-specific hyperparameters using grid search and
maximization of performance on the validation set. For our method
we optimize the weighting of reconstruction regularization λour (see
Eq. 3.2). In the case of DUQ, resp. SNGP, we optimize the weighting
of the gradient penalty λDUQ, resp. the upper bound c on the spectral
norm. Exact values of the grid search and further optimization details
are in the supplement. In case of the ResNet backbone we use λour =

1.0 and c = 7, for the MLP we choose λour = 100.0 and c = 3. In all
cases λDUQ = 10−6 led to the best validation performance.

3.3.1.5 Estimating the Distribution of Hidden Representations

We use a class-wise multivariate Gaussian in the case of classification
and apply NFs based on coupling layers [28] to models trained on
regression. All experiments, except Sec. 3.3.5, use the output of the
penultimate layer (prior to any applied activation functions), i.e. the
output of the backbone model, for uncertainty estimation based on
Eq. 3.1. The reason for relying on deep representations for estimating
uncertainty is theoretically and empirically motivated (see Sec. 3.2.2
and Sec. 3.3.5)

3.3.1.6 Statistical Fluctuation of Results

Results are averaged over 5 independent repetitions. In those cases
where the standard deviation is not reported in the main text, it can
be found in the supplement.

3.3 experiments 25

3.3.2 Out-of-Distribution Detection

We evaluate the OOD detection performance of each method by train-
ing on MNIST/FashionMNIST/CIFAR10/CIFAR100/SVHN and eval-
uating on several OOD datasets. We report Area Under the Receiver
Operating Characteristic (AUROC) obtained when separating the
testset of ID and OOD data. Note that the running mean of class
centroids maintained by DUQ [55] throughout training led to train-
ing instabilities on CIFAR100 which contains only 600 samples per
class. Tab. 3.1, 3.2 and 3.3 shows the results of this experiment. Our
method is evaluated with (Ours) and without (Ours*) normalization
of hidden representations. While single-forward pass methods, in
particular our approach and SNGP, clearly outperform MC dropout,
deep ensembles remain a competitive baseline. Moreover, we find
that on OOD detection, our approach obtains the best performance
among the methods estimating uncertainty using a single forward
pass, outperforming DUQ and SNGP in 10 out of 13 scenarios. More-
over, we verify the importance of normalizing hidden representations
prior to density estimation (Our) which clearly outperforms our
method in the absence of normalization (Ours*) on OOD detection.
Lastly, we also observe that our method further reduces the per sam-
ple runtime during training (T

T0
) compared to SNGP and DUQ which

helps scaling it to larger problems.

3.3.3 Regression

3.3.3.1 Regression Toy Example

As an illustration, we train regressors on data sampled from f (x) =
1
2

(
sin(4πx− π

2) + x
)

for x ∈ [−1, 1]. The training data and methods
are shown in Fig. 3.2. We train on the gray outlined data with a simple
four-layer MLP with ReLU activation functions, extract embeddings
at the penultimate layer (following our findings from section 3.2 and
4.6 and fit the density with a NF. The same architecture is used for
the ensemble. The GP has a RBF kernel with parameters fit to the

3.3 experiments 26

0
90

18
0

0.
2

0.
4

0.
6

0.
8

1.
0

R
ot

at
io

n
[◦

]

A
cc

ur
ac

y

0
90

18
0

0.
6

0.
81

R
ot

at
io

n
[◦

]

A
U

R
O

C

1
4

7
1

0

0
90

18
0

0.
6

0.
81

R
ot

at
io

n
[◦

]

A
U

R
O

C

1
0

M
C

D
En

s

0
0.

1
0.

2
0.

2

0.
4

0.
6

0.
8

1.
0

G
au

ss
ia

n
N

oi
se

(σ
)

0
0.

1
0.

2

0.
6

0.
81

G
au

ss
ia

n
N

oi
se

(σ
)

1
9

1
9

3
4

0
0.

1
0.

2

0.
6

0.
81

G
au

ss
ia

n
N

oi
se

(σ
)3

4

M
C

D
En

s

Fi
g

u
r

e
3

.1
:W

e
pl

ot
th

e
cl

as
si

fi
ca

ti
on

ac
cu

ra
cy

(l
ef

t)
an

d
th

e
A

U
R

O
C

ag
ai

ns
t

th
e

pe
rt

u
rb

at
io

n
m

ag
ni

tu
d

e
on

th
e

te
st

d
at

a
(c

en
te

r
an

d
ri

gh
t)

.W
e

co
m

p
ar

e
u

nc
er

ta
in

ty
ob

ta
in

ed
fr

om
hi

d
d

en
re

p
re

se
nt

at
io

ns
of

va
ry

in
g

d
ep

th
(c

en
te

r)
an

d
ot

he
r

m
et

ho
d

s
(r

ig
ht

).
W

e
p

ro
vi

d
e

th
e

in
d

ex
of

ea
ch

la
ye

r
as

an
in

d
ic

at
or

of
it

s
d

ep
th

an
d

re
fe

r
to

th
e

su
pp

le
m

en
t

fo
r

in
d

ex
-t

o-
la

ye
r

m
ap

pi
ng

.W
e

ob
se

rv
e

th
at

(i
)

un
ce

rt
ai

nt
y

es
tim

at
es

ba
se

d
on

de
ep

er
la

ye
rs

qu
al

ita
tiv

el
y

m
at

ch
es

ta
bl

is
he

d
-

bu
t

co
m

pu
ta

tio
na

lly
m

or
e

ex
pe

ns
iv

e
-

m
et

ho
d

s
(i

.e
.M

C
d

ro
po

ut
an

d
d

ee
p

en
se

m
bl

es
)

an
d

(i
i)

th
os

e
ba

se
d

on
sh

al
lo

w
la

ye
rs

yi
el

d
a

sh
ar

pe
r

in
cr

ea
se

in
A

U
R

O
C

.

3.3 experiments 27

(a) OUR (b) Deep Ensemble

(c) Gaussian Process (d) Epistemic Uncertainty

U
nc

er
ta

in
ty

OUR
GP
Ensemb.

Figure 3.2: The models are trained on the data outlined in gray. (a-c):
Model prediction is given in black and the high-confidence
area in blue. For better comparison, (d) shows the normalised
estimated epistemic uncertainty with the data gap in gray.
We observe that all methods follow the expected behaviour of
high uncertainty in the data gap and low uncertainty on the
training data, with slightly increasing uncertainty towards
the boundaries for the ensemble and our method.

3.3 experiments 28

Data OUR Deep Ensemble

Boston Housing 93.45± 1.64 92.11± 0.68

SAS Diabetis 65.21± 2.87 63.53± 1.30

Openml Cholesterol 68.50± 1.69 67.67± 1.06

Table 3.4: OOD detection (AUROC) on several regression datasets for
deep ensembles and our method (OUR).

training data. We observe that the uncertainty of deep ensembles, GP
and our method demonstrates similar qualitative behaviour.

3.3.3.2 Real Data

We evaluate OOD detection on standard regression datasets and
report results in Tab. 3.4. Lacking clear OOD splits, we remove the
patient’s sex from [111, 112] and use it to split the data into two
slightly different distributions. Since the (unshuffled) [113] is ordered
by neighborhoods, we split it into two parts before shuffling. While
neither split guarantees non-overlapping data distributions, we take
the ensemble as a reference for good uncertainty estimation and
observe that the uncertainty estimated with our method matches it.

3.3.3.3 Continuous Distributional Shifts

We have shown that our method detects strong distributional shifts
(see Sec. 3.3.2). Another important property is the ability to deduct
expected model performance from uncertainty. This experiment eval-
uates this qualitatively. Therefore, we evaluate models trained on
CIFAR10/100 [106] on CIFAR10/100-C and report accuracy and AU-
ROC measured when separating the clean testset from its corrupted
counterparts depending on the corruption severity (0: no corruption
- 5: strongest corruption). In contrast to similar experiments in [114],
we measure AUROC rather than expected calibration error or the
Brier score since the uncertainty of our method is not incorporated
in a probabilistic forecast. Fig. 3.5 and 3.6 show the results for deep

3.3 experiments 29

ensembles [11], DUQ [55], SNGP [26] and our method. Since the
optimal AUROC curve given a degradation in model performance
is unknown, it is impossible to rank individual methods based on
this experiment. However, we can draw a few conclusions. Firstly,
the AUROC obtained using SNGP and our method tends to follow
a similar trajectory as the one obtained from deep ensembles. Since
deep ensembles corresponds to a well-established baseline with vast
empirical evidence of the quality of its uncertainty (e.g. [11, 114]), it
is promising that we can obtain similar behaviour/calibration using a
single-forward pass. Surprisingly the negative log-likelihood of deep
features - our uncertainty proxy (see Eq. 3.1) - demonstrates similar
characteristics close to the data distribution as deep ensembles. This
is a non-trivial outcome which supports the hypothesis made in
Sec. 3.2.2 that the weight dependence of the distribution of hidden
representations enables uncertainty estimation.

3.3.4 The Impact of Regularization Strength

We ablate the impact of the regularization strength on our method.
Therefore, we fit an MLP on MNIST and a ResNet8 on SVHN and
evaluate the models on distributional shifts - rotation (MNIST) and
additive Gaussian noise (SVHN). Here, we use various strengths of
the reconstruction regularization strength λ. We plot the resulting
accuracy and AUROC against the perturbation magnitude. The result
can be found in Fig. 3.3. We observe that increasing λ consistently lifts
the AUROC curve. This solidifies the insight that our regularization
technique consistently increases the sensitivity to OOD data.

3.3.5 Choice of Layer Depth for Hidden Representations

In order to focus purely on the impact of depth of the hidden rep-
resentations used for uncertainty estimation, we set λOUR = 0 for
this ablation study. We train our method on MNIST and SVHN and,
subsequently, evaluate it on continuously shifted data. We rotate

3.3 experiments 30

0 50 100 150

0.2

0.4

0.6

0.8

1

Perturbation Magnitude

A
cc

ur
ac

y

0 50 100 150

0.6

0.8

1

Perturbation Magnitude

A
U

R
O

C
101

102

W
ei

gh
t

0 0.1 0.2

0.4

0.6

0.8

Perturbation Magnitude

A
cc

ur
ac

y

0 0.1 0.2

0.6

0.8

1

Perturbation Magnitude

A
U

R
O

C

100

101

W
ei

gh
t

Figure 3.3: Accuracy and AUROC on rotated MNIST (top) and SVHN
with additive Gaussian noise (bottom) for various perturba-
tion magnitudes and reconstruction weights. We reconstruct
and estimate uncertainty from layers 10 (MNIST) and 19

(SVHN). The baseline without reconstruction loss is shown
in gray. For comparison, DUQ [55] is plotted as dotted line.
The AUROC increases with larger λ while the accuracy does
not deviate much from the baseline.

3.3 experiments 31

Trained on OOD Data L 1 L 4 L 7 L 10

MNIST
FashionMNIST 0.975 0.922 0.855 0.811

omniglot 0.972 0.937 0.892 0.893

FashionMNIST
MNIST 0.985 0.991 0.975 0.978

omniglot 0.971 0.987 0.960 0.967

OOD Data L 1 L 9 L 19 L 34

SVHN
CIFAR10 0.991 0.974 0.934 0.907

STL10 0.999 0.991 0.951 0.912

CIFAR10

SVHN 0.042 0.029 0.091 0.736

STL10 0.790 0.871 0.821 0.651

Table 3.5: AUROC for OOD Detection Based on Uncertainty from Hid-
den Representations of a MLP (MNIST/FashionMNIST) and
ResNet8 (SVHN/CIFAR10) from Layers (L) of Varying Depth.

MNIST digits between 0°and 180°in steps of 20°. SVHN is perturbed
using zero-mean additive Gaussian noise of increasing standard devi-
ation σ ∈ {0, 0.05, 0.1, 0.15, 0.2, 0.25}. We investigate the accuracy on
the testset and the AUROC when separating unperturbed test data
from its perturbed counterpart while estimating uncertainty based on
the distribution of representation of different depth. Fig. 3.1 depicts
the results. While shallow layers facilitate a sharper rise in AUROC,
deeper layers behave similar to MC dropout and deep ensembles. We
conclude that shallow layers potentially enable better OOD detection.
However, deeper layers yield meaningful uncertainty tailored to the
underlying model. Moreover, we evaluate models trained on MNIST,
FashionMNIST, SVHN and CIFAR10 regarding OOD detection per-
formance depending on the depth of the layer used for uncertainty
estimation. Note that since shallow layers yield high-dimensional
representations which can lead to difficulties estimating their distri-
bution, we reduce their dimensionality using PCA in this experiment.
We refer to the supplement for details. Tab. 3.5 shows the results of

3.4 conclusion 32

this experiment. In line with prior outcomes, we generally observe
that shallow layers tend to enable better OOD detection, except when
training on CIFAR10 and evaluating on SVHN. The latter is a known
problem of explicit generative models used for OOD detection [64].

3.3.6 Aleatoric Uncertainty from the Distribution of Hidden Representa-
tions at various Depth

We evaluate models trained in Sec. 3.3.5 on the unperturbed testsets
of MNIST and SVHN. Subsequently, we estimate aleatoric uncertainty
using the output-conditional distribution of hidden representations
based on layers of different depth to verify our analysis in Sec. 3.2.2
and compare it to aleatoric uncertainty obtained using the softmax
entropy, Monte-Carlo Dropout and Deep Ensembles. Therefore, we
plot the accuracy on the unperturbed testset of all samples with
aleatoric uncertainty smaller than some percentile of uncertainty
against the percentile. In case the distribution of hidden represen-
tations yields correct aleatoric uncertainty, we expect two things: 1)
The resulting plot is a monotonically decreasing function and 2) our
method yields a similar plot as the baselines. Fig. 3.4 shows the result.
We observe that aleatoric uncertainty based on the distribution of
deeper layers is indeed a monotonically decreasing function and is
similar to the one obtained from the softmax entropy, MC Dropout
and Deep Ensembles. However, this is not the case for estimates
obtained from shallower layers.

3.4 conclusion

We introduced a general framework for uncertainty estimation based
on the distribution of hidden representations and verified its effec-
tiveness empirically for classification (Sec. 3.3.2) and regression (Sec.
3.3.3). Feature collapse is prevented by enforcing informative rep-
resentations using novel reconstruction regularization (Sec. 3.2.1.2).
While this approach demonstrates strong performance on OOD de-

3.4 conclusion 33

tection (Sec. 3.3.2), it also yields uncertainty that behaves similar
epistemic uncertainty predicted by deep ensembles [11] (Sec. 3.3.3.3)
at a fraction of the computational cost. Interestingly, we establish
that in particular the distribution of deep features in a NN allows
estimating uncertainty according to Eq. 3.1 that correlates with the
epistemic uncertainty of deep ensembles.

The newly proposed regularization technique - reconstruction reg-
ularization - for learning informative representations in Eq. 3.2 is
more efficient during training and task/architecture-agnostic com-
pared to enforcing distance-aware representations [26, 55]. Further,
we empirically observe that reconstruction regularization, unlike en-
forcing distance-aware hidden representations, correlates with OOD
detection performance (Sec. 3.3.4) making it possible to reason about
the regularization strength in practice.

3.4 conclusion 34

0 20 40 60 80 100

0.98

0.99

1

Uncertainty (Quantile)

A
cc

ur
ac

y

SM 1 4

7 10

0 20 40 60 80 100

0.98

0.99

1

Uncertainty (Quantile)

SM 10

MCD Ens

0 20 40 60 80 100

0.8

0.9

1

Uncertainty (Quantile)

R
em

ai
ni

ng
A

cc
ur

ac
y

SM 1 9

19 34

0 20 40 60 80 100

0.9

0.95

1

Uncertainty (Quantile)

SM 34

MCD Ens

Figure 3.4: Calibration of aleatoric uncertainty on MNIST (top) and
SVHN (bottom). We plot the remaining accuracy of test sam-
ples below an increasing aleatoric uncertainty threshold. We
train an MLP on MNIST and compare aleatoric uncertainty
from layer 1, 4, 7, 10 and softmax entropy (top left) and
from layer 10, softmax entropy, MC dropout and deep ensem-
bles (top right). We train a ResNet8 on SVHN and compare
aleatoric uncertainty from layer 1, 9, 19, 34 and softmax en-
tropy (bottom left) and from layer 34, softmax entropy, MC
dropout and deep ensembles (bottom right). An index-to-
layer mapping is in section 3.5.C. We observe that aleatoric
uncertainty based on deeper layers tends to behave similar
to the one from other approaches (softmax entropy, deep en-
sembles, MC dropout).

3.5 appendices 35

3.5 appendices

The supplementary material is structured in the following way: Sec.
3.5.A provides additional explanations regarding concepts used in
the main paper. Sec. 3.5.B provides additional experimental results
as well as standard deviations missing in the main paper. Finally, Sec.
3.5.C describes architectures, optimization and other details used in
our experiments.

3.5.a Background

3.5.a.1 Normalizing Flows

NFs [27, 28] are a family of explicit generative models based on
invertible neural networks. Their optimization is based on Eq. 1.3.
We apply NFs based on the coupling layer introduced by [28]. Each
coupling layer splits its input activations into two sets uin

1/2 and uses
one set uin

1 to compute scaling and translation of the other set uin
2

using trainable, non-invertible functions gs and gt, while it applies
the identity function to uin

1 .

uout
1 = uin

1

uout
2 =

(
uin

2 + gt

(
uin

1

))
⊙ gs

(
uin

1

)
This transformation renders the Jacobian a lower triangular matrix

where the determinant is simply the product of the main diagonal.
Several ways have been proposed to use NF for modeling the

conditional distribution pX|C of x ∈ X conditioned on some random
variable c ∈ C. We adapt the conditioning scheme used in [115],
where the authors use a conditional version of the above coupling
layer. Consequently, the coupling layers in the conditional normaliz-
ing flow fθ(x|c) become:

3.5 appendices 36

uout
1 = uin

1

uout
2 =

(
uin

2 + gt

(
uin

1 ; c
))
⊙ gs

(
uin

1 ; c
)

gs and gt are implemented as multi-layer perceptrons. To feed the
conditional information into gs and gt, we apply a separate multi-
layer perceptron to c and add the result to gt

(
uin

1

)
and gs

(
uin

1

)
.

3.5.a.2 Estimating Aleatoric and Epistemic Uncertainty with Deep En-
sembles and Monte-Carlo Dropout

We calculate aleatoric and epistemic uncertainty according to Eq. 1.1
and Eq. 1.2.

3.5.b Additional Experimental Results

Fig. 3.5 and Fig. 3.6 depict the accuracy and AUROC of deep ensem-
bles, DUQ, SNGP and OUR method on the CIFAR10/100-C.

3.5.c Experimental Details

Hardware
All experiments were run on a single Tesla V100 GPU.

3.5.c.1 Optimization Details: MLP

We use Adam optimizer [116] (β1 = 0.9, β2 = 0.999), a batch size of
128 and a dropout rate of 0.1 in every experiment. Furthermore, we
train every model for 200 epochs. We keep the model that yields best
performance on the validation loss.

MC Dropout, Deep Ensembles & Our Method We use a fix learning
rate of 0.003. We apply weight decay with a weight of 0.0001. We use

3.5 appendices 37

0 2 4

0.
6

0.
8

Accuracy - motion

0 2 4

0.
5

0.
6

0.
7

0.
8

AUROC - motion

0 2 4

0.
4

0.
6

0.
8

Accuracy - pixelate

0 2 4

0.
5

0.
6

0.
7

0.
8

AUROC - pixelate

0 2 4

0.
85

0.
9

Accuracy - brightness

0 2 4

0.
5

0.
52

0.
54

0.
56

AUROC - brightness

0 2 4

0.
2

0.
4

0.
6

0.
8

Accuracy - contrast

0 2 4

0.
6

0.
8

AUROC - contrast

0 2 4

0.
6

0.
8

Accuracy - defocus

0 2 4

0.
5

0.
6

0.
7

0.
8

AUROC - defocus

0 2 4

0.
7

0.
8

0.
9

Accuracy - elastic

0 2 4

0.
5

0.
6

0.
7

0.
8

AUROC - elastic

0 2 4

0.
6

0.
7

0.
8

0.
9

Accuracy - fog

0 2 4

0.
5

0.
6

0.
7

AUROC - fog

0 2 4

0.
6

0.
8

Accuracy - frost

0 2 4
0.

5
0.

6
0.

7
0.

8

AUROC - frost

0 2 4

0.
2

0.
4

0.
6

0.
8

Accuracy - gaussian

0 2 4

0.
5

0.
6

0.
7

0.
8

AUROC - gaussian

0 2 4

0.
2

0.
4

0.
6

0.
8

Accuracy - impulse

0 2 4

0.
5

0.
6

0.
7

0.
8

AUROC - impulse

0 2 4

0.
7

0.
8

0.
9

Accuracy - jpeg

0 2 4

0.
5

0.
6

0.
7

AUROC - jpeg

0 2 4

0.
6

0.
7

0.
8

0.
9

Accuracy - snow

0 2 4

0.
5

0.
6

0.
7

AUROC - snow

0 2 4

0.
6

0.
8

Accuracy - zoom

0 2 4

0.
5

0.
6

0.
7

0.
8

AUROC - zoom

0 2 4

0.
4

0.
6

0.
8

Accuracy - frosted

0 2 4

0.
5

0.
6

0.
7

0.
8

AUROC - frosted

0 2 40.
2

0.
4

0.
6

0.
8

Accuracy - shot noise

0 2 4

0.
5

0.
6

0.
7

0.
8

AUROC - shot noise

Figure 3.5: Accuracy and AUROC on the corruptions of CIFAR10-C.

3.5 appendices 38

0 2 4

0.
2

0.
4

0.
6

Accuracy - frosted

0 2 4

0.
5

0.
6

0.
7

0.
8

AUROC - frosted

0 2 4

0.
2

0.
4

0.
6

Accuracy - pixelate

0 2 4

0.
5

0.
6

0.
7

AUROC - pixelate

0 2 4

0.
55

0.
6

Accuracy - brightness

0 2 4

0.
5

0.
52

0.
54

0.
56

AUROC - brightness

0 2 4

0.
2

0.
4

0.
6

Accuracy - contrast

0 2 4

0.
5

0.
6

0.
7

AUROC - contrast

0 2 4

0.
2

0.
4

0.
6

Accuracy - defocus

0 2 4

0.
5

0.
6

0.
7

AUROC - defocus

0 2 4

0.
4

0.
5

0.
6

Accuracy - elastic

0 2 4

0.
50

.5
50

.6
0.

65
0.

7

AUROC - elastic

0 2 4

0.
2

0.
4

0.
6

Accuracy - fog

0 2 4

0.
5

0.
6

0.
7

AUROC - fog

0 2 4

0.
2

0.
4

0.
6

Accuracy - frost

0 2 4
0.

5
0.

6
0.

7

AUROC - frost

0 2 4

0.
2

0.
4

0.
6

Accuracy - gaussian

0 2 4

0.
5

0.
6

0.
7

0.
8

AUROC - gaussian

0 2 4

0
0.

2
0.

4
0.

6

Accuracy - impulse

0 2 4

0.
6

0.
8

AUROC - impulse

0 2 4

0.
4

0.
5

0.
6

Accuracy - jpeg

0 2 4

0.
5

0.
6

0.
7

AUROC - jpeg

0 2 4

0.
3

0.
4

0.
5

0.
6

Accuracy - snow

0 2 4

0.
5

0.
6

0.
7

AUROC - snow

0 2 4

0.
2

0.
4

0.
6

Accuracy - zoom

0 2 4

0.
5

0.
6

0.
7

AUROC - zoom

0 2 4

0.
2

0.
4

0.
6

Accuracy - frosted

0 2 4

0.
5

0.
6

0.
7

0.
8

AUROC - frosted

0 2 4

0.
2

0.
4

0.
6

Accuracy - shot noise

0 2 4

0.
5

0.
6

0.
7

0.
8

AUROC - shot noise

Figure 3.6: Accuracy and AUROC on the corruptions of CIFAR100-C.

3.5 appendices 39

ensembles with 10 models and run MC dropout with 50 independent
forward passes.

SNGP We start with an initial learning rate of 0.05. We decrease the
learning rate after 60, 120 and 160 steps using a multiplicative factor
γ = 0.2. Instead of the Laplace-approximated GP we follow the offi-
cial implementation and use a random feature GP with 128 inducing
points and a GP scale of 2.0. Following the official implementation
we use soft spectral normalization with 1 power iteration. We apply
weight decay with a weight of 0.0004.

DUQ We start with an initial learning rate of 0.01. We decrease
the learning rate after 60, 120 and 160 using a multiplicative factor
γ = 0.2. We use a length scale of 0.1. We apply weight decay with a
weight of 0.0001.

3.5.c.2 Optimization Details: ResNet

We use Adam optimizer [116] (β1 = 0.9, β2 = 0.999), a batch size
of 128 and a dropout rate of 0.05 in every experiment. Furthermore,
we train every model for 400 epochs. We keep the model that yields
best performance on the validation loss. Further, we apply data aug-
mentation during training on CIFAR10, SVHN and CIFAR100. We
apply random flipping along the vertical axis and random bright-
ness/contrast changes.

MC Dropout, Deep Ensembles & Our Method We use an initial
learning rate of 0.003. We decrease the learning rate after 100, 200

and 300 steps using a multiplicative factor γ = 0.2. We apply weight
decay with a weight of 0.0001. We use ensembles with 10 models and
run MC dropout with 50 independent forward passes.

SNGP We start with an initial learning rate of 0.05. We decrease the
learning rate after 100, 200 and 300 steps using a multiplicative factor
γ = 0.2. Instead of the Laplace-approximated GP we follow the offi-
cial implementation and use a random feature GP with 128 inducing
points and a GP scale of 2.0. Following the official implementation

3.5 appendices 40

we use soft spectral normalization with 1 power iteration. We apply
weight decay with a weight of 0.0003.

DUQ We start with an initial learning rate of 0.03. We decrease the
learning rate after 200, 250 and 300 using a multiplicative factor
γ = 0.2. We use a length scale of 0.1. We apply weight decay with a
weight of 0.0001.

3.5.c.3 Optimization Details: Density of Hidden representations

Classification: Gaussian Mixture Model We estimate the distribution
of the hidden representations of each class using a single multi-
variate Gaussian. We use the empirical mean and covariance matrix.
We also experimented with using NFs for this task. However, we
found in the case of classification that a GMM is sufficient to fit the
distribution of hidden representations throughout all layers.

Dimensionality Reduction Using PCA in "Choice of Layer Depth
for Hidden Representations" We reduce high-dimensional hidden
representations to 256 dimensions using PCA prior to estimating the
distribution of features of each class using a multi-variate Gaussian.

3.5.c.4 Decoder Model for Reconstruction Regularization

We provide a detailed description of the layers of the decoder models
used in our experiments in Tab. 3.6 and 3.7 (left).

Index 0 1 2

Layer Linear ReLU Linear

Table 3.6: Transposed decoder model when training an MLP on
MNIST/FashionMNIST.

3.5 appendices 41

Index Layer
0 Input
1 Conv2D
2 Batchnorm2D
3 ReLU
4 Conv2D
5 Batchnorm2D
6 ReLU
7 Conv2D
8 Batchnorm2D
9 Add

10 Dropout
11 ReLU
12 TransposeConv2d
13 Batchnorm2D
14 ReLU
15 TransposeConv2D
18 Batchnorm2D
19 Add
20 Dropout
21 ReLU
22 TransposeConv2D
23 Batchnorm2D
24 ReLU
25 TransposeConv2D
28 Batchnorm2D
29 Add
30 Dropout
31 ReLU
32 Conv2D

Index Layer
0 Flatten
1 Linear
3 Dropout
4 Linear
5 ReLU
6 Dropout
7 Linear
8 ReLU
9 Dropout

10 Linear
11 ReLU
12 Dropout
13 Linear
14 Softmax

Index Layer
0 Input
1 Conv2D
2 Batchnorm2D
3 ReLU
4 Conv2D
5 Batchnorm2D
6 ReLU
7 Conv2D
8 Batchnorm2D
9 Add
10 Dropout
11 ReLU
12 Conv2D
13 Batchnorm2D
14 ReLU
15 Conv2D
16 Conv2D
17 Batchnorm2D
18 Batchnorm2D
19 Add
20 Dropout
21 ReLU
22 Conv2D
23 Batchnorm2D
24 ReLU
25 Conv2D
26 Conv2D
27 Batchnorm2D
28 Batchnorm2D
29 Add
30 Dropout
31 ReLU
32 AveragePooling2D
33 Flatten
34 Linear
35 Softmax

Table 3.7: Left: Decoder model when training an ResNet50/8 on CI-
FAR10/CIFAR100/SVHN. Center: Layer index to layer type
for the MLP in Sec. 3.3.5. Right: Layer index to Layer type for
the ResNet8 in Sec. 3.3.4.

3.5 appendices 42

3.5.c.5 Index-to-Layer Mapping for "Choice of Layer Depth for Hidden
Representations"

We provide a mapping from indices to layer types in Tab. 3.7 (center)
and (right).

4
O N T H E P R A C T I C A L I T Y O F D E T E R M I N I S T I C
E P I S T E M I C U N C E RTA I N T Y

A set of novel approaches for estimating epistemic uncertainty in
deep neural networks with a single forward pass has recently emerged
as a valid alternative to Bayesian Neural Networks. On the premise of
informative representations, these deterministic uncertainty methods
(DUMs) achieve strong performance on detecting out-of-distribution
(OOD) data while adding negligible computational costs at inference
time. However, it remains unclear whether DUMs are well calibrated
and can seamlessly scale to real-world applications - both prerequi-
sites for their practical deployment. To this end, we first provide a
taxonomy of DUMs, and evaluate their calibration under continuous
distributional shifts. Then, we extend them to semantic segmenta-
tion. We find that, while DUMs scale to realistic vision tasks and
perform well on OOD detection, the practicality of current methods
is undermined by poor calibration under distributional shifts.

4.1 introduction

Despite the dramatic enhancement of predictive performance of deep
learning (DL), its adoption remains limited due to unpredictable
failure on OOD samples [117, 118] and adversarial attacks [119]. Un-
certainty estimation techniques aim at bridging this gap by providing
accurate confidence levels on a model’s output, allowing for a safe
deployment of NNs in safety-critical tasks, e.g. autonomous driving
or medical applications.

While BNNs represent the predominant holistic solution for quan-
tifying uncertainty [33, 35], exactly modelling their full posterior is
often intractable, and scalable versions usually require expensive
variational approximations [14–16, 36, 38]. Moreover, it has recently

43

4.1 introduction 44

been shown that true Bayes posterior can also lead to poor uncer-
tainty [120]. Thus, efficient approaches to uncertainty estimation
largely remain an open problem, limiting the adoption within real-
time applications under strict memory, time and safety requirements.

Recently, a promising line of work emerged for estimating epis-
temic uncertainty of a NN with a single forward pass while treating
its weights deterministically. By regularizing the hidden representa-
tions of a model, these methods represent an efficient and scalable
solution to epistemic uncertainty estimation and to the related OOD
detection problem. In contrast to BNNs, Deterministic Uncertainty
Methods (DUMs) quantify epistemic uncertainty using the distribu-
tion of latent representations [20, 21, 73, 121–123] or by replacing the
final softmax layer with a distance-sensitive function [19, 25, 26, 56].
Further, these methods have been applied to practical problems such
as object detection [124]. While OOD detection is a prerequisite for a
safe deployment of DL in previously unseen scenarios, the calibra-
tion - i.e. how well uncertainty correlates with model performance
- of such methods under continuous distributional shifts is equally
important. Measuring the calibration of an epistemic uncertainty
estimate on shifted data investigates whether it entails information
about the predictive performance of the model. This an essential re-
quirement for uncertainty and, unlike OOD detection, an evaluation
that is not model-agnostic - i.e. one cannot perform well without
taking the predictive model into account. Nonetheless, previous work
falls short of investigating calibration, and solely focuses on OOD
detection [19, 21, 25, 56, 121]. Further, DUMs have thus far only been
evaluated on toy datasets for binary classification, small-scale image
classification tasks [19, 21] and toy prediction problems in natural
language processing [26]. Despite claiming to solve practical issues
of traditional uncertainty estimation approaches, the practicality of
DUMs remains to be assessed on more challenging tasks.

This work investigates whether recently proposed DUMs are a
realistic alternative for practical uncertainty estimation. In particular:
(i) we provide the first comprehensive taxonomy of DUMs; (ii) we
analyze the calibration of DUMs under synthetic and realistic contin-

4.2 taxonomy for deterministic uncertainty quantification 45

uous distributional shifts; (iii) we evaluate the sensitivity of DUMs to
their regularization strength; (iv) we scale DUMs to dense prediction
tasks, e.g. semantic segmentation. Overall, we find that the practical-
ity of many DUMs is undermined by their poor calibration under
both synthetic and realistic distributional shifts. Moreover, some
techniques for regularizing hidden representations demonstrate only
weak correlation with OOD detection and calibration performance.

4.2 taxonomy for deterministic uncertainty quantifi-
cation

Since DUMs thus far denote a novel and scattered phenomenon in
literature, it is necessary to provide an overview of the research land-
scape. Note, that we provide more material on existing DUM trends
identified in this taxonomy (Sec. 4.5.A). Existing DUMs mostly differ-
entiate along two axis. Firstly, DUMs apply different regularization
techniques to equip their representations with the ability to differen-
tiate between ID and OOD data (Sec. 4.2.1). This is important because
the primary goal of DUMs is to quantify epistemic uncertainty while
treating the weights of a NN deterministically in order to avoid sam-
pling at inference time. Since epistemic uncertainty is expected to
increase on OOD data, the representations of a NN need to be sensi-
tive to the input distribution. However, discriminative models suffer
from the fundamental problem of feature collapse [19, 21] which
has to be counteracted using appropriate regularization. Secondly,
DUMs use different methods to estimate uncertainty from such regu-
larized representations (Sec. 4.2.2). Tab. 4.1 shows an overview of the
resulting taxonomy.

Feature Collapse. Discriminative models can learn to discard a
large part of their input information, as exploiting spurious corre-
lations may lead to better performance on the training data distri-
bution [128, 129]. Such invariant representations may be blind to
distributional shifts, resulting in a collapse of OOD embeddings to
in-distribution features. This problem is known as feature collapse [19],

4.2 taxonomy for deterministic uncertainty quantification 46

D
U

M
s

U
nc

er
ta

in
ty

Es
ti

m
at

io
n

M
et

ho
d

D
is

cr
im

in
at

iv
e

G
en

er
at

iv
e

C
la

ss
ce

nt
ro

id
G

au
ss

ia
n

Pr
oc

es
se

s
G

au
ss

ia
n

M
ix

tu
re

M
od

el
s

N
or

m
al

iz
in

g
Fl

ow
s

Reg.

D
is

ta
nc

e
aw

ar
en

es
s

D
C

S,
D

U
Q

SN
G

P,
D

U
E

D
D

U
-

In
fo

rm
at

iv
e

re
pr

es
en

ta
ti

on
s

-
-

D
C

U
,M

IR
In

ve
rt

ib
le

ne
tw

or
ks

,
Po

st
N

et

Ta
b

l
e

4
.1

:T
ax

on
om

y
of

D
U

M
s.

M
et

ho
d

s
ar

e
gr

ou
p

ed
ac

co
rd

in
g

to
th

ei
r

re
gu

la
ri

za
ti

on
(R

eg
.)

of
th

e
hi

d
d

en
re

pr
es

en
ta

ti
on

s
(r

ow
s)

,a
nd

th
ei

r
un

ce
rt

ai
nt

y
es

ti
m

at
io

n
m

et
ho

d
(c

ol
um

ns
).

Fo
r

re
fe

re
nc

e:
D

C
S

[2
5

],
D

U
Q

[1
9

],
SN

G
P

[2
6

],
D

U
E

[5
6
],

D
D

U
[2

1
],

D
C

U
[7

5
,1

2
1

],
M

IR
[2

0
],

In
ve

rt
ib

le
ne

tw
or

ks
[1

2
5

–1
2

7
],

Po
st

N
et

[1
2

2
]

4.2 taxonomy for deterministic uncertainty quantification 47

and it makes OOD detection based on high-level representations
impossible.

4.2.1 Regularization of Representations

We group DUMs according to their approach to mitigating feature col-
lapse. Currently, there are two main paradigms - distance awareness
and informative representations - which we discuss in Section 4.2.1.1
and Sec. 4.2.1.2.

4.2.1.1 Distance Awareness

Distance-aware representations avoid feature collapse by relating
distances between latent representations to distances in the input
space. Therefore, one constrains the bi-Lipschitz constant, as it en-
forces a lower and an upper bound to expansion and contraction
performed by a model. A lower bound enforces that different inputs
are mapped to distinct representations and, thus, provides a solution
to feature collapse. The upper bound enforces smoothness, i.e. small
changes in the input do not result in large changes in the latent space.
While there exist other approaches, e.g. [130], recent proposals have
primarily adopted two methods to impose the bi-Lipschitz constraint.

The two-sided Gradient Penalty relates changes in the input to
changes in feature space by directly constraining the gradient of the
input [19]. Note, that this leads to large computational overhead
as it requires differentiation of the gradients of the input with re-
spect to the NN’s parameters. Spectral Normalization (SN) [131] is
a less computationally-demanding alternative. SN is applicable to
residual layers and normalizes the weights W of each layer using
their spectral norm sn(W) to constrain the bi-Lipschitz constant. Var-
ious DUMs - SNGP [26], DUE [56] and DDU [21] - rely on SN to
enforce distance-awareness of hidden representations. More details
on gradient penalty and SN can be found in the supplement (Sec.
4.5.A.1).

4.2 taxonomy for deterministic uncertainty quantification 48

Notably, the bi-Lipschitz constraint is defined with respect to
a fix distance measure, which can be difficult to choose for high-
dimensional data distributions. For example, SN [19, 26, 56] corre-
sponds to the L2 distance. While SN has empirically been found
to perform well, it has been suggested [132] that popular SN ap-
proximations behave sub-optimally, and their interaction with losses,
architecture and optimization is yet to be fully understood [133].
Principled approaches to providing exact singular values in convo-
lutional layers [134] result in prohibitive computational complexity.
Further, [135] provides an explanation for effectiveness of SN in
convolutional residual NNs.

4.2.1.2 Informative Representations

While distance-awareness achieves remarkable performance on OOD
detection, it does not explicitly preserve sample-specific information.
Thus, depending on the underlying distance metric it may discard
useful information about the input or act overly sensitive. An alter-
native line of work avoids feature collapse by learning informative
representations [20, 73, 121, 125–127], thus forcing discriminative
models to preserve information in its hidden representations beyond
what is required to solve a task independent of the choice of an
underlying distance metric. Notably, while representations that are
aware of distances in the input space are also informative, both cate-
gories remain fundamentally different in their approach to feature
collapse. While distance-awareness is based on the choice of a specific
distance metric tying together input and latent space, informative
representations incentivize a NN to store more information about the
input using an auxiliary task [20, 121] or forbid information loss by
construction [125–127]. There are currently four distinct approaches.

Contrastive learning [136] has emerged as an approach for learn-
ing representations that are both informative and discriminative and
provably maximize the mutual information with the data distribution.
This is utilized by Wu et al. [121] and Winkens et al. [75], who apply
SimCLR [76] to regularize hidden representations for a discriminative

4.2 taxonomy for deterministic uncertainty quantification 49

task by using a contrastive loss for pretraining and fine-tuning to
force representations to discriminate between individual instances.

Reconstruction regularization [20] (MIR) instead forces the inter-
mediate activations to fully represent the input. This is achieved by
adding a decoder branch fed with the activations of a given layer to
reconstruct the input.

Entropy regularization. PostNet [122] learns the class-conditional
distribution of hidden representations end-to-end using a NF pa-
rameterizing a Dirichlet distribution. This allows them to enforce
informative representations by implicitly encouraging large entropy
of the NF during training. We refer to the supplement for details and
further explanations (Sec. 4.5.A.2).

Invertible Neural Networkss (INNs) [125–127, 137], built via a
cascade of invertible layers, cannot discard information except at
the final classification stage. Consequently, the mutual information
between input and hidden representation is maximized by construc-
tion. Interestingly, Behrmann et al. [138] showed that a ResNet is
invertible if its Lipschitz constant is lower than 1, meaning that in-
vertible ResNets both possess highly-informative representations and
satisfy distance-awareness. However, note that this is not a necessary
condition for invertibility, and thus information preservation.

4.2.2 Uncertainty Estimation

There are two directions regarding uncertainty estimation in DUMs
- generative and discriminative approaches. While generative ap-
proaches use the likelihood produced by an explicit generative model
of the distribution of hidden representations as a proxy for uncer-
tainty, discriminative methods directly use the predictions based on
regularized representations to quantify uncertainty.

Generative approaches estimate the distribution of hidden rep-
resentations post-training or end-to-end, and use the likelihood as
an uncertainty proxy. Wu et al. [121] propose a method to estimate
the distribution in the feature space, where the variance of the dis-

4.2 taxonomy for deterministic uncertainty quantification 50

tribution is used as a confidence measure. MIR [20], DDU [21] and
DCU [75] fit a class-conditional GMM to their regularized hidden rep-
resentations and use the log-likelihood as an epistemic uncertainty
proxy. DEUP [139] uses the log-likelihood of a normalizing flow in
combination with an aleatoric uncertainty estimate to predict the
generalization error. A special instance of the generative approaches
are INNs as they directly estimate the training data distribution. The
likelihood of the input data is used as a proxy for uncertainty. While
this idea is appealing, it can lead to training difficulties, imposes
strong constraints on the underlying model and still remains suscep-
tible to OOD data [140]. PostNet [122] is a hybrid approach which
estimates the distribution of hidden representations of each class
using a separate NF which is learned in an end-to-end fashion. Its
log-likelihoods parameterize a Dirichlet distribution. We categorize
PostNet as a generative approach since their epistemic uncertainty is
the log-likelihood of the NF associated with the predicted class.

Discriminative approaches use the predictive distribution to quan-
tify uncertainty. Mandelbaum et al. [25] propose to use a Distance-
based Confidence Score (DCS) learning a centroid for each class
end-to-end. Similarly, DUQ [19] builds on Radial Basis Function
(RBF) networks [107] and proposes a novel centroid updating scheme.
Both estimate uncertainty as the distance between the model output
and the closest centroid. DUMs adopting SN [26, 56] (preserving L2

distances) typically replace the softmax layer with GPs with RBF ker-
nel, extending distance awareness to the output layer. In particular,
SNGP [26] relies on a Laplace approximation of the GP based on the
random Fourier feature (RFF) expansion of the GP posterior [141].
DUE [56] uses the inducing point approximation [142, 143], incorpo-
rating a large number of inducing points without overfitting [144].
The uncertainty is derived as the Dempster-Shafer metric [26], resp.
the softmax entropy [56].

4.3 experiments 51

4.3 experiments

We investigate whether a deterministic treatment of the weights of a
NN as proposed by DUMs not only detects OOD well but also yields
well calibrated epistemic uncertainty, and scales to realistic vision
tasks. Therefore, our experiments are comprised of two parts. Firstly,
we evaluate DUMs on image classification, where we measure their
calibration under synthetic corruptions (Sec. 4.3.1) and sensitivity
to their regularization strength. We also evaluate DUMs on OOD
detection in Sec. 4.3.1.2. Then, we extend DUMs to a large-scale
dense prediction task - semantic segmentation (Sec. 4.3.2) - where
we evaluate their calibration on synthetic corruptions (Sec. 4.3.2.1)
based on Cityscapes as well as on more realistic distributional shifts
(Sec. 4.3.2.2) based on data collected in the simulation environment
CARLA [145].

Baselines. We compare DUMs with two baselines for epistemic
uncertainty - MC dropout [16] and deep ensembles [11]. Moreover,
we report the softmax entropy of a vanilla NN as a simple baseline.
We refer to the supplement for details on uncertainty estimation in
our baselines. Note, that the softmax entropy is expected to yield
suboptimal calibration under distributional shifts since it quantifies
aleatoric uncertainty while adding no computational overhead.

Methods. We evaluate DUQ [19], SNGP [26] and DDU [21] as
representatives of distance-awareness, since these cover both tech-
niques - SN and gradient penalty - and apply different techniques for
uncertainty estimation. We exclude DUE [56] since it provides lim-
ited additional insights given SNGP. Moreover, we exclude DCS [25]
since it only leads to a marginal improvement in their own experi-
ments and their contrastive loss only operates on class centroids and,
thus, is not expected to lead to distance awareness within clusters.
Furthermore, we evaluate MIR [20], DCU [75] and PostNet [122]
as representatives of informative representations. However, we do
not scale DCU and PostNet to semantic segmentation. DCU with its
constrastive pretraining based on SimCLR [76] is computationally
too demanding due to large batch sizes. PostNet does not scale to se-

4.3 experiments 52

mantic segmentation due to instabilities arising from the end-to-end
training of the NF for learning the distribution of hidden representa-
tions. They require a small hidden dimension (≤10) which already
leads to poor testset performance on CIFAR100. Further, we do not
evaluate methods based on invertible neural networks [126, 127]
since they 1) enforce strict constraints on the underlying architecture
(e.g. fixed dimensionality of hidden representations) and often lead
to training instabilities.

Calibration metrics. Typical calibration metrics are Expected Cal-
ibration Error (ECE) [146] and Brier score [147]. However, since
most DUMs, except SNGP, do not provide uncertainty in form of
a probabilistic forecast, we cannot rely on measuring the calibra-
tion of probabilities. Thus, we will exploit another desired property
of uncertainty to quantify calibration, namely the ability to distin-
guish correct from incorrect predictions. In fact, this property is a
relaxation of calibrated probabilities, as it is independent of the ab-
solute value of uncertainty estimates. It solely relies on the ability
of an uncertainty estimate to sort predictions according to their cor-
rectness. We assess the calibration of uncertainty estimates under
distributional shifts using two metrics. Firstly, we report the AUROC
obtained when separating correct and incorrect predictions based
on uncertainty. Moreover, we introduce a new metric, Relative Area
Under the Lift Curve (rAULC), based on the Area Under the Lift Curve
(AULC) [148]. The AULC is obtained by ordering the predictions
according to increasing uncertainty and plotting the performance of
all samples with an uncertainty value smaller than a certain quantile
of the uncertainty against the quantile itself.

Formally, given a set of uncertainty quantiles qi ∈ [0, 1], i ∈ [1, ..., S],
with some quantile step width 0 < s < 1 and the function F(qi)

which returns the accuracy of all samples with uncertainty u < qi,
the AULC is defined as AULC = −1 + ∑i∈[1,...,S] s F(qi)

FR(qi)
. Here, FR(·)

refers to a baseline uncertainty estimate that corresponds to random
guessing. We subtract 1 to shift the performance of the random base-
line to zero. Note, if an uncertainty estimate is anti-correlated with

4.3 experiments 53

a models’ performance, this score can also be negative. To alleviate
a bias towards better performing models, we further compute the
rAULC by dividing the AULC by the AULC of a hypothetical (opti-
mal) uncertainty estimation that perfectly orders samples according
to model performance. In classification we measure AUROC and
rAULC on the image-level, in semantic segmentation on the pixel-
level. In all experiments we set the quantile step width to s = 1

N ,
where N is the number of predictions.

We compute AUROC and rAULC on continuous distributional
shifts 1) across all severities of distributional shifts (including the
clean testset) and 2) for each severity separately. We use the former
method to establish a quantitative comparison among the methods
and the latter to depict the calibration evolution qualitatively as a
function of the distributional shift’s severity.

4.3.1 Image Classification

Datasets. We train DUMs on CIFAR-10 and CIFAR-100 [149] and
evaluate on the corrupted versions of their test set CIFAR10/100-
C [106] (Sec. 4.3.1). These include 15 synthetic corruptions, each with
5 levels of severity. Moreover, we explore how sensitive the calibration
of DUMs is to the choice of regularization strength on MNIST [150]
and FashionMNIST [108]).

Models and optimization. Each method shares the same backbone
architecture and uses a method-specific prediction head. When train-
ing on CIFAR-10/100, the backbone architecture is a ResNet-50 [105]
For the experiments regarding hyperparameter sensitivity on MNIST
and Fashion-MNIST, we employ a multilayer perceptron (MLP) as
feature extractor with 3 hidden layers of 100 dimensions each and
ReLU activation functions. Each DUM has a hyperparameter for the
regularization of its hidden representations. We choose the hyper-
parameter such that it minimizes the validation loss. All results are
averaged over 5 independent runs. The standard deviation and opti-

4.3 experiments 54

mization details can be found in the supplement where not present
in the main paper. Moreover, we provide per-sample training and
inference runtimes for each method in the supplement.

4.3.1.1 Continuous Distributional Shifts

Method CIFAR10-C CIFAR100-C

ACC AUROC rAULC ACC AUROC rAULC

Softmax entropy 0.882 0.782 0.708 0.610 0.762 0.596

MC Dropout [16] 0.885 0.866 0.829 0.615 0.818 0.726

Ensemble [11] 0.910 0.85 0 0.833 0.628 0.824 0.713

SNGP [26] 0.903 0.833 0.766 0.611 0.788 0.623

DDU [21] 0.884 0.673 0.441 0.609 0.635 0.339

MIR [20] 0.889 0.79 0.697 0.617 0.726 0.514

DUQ [19] 0.860 0.773 0.614 - - -

DCU [75] 0.945 0.794 0.706 0.642 0.750 0.558

PostNet [122] 0.882 0.784 0.676 0.520 0.743 0.603

Table 4.2: We compare Softmax, MC Dropout [16], Deep Ensembles,
SNGP, DDU, MIR, DUQ, DCU and PostNet on CIFAR10/100-
C. We evaluate the accuracy (ACC) on the uncorrupted testset,
AUROC and rAULC. Ensembles and MC dropout demonstrate
better uncertainty calibration than most DUMs. Only SNGP
consistently outperforms the softmax entropy. DCU’s superior
performance is expected since it uses expensive contrastive
pretraining. DUQ did not converge on CIFAR100-C due to
training instabilities arising from dynamically updated cluster
centroids.

Tab. 4.2 reports testset accuracy and calibration for the baselines
and DUMs. AUROC and rAULC are computed for each corruption
across all severity levels, then averaged over all corruptions. Further,

4.3 experiments 55

Metric DUQ DDU SNGP MIR

Pearson -0.83 -0.30 0.58 0.76

Spearman -0.83 -0.43 0.61 0.96

Table 4.3: Quantitative correlation between rAULC and regularization
strength using Pearson/Spearman’s rank correlation coeffi-
cient. MIR [20] demonstrates the largest correlation.

Fig. 4.1 depicts our metrics depending on the severity of corruptions.
We generally observe that ensembles and MC dropout demonstrate
best performance in terms of calibration. Further, SNGP is the only
DUM that consistently outperforms the softmax entropy. Overall we
observe that DUMs using the distribution of hidden representations
for estimating epistemic uncertainty yield worse calibration. Among
these we find that regularizing hidden representations by enforcing
distance awareness (DDU) yields the worst calibration. The superior
performance of DCU [75] in terms of testset accuracy originates
from their extensive contrastive pretraining which includes extensive
data augmentation and a prolonged training schedule. We note that
DUQ [19] did not converge on CIFAR100 due to training instabilities.
These arise from maintaining the class centroids, which become very
noisy for 100 classes with only 600 samples per class.

Moreover, we report OOD detection performance of models used
in Tab. 4.2 and Fig. 4.1 in the supplement. Interestingly, despite com-
petitive performance on OOD detection DUMs fall short in terms of
uncertainty calibration compared to MC dropout and deep ensem-
bles.

4.3.1.2 OOD Detection

Table 4.4 shows quantitative results on detecting OOD data for DUMs,
MC dropout and deep ensembles trained on CIFAR10/100. We ob-
serve that DUMs are able to outperform MC dropout and deep
ensembles on OOD detection.

4.3 experiments 56

OOD Data STL10 SVHN CIFAR100

C
IF

A
R

1
0

MC Dropout [16] 0.686 ± 0.004 0.885 ± 0.002 0.82 ± 0.003

Ensemble [11] 0.875 ± 0.001 0.937 ± 0.009 0.758 ± 0.003

DUQ [19] 0.633 ± 0.008 0.843 ± 0.016 0.766 ± 0.003

SNGP [26] 0.726 ± 0.007 0.925 ± 0.02 0.861 ± 0.004

MIR [20] 0.752 ± 0.015 0.916 ± 0.025 0.840 ± 0.007

DDU [21] 0.737 ± 0.018 0.663 ± 0.073 0.638 ± 0.004

DCU [75] 0.725 ± 0.027 0.992 ± 0.014 0.921 ± 0.014

OOD Data STL10 SVHN CIFAR10

C
IF

A
R

1
0

0

MC Dropout [16] 0.772 ± 0.004 0.846 ± 0.01 0.735 ± 0.002

Ensemble [11] 0.801 ± 0.014 0.741 ± 0.003 0.756 ± 0.007

DUQ [19] - - -

SNGP [26] 0.744 ± 0.02 0.795 ± 0.112 0.686 ± 0.007

MIR [20] 0.789 ± 0.025 0.809 ± 0.031 0.663 ± 0.004

DDU [21] 0.698 ± 0.021 0.809 ± 0.056 0.764 ± 0.019

DCU [75] 0.798 ± 0.019 0.978 ± 0.005 0.755 ± 0.024

Table 4.4: OOD detection performance when training on CIFAR10/100

and testing on various other datasets. We report AUROC
averaged across 5 independent trainings.

4.3.1.3 Sensitivity to Hyperparameters

We are interested in the impact of the regularization strength on the
uncertainty calibration. Therefore, we train DUQ [19], SNGP [26],
MIR [20] and DDU [21] using various regularization strengths on
MNIST and evaluate on continuously shifted data by rotating from 0

to 180 degrees in steps of 20 degrees. Fig. 4.2 depicts the test accuracy
against the rAULC for various regularization strengths. Only for
MIR we observe a clear, positive correlation between regularization
strength and calibration. Moreover, Tab. 4.3 reports the corresponding
Pearson/Spearman correlation coefficients. The supplement depicts

4.3 experiments 57

similar results on FashionMNIST [108] as well as for OOD detection
performance (see Sec. 4.5.B.1).

4.3.1.4 Training/Inference Runtime Comparison

We report the per sample training and inference runtime in Table 4.5.
The runtimes were measured on a single V100 using CIFAR10 and a
ResNet50 backbone.

Method Training Runtime [ms] Inference Runtime [ms]

Softmax 1.14 0.36

MC Dropout [16] 1.13 5.17

DUQ [19] 3.68 0.35

SNGP [26] 2.47 0.44

DUE [21] 2.26 0.49

MIR [20] 1.34 0.55

DDU [21] 2.26 0.49

Table 4.5: Per sample runtime during training and inference on CIFAR10.
The runtimes of MC dropout were obtained using 10 samples.

4.3.2 Semantic Segmentation

This section evaluates whether DUMs seamlessly scale to realistic
vision tasks and compares their behaviour under synthetic and real-
istic continuous distributional shifts with the softmax entropy, MC
dropout and ensembles. Therefore, we apply MIR [20], SNGP [26]
and DDU [21] to semantic segmentation. Note that DUQ [19] did not
converge on this task.

We consider semantic segmentation as a multidimensional classifi-
cation problem, where each pixel of the output mask represents an
independent classification problem. Given an image x with n pixels
y = {y1, · · · , yn}, the predictive distribution factorizes according to

4.3 experiments 58

p(y | x) = p(y1 | x)p(y2 | x) · · · p(yn | x). We evaluate the calibration
of the pixel-level uncertainty in our experiments.

Method Cityscapes-C CARLA-C

mIoU AUROC rAULC mIoU AUROC rAULC

Softmax 0.503 0.815 0.737 0.422 0.854 0.818

MC Dropout [16] 0.506 0.846 0.785 0.410 0.843 0.730

Ensemble [11] 0.525 0.835 0.751 0.428 0.863 0.812

SNGP [26] 0.519 0.833 0.759 0.424 0.853 0.813

DDU [21] 0.505 0.731 0.542 0.408 0.467 -0.038

MIR [20] 0.504 0.729 0.564 0.412 0.744 0.619

Table 4.6: We compare semantic segmentation using Softmax, MC
Dropout [16], Deep Ensembles, SNGP, DDU and MIR on
Cityscapes-C and CARLA-C. We evaluate the mean Intersec-
tion over Union (mIoU) on the uncorrupted testset and AU-
ROC/rAULC across all levels of corruption. Again, ensembles
and MC dropout yield better calibrated uncertainty than most
DUMs. Most notably, only SNGP consistently outperforms the
softmax entropy. DUMs using an explicit generative model of
hidden representations to estimate uncertainty perform partic-
ularly bad on realistic distributional shifts (CARLA-C).

Datasets. We evaluate on synthetic distributional shifts using a
corrupted version of Cityscapes [151] (Cityscapes-C [152]) which con-
tains the same corruptions as CIFAR10/100-C. To further benchmark
DUMs in a realistically and continuously changing environment, we
collect a synthetic dataset for semantic segmentation. We use the
CARLA Simulator [145] and leverage the SHIFT dataset [153] toolkit
for rendering images and segmentation masks under controlled distri-
butional shifts in a driving scenario. The classes definition is aligned
with the CityScape dataset [151]. Training data is collected from four
towns in CARLA. We produce 32 sequences from each town. Vehicles
and pedestrians are randomly generated for each sequence. Every se-

4.3 experiments 59

quence has 500 frames with a sampling rate of 10 FPS. We uniformly
sample a validation set. We introduce continuous distributional shifts
by varying the time-of-the-day and weather conditions (visual ex-
amples and details on data collection are in the supplement). The
time-of-the-day is parameterized by the sun’s altitude angle, where
90◦ means mid-day (training data) and the 0◦ means dust/dawn. We
produce samples with altitude angles from 90◦ to 15◦ by steps of 5◦,
and 15◦ to −5◦, where the environment changes sharply, in 1◦ steps.
In order to continuously change the weather conditions, we increase
the magnitude of the rain in four steps (see supplement for visual
examples). We refer to this dataset as CARLA-C.

Backbone. We adopt Dilated ResNet (DRN) [154, 155] as semantic
segmentation backbone since it is based on residual connections
allowing the use SN. Using dilated convolutions it improves spatial
accuracy, achieving satisfactory results on CityScapes [151]. We adopt
the variant DRN-A-50. All results are averaged across 5 independent
repetitions.

SNGP. DRN uses 1× 1 convolutions at the last layer to map the
latest feature map to the predicted segmentation mask. This works
under the assumption that all pixels in the output mask are i.i.d. ran-
dom variables. Following this intuition, we extend SNGP to semantic
segmentation by fitting a GP : RZ → RC at pixel level that maps
from the deep feature dimension z to the number of classes c. By
keeping the GP kernel parameters shared across all pixels, we simu-
late a 1× 1 convolutional GP, i.e. σ : (Hl ×Wl × Z)→ (Hl ×Wl ×C),
where σ convolves the GP, Hl and Wl are, respectively, feature map
height and width at layer l, Z is the number of latent features and
C is the number of output classes. For details about the GP we refer
to [26] or the supplement.

MIR and DDU require fitting the distribution of hidden represen-
tations. We fit a GMM with 20 components (i.e. number of classes)
to each spatial location of the hidden representations using features
extracted from the training data independently. This assumes that the
distribution is translation invariant and factorizes along the spatial
dimensions of the latent space. Pixel-level uncertainties are then com-

4.4 conclusion 60

puted using bi-cubic interpolation following a similar procedure as
the one proposed in [6]. We refer to the supplement for more details.

4.3.2.1 Cityscapes Corrupted

We evaluate the softmax entropy, ensembles [11], MC dropout [16],
SNGP [26], MIR [20], and DDU [21] on Cityscapes-C [152]. Tab. 4.6
depicts mIoU and calibration performance in terms of AUROC and
rAULC. Ensembles and MC dropout yield the best calibration, while
among DUMs only SNGP consistently ourperforms the softmax
entropy.

4.3.2.2 Realistic Continuous Distributional Shifts

Similarly, we evaluate the softmax entropy, ensembles [11], MC
dropout [16], SNGP [26], MIR [20], and DDU [21] on CARLA-C. Tab.
4.6 depicts mIoU and calibration performance in terms of AUROC
and rAULC. Ensembles yield the best calibration. Among DUMs
only SNGP consistently ourperforms the softmax entropy which is
in line with the results on image classification (Sec. 4.3.1).

4.4 conclusion

This work investigates the shortcomings of a recent trend in research
on deterministic epistemic uncertainty estimation. To this end, we
provide the first taxonomy of DUMs. Moreover, we verify that DUMs
indeed scale to realistic vision tasks in terms of predictive perfor-
mance. However we find that (i) the epistemic uncertainty of many
DUMs is not well calibrated under distributional shifts and (ii) the
regularization strength in methods based on distance awareness does
not correlate strongly with OOD detection and calibration.

DUMs recently showed good OOD detection performance and
are interesting for practical applications in need of efficient uncer-
tainty quantification. We established that DUMs mainly differ in their

4.4 conclusion 61

regularization technique for countering feature collapse and their
approach to quantifying uncertainty (Sec. 4.2).

Regarding the calibration under continuous distributional shifts of
DUMs, we observe that such uncertainty estimates are considerably
worse calibrated than scalable Bayesian methods. This is the case
for image classification (Sec. 4.3.1) as well as semantic segmentation
(Sec. 4.3.2) and for synthetic as well as more realistic distributional
shifts. SNGP [26] denotes the only DUM that consistently yields
better calibrated uncertainties under continuous distributional shifts
than the softmax entropy. Simultaneously, SNGP is the only DUM
which derives their uncertainty from its predictive distribution.

In particular, we find that methods relying on the distribution
of hidden representations to quantify uncertainty [20, 21, 75] are
poorly calibrated. It is understandable that these methods are worse
calibrated than SNGP since they do not take into account the pre-
dictive distribution. They assume that locations in the feature space
entail information about the correctness of predictions. While this
is arguably true, features also contain additional information that
renders them sub-optimal for judging the correctness of predictions
due to ambiguities. Overall, this underlines the necessity to refrain
from DUMs that purely rely on distances or log-likelihoods in the
feature space when well calibrated uncertainties are required.

Interestingly, one may argue that DUMs simply do not scale to
realistic vision tasks and, for that reason, are not well calibration
in Sec. 4.3.2. However, note that DUMs in fact demonstrate strong
predictive performance in such scenarios (see Tab. 4.6) and have been
shown to perform well on OOD detection on realistic vision datasets
(e.g. pixel-wise anomaly detection [6]). Therefore, we can conclude
that this is not a problem of scaling DUMs to realistic scenarios
but rather an inherent problem which these types of uncertainty
estimates.

Moreover, another desirable property of DUMs would be that the
strength of the feature space regularization correlates with the quality
of the uncertainty - both in terms of calibration as well as OOD
detection. Due to the original purpose of most DUMs, this would be

4.4 conclusion 62

at least expected for OOD detection. However, we do not observe
this for bi-Lipschitz regularization (Sec. 4.3.1). We hypothesize that
this originates from the fact that these regularization techniques rely
on an underlying distance metric - i.e. L2 distance. Such distance
metrics are not meaningful in the case of high-dimensional data,
i.e. images. We hope that our findings will foster future research
on making these promising family of methods better calibrated and
more broadly applicable.

4.4 conclusion 63

0.40.8

A
C

C
-

gn

0.60.8

A
U

R
O

C
-

gn

SN
G

P
D

D
U

M
IR

D
U

Q
So

ft
m

ax

0.40.8

rA
U

LC
-

gn

0.40.8

A
C

C
-

m
b

0.70.9

A
U

R
O

C
-

m
b

En
se

m
bl

e
M

C
D

ro
po

ut
D

C
U

Po
st

N
et

0.40.8

rA
U

LC
-

m
b

0
2

4

0.20.6

0
2

4

0.60.8

0
2

4

0.20.6

0
2

4

0.20.6

0
2

4

0.70.8

0
2

4

0.40.6

Fi
g

u
r

e
4

.1
:S

of
tm

ax
en

tr
op

y,
en

se
m

bl
es

[1
1

],
M

C
dr

op
ou

t
[1

6
],

D
U

Q
[1

9
],

SN
G

P
[2

6
],

M
IR

[2
0

],
D

D
U

[2
1

]
an

d
D

C
U

[7
5

]
on

C
IF

A
R

1
0

-C
(u

p
p

er
ro

w
)

an
d

C
IF

A
R

1
0
0

-C
(l

ow
er

ro
w

)
[1

0
6

].
W

e
sh

ow
th

e
ac

cu
ra

cy
,

A
U

R
O

C
an

d
rA

U
L

C
on

th
e

co
rr

u
p

ti
on

s
ga

u
ss

ia
n_

no
is

e
(g

n)
an

d
m

ot
io

n_
bl

u
r

(m
b)

ag
ai

ns
t

th
e

co
rr

u
p

ti
on

se
ve

ri
ty

.W
hi

le
al

lm
et

ho
d

s,
ex

ce
p

t
D

C
U

,d
em

on
st

ra
te

a
si

m
ila

r
ac

cu
ra

cy
,D

U
M

s
-

in
pa

rt
ic

ul
ar

m
et

ho
ds

ba
se

d
on

ge
ne

ra
tiv

e
m

od
el

in
g

of
hi

dd
en

re
pr

es
en

ta
tio

ns
-y

ie
ld

w
or

se
ca

lib
ra

tio
n.

D
U

Q
di

d
no

t
co

nv
er

ge
on

C
IF

A
R

1
0

0
.O

th
er

co
rr

up
ti

on
s

ar
e

in
cl

ud
ed

in
th

e
su

pp
le

m
en

t.

4.4 conclusion 64

0.56 0.6

0.
96A

cc
ur

ac
y

DUQ

2

4

6

8

0.59 0.6 0.61

0.
96

0.
98

SNGP

2

4

6

8

0.35 0.4 0.45

0.
97

0.
99

rAULC

A
cc

ur
ac

y

DDU

2

4

6

8

0.5 0.6 0.7

0.
97

0.
99

rAULC

MIR

2

4

6

8

Figure 4.2: We analyze the sensitivity of DUQ [19], SNGP [26], MIR [20]
and DDU [21] to their regularization strength. Therefore, we
train models on MNIST and evaluate on continuously shifted
data by rotating from 0 to 180 degrees in steps of 20 degrees.
We plot the accuracy on the unperturbed testset against the
rAULC computed using data from all levels of perturbation.
Only for MIR we observe a clear, positive correlation between
regularization strength and calibration. For DDU and SNGP,
smaller regularization parameter denotes stronger regulariza-
tion.

4.5 appendices 65

4.5 appendices

We here provide additional theoretical background, implementa-
tion and optimization details, additional results, comparisons and
ablation studies. In particular, we report additional details on the the-
oretical background necessary to understand DUMs’ design choices
in Sec. 4.5.A. We describe techniques used for enforcing Lipschitz
constraints Sec. 4.5.A.1 and informative representations Sec. 4.5.A.2
in more detail. Moreover, Sec. 4.5.A.3 summarizes common choices of
uncertainty estimation techniques for discriminative and generative
DUMs.

Sec. 4.5.B.1/Sec. 4.5.B.2 show additional results for image classifica-
tion/semantic segmentation. We report optimization/implementation
details in Sec. 4.5.C/Sec. 4.5.D. Furthermore, we describe the quan-
tification of uncertainty for image classification Sec. 4.5.D.3 and
semantic segmentation Sec. 4.5.D.4. Finally, we provide details on the
data collection process in CARLA and examples from the sequences
collected for semantic segmentation Sec. 4.5.E.

4.5.a DUMs - Fundamentals

Subsequently, we provide a more detailed introduction of the most
common concepts applied by DUMs. In particular, We describe regu-
larization techniques, including Lipschitz regularization (Sec. 4.5.A.1)
for enforcing distance awareness and informative representations
(Sec. 4.5.A.2). Sec. 4.5.A.3 summarizes discriminative and generative
approaches to uncertainty estimation in DUMs.

4.5.a.1 Regularization Techniques - Distance Awareness

The fundamental idea of distance-aware hidden representations is to
avoid feature collapse by enforcing distances between latent represen-
tations to mirror distances in the input space. This can be achieved
by constraining the Lipschitz constant, as it enforces a lower and
an upper bound to expansion and contraction performed by an un-

4.5 appendices 66

derlying neural network. More formally, given any pair of inputs
x1 and x2 the following lower and upper bounds must hold for
the resulting activation of a feature extractor fθ with parameters θ:
c1||x1 − x2||I ≤ || fθ(x1)− fθ(x2)||F ≤ c2||x1 − x2||I . c1 and c2 denote
respectively the lower and upper bound for the Lipschitz constant,
and || · ||I and || · ||F are the chosen metrics in the input and feature
space respectively.

Recent proposals have primarily adopted two methods to impose
this constraint.

Gradient Penalty. First introduced to regularize the Lipschitz
constant in GAN training [156], a two-sided gradient penalty is used
as an additional loss term to enforce sensitivity of the feature space to
changes in the input by DUQ [19]. The gradient penalty is formulated
as an additional loss term that regularises the Frobenius norm ||J||F of
the Jacobian J of a NN to enforce a bi-Lipschitz constraint. Therefore,
the training loss of a NN is typically enhanced with the absolute
difference between ||J||F and some chosen positive constant.

Given a model g and an input x, regularising the Frobenius norm
||J||F of its Jacobian J constraints its Lipschitz constant. Therefore, the
following two-sided gradient penalty is used: λ [||∇xg(x)||F − 1]2,
where λ is the regularization strength, || · ||2 is the L2 norm, the target
bi-Lipschitz constant is 1. For more details, refer to [19].

Spectral Normalization. The two-sided gradient penalty described
above requires backpropagating through the Jacobian of a NN and
is, thus, computationally demanding. A more efficient technique is
SN [131]. For each layer g : hin → hout, SN normalizes the weights
W of each layer using their spectral norm sn(W) to constrain the bi-
Lipschitz constant. Thus, weight matrices are normalized according
to: Wsn = W

c·sn(W)
. This effectively constrains the layer’s Lipschitz

norm ||g||Lip = suphsn(∇g(h)), where sn(A) is the spectral norm
of the matrix A, which is equivalent to its largest singular value.
Consequently, SN normalizes the spectral norm of the weights W of
each layer to satisfy the soft-Lipschitz constraint sn(W) = c (hard- if
the Lipschitz constant c = 1): Wsn = W/sn(W). Note, that spectral

4.5 appendices 67

normalization requires residual layers. We refer to [26] for further
details.

Runtime. Let N denote the number of parameters of the underly-
ing neural network and B denote the batch size used during training
of the underlying discriminative task. Gradient penalty leads to
additional runtime/memory cost of O(NB). This originates from
backpropagation through the gradients of the input which essen-
tially doubles the computation during backpropagation. Spectral
normalization leads to additional runtime/memory cost of O(N)

since its complexity equates to applying the affine layers of a model
additionally on a single sample.

Overall, we summarize the advantages and disadvantages of each
regularization technique enforcing distance aware representations.

• Distance awareness (general):

– Advantages: Can be used in combination with GPs and
RBF kernels which both assume distance-aware inputs.

– Disadvantages: Assumes an underlying distance metric
(e.g. L2). This can be unsuitable/problematic for some
data distributions (e.g. images). Does not correlate with
OOD detection performance.

• Gradient Penalty:

– Advantages: Architecture-agnostic.

– Disadvantages: High computational and memory costs
due to backpropagation through the input’s gradients.

• Spectral Normalization:

– Advantages: Computationally more efficient compared to
gradient penalty.

– Disadvantages: Not architecture-agnostic. Requires the
use of residual layers.

4.5 appendices 68

4.5.a.2 Informative Representations

Unlike approaches enforcing distance aware representations, infor-
mative representations do not rely on an underlying distance metric.
These approaches rather aim at maximizing the mutual information
between input data distribution and the distribution of hidden rep-
resentations heuristically [20] or exactly [75, 122]. Subsequently, we
discuss the different approaches in greater detail.

Constrastive learning. DCU [75] first pretrains its model using
contrastive learning [76]. Subsequently, they finetune on the actual
classification task by training simultaneously on a classification and
a contrastive learning objective. This approach provably encourages
the model to increase the mutual information between the input
distribution and the distribution of hidden representations [136]. A
disadvantage of this approach is the large batch size required for
training the contrastive objective. Furthermore, it heavily depends
on the underlying data augmentations which need to be tailored to
the discriminative task at hand (e.g. classification).

Reconstruction regularization. The authors of MIR [20] try to
heuristically increase the information content about the input in
the hidden representations. Therefore, they require the model to be
able to reconstruct its input from its hidden representations using a
separate decoder module during training. The entire approach can
also be viewed as a constrained autoencoder, where the constraint
is the objective of the discriminative task at hand (e.g. classification).
While this approach is only a heuristic, it is more agnostic of the
underlying discriminative task.

Entropy regularization. PostNet [122] learns the distribution of
hidden representations end-to-end during training of the discrim-
inative model. They parameterize the distribution using one nor-
malizing flow (radial flow) per class. While they do not explicitly
mention the problem of feature collapse, their entropy regulariza-
tion loss fulfills this purpose. In particular, they maximize the en-
tropy of the predicted Dirichlet distribution D(α(i)) parameterized
by α(i) = (α

(i)
1 , . . . , α

(i)
c) for a classification problem with c classes.

4.5 appendices 69

Each α
(i)
j is given by α

(i)
j = βprior + NcP(z(i)|c, ϕ). Here, βprior denotes

a constant prior term shared across classes, Nc denotes the number
of occurrences of class c in the training set, z(i) denotes the hidden
representation of some input x(i) and P(z(i)|c, ϕ) denotes the radial
flow associated with class c with parameters ϕ. Importantly, βprior

is set to 1 in their experiments which leads to α
(i)
j ≥ 1∀j ∈ [1, . . . , c].

PostNet then encourages large entropies of the Dirichlet distribution
during training. The entropy is given by

H(D(α(i))) = log(B(α(i))) + (α
(i)
0 − c)ψ(α(i)

0)−
c

∑
j=0

(α
(i)
j − 1)ψ(α(i)

j)

(4.1)
where B is there beta-function, ψ is the Digamma function and
α
(i)
0 = ∑c

j=1 α
(i)
j . Importantly, this function has a global maximum for

α
(i)
j = 1∀j ∈ [1, . . . c]. Since βprior = 1, this term further encourages

the normalizing flows to produce likelihoods close to zero. Thus, it
encourages large values of the negative log-likelihoods and, conse-
quently, entropies under each radial flow.

Runtime. Let N denote the number of parameters of the underly-
ing neural network and B denote the batch size used during training
of the underlying discriminative task. Contrastive learning leads
to additional runtime/memory cost of O(N). This originates from
the fact that it requires large batch sizes and thus likely increases
the batch size compared to the original discriminative task. Recon-
struction regularization [20] and entropy regularization [122] lead
to additional runtime/memory cost of O(B), since the size of the
decoder model in reconstruction regularization [20], and resp. the
normalizing flows in entropy regularization [122], are in principal
independent of the size of the original model.

Overall, we summarize the advantages and disadvantages of each
regularization technique enforcing informative representations.

• Informative representations (general):

– Advantages: Does not rely on an underlying distance
metric.

4.5 appendices 70

– Disadvantages: When paired with generative modeling of
hidden representations, strong regularization is expected
to show similar pathologies as explicit generative models
trained directly on the data distribution [140]. Moreover,
it cannot be paired with RBF kernels and GPs approxi-
mations based on RBF kernels, since they work under the
assumption that also the feature extractor is a distance-
preserving function.

• Contrastive Learning:

– Advantages: Is shown to simultaneously boost predic-
tive performance [75, 76] - particularly on classification.
Architecture-agnostic. Provably maximizes mutual-information
between input distribution and distribution of hidden rep-
resentations [136].

– Disadvantages: High computational and memory costs
due to the necessity of large batch sizes. Contrastive learn-
ing needs to be tailored (e.g. data augmentations) to the
underlying discriminative task.

• Reconstruction regularization:

– Advantages: Architecture-agnostic.

– Disadvantages: Only heuristically maximizes mutual in-
formation between input distribution and distribution of
hidden representations.

• Entropy regularization:

– Advantages: Assuming a deterministic neural network,
enforcing large entropy in the latent space equates max-
imizing mutual-information between input distribution
and distribution of hidden representations.

– Disadvantages: Not architecture-agnostic, since it requires
Batch Normalization prior to entropy regularized hidden
representations for training stabilization. Further, requires
low-dimensional hidden representations.

4.5 appendices 71

4.5.a.3 Uncertainty Estimation

Training a feature extractor under the regularization constraints
imposed by distance awareness (Section 4.2.1.1, Section 4.5.A.1) or
representation informativeness (Section 4.2.1.2) allows to leverage
intermediate representations to quantify uncertainty over network’s
predictions. Extending Section 4.2.2, we here distinguish between
generative and discriminative approaches to uncertainty quantification
in DUMs and provide a detailed categorization of such techniques.

Generative approaches. Given a model trained under some above-
discussed regularization constraint, generative approaches estimate
the distribution of hidden representations by fitting density models
on the regularized feature space, and use the likelihood as uncertainty
metric to detect OOD samples. MIR [20], DDU [21] and DCU [75]
learn the density of hidden representations post-training based on
the features observed on the training data. In contrast, PostNet [122]
learns the density model end-to-end with the underlying discrimina-
tive model.

Predominantly, class-conditional GMMs are fitted on the regular-
ized intermediate feature space to estimate its distribution, as done
in MIR [20], DDU [21] and DCU [75] - i.e. one multi-variate gaussian
per class, to the hidden representations post training. Subsequently,
log-likelihood [20] or the log-likelihood of the mixture component
associated with the predicted class [21, 75] is used as a proxy for
epistemic uncertainty.

On the other hand, PostNet [122] learns the class-conditional dis-
tribution of hidden representations end-to-end using normalizing
flows (in particular radial flows). They learn one normalizing flow
per class. In their work the class-conditional distribution is used
to parameterize a Dirichlet distribution. Following PostNet’s no-
tation, the parameters α(i) of the Dirichlet distribution associated
with a particular sample x(i) are given by α

(i)
c = βprior + βi with

βi = NcP(z(i)|c, ϕ). Here, c denotes the class, βprior a constant prior
term shared across all classes, Nc the number of samples observed
in class c and P(z(i)|c, ϕ) (ϕ are the parameters of the normalizing

4.5 appendices 72

flow) is the probability of observing the hidden representation z(i)

given the normalizing flow associated with class c. Ultimately, epis-
temic uncertainty is then quantified as the maximum alpha among
all classes. Thus, the epistemic uncertainty is directly derived from
the likelihood of the normalizing flow associated with the predicted
class of the NN, which mostly corresponds to the normalizing flow
with the maximum likelihood assuming a balanced class distribution.
We refer to [122] for a more detailed treatment.

Empirically, we find generative approaches to show worse cal-
ibration. The underlying assumption of generative approaches to
uncertainty estimation is that locations in feature space entail infor-
mation about the correctness of predictions. While this is arguably
true, features also contain additional information that which can
render them suboptimal for judging the correctness of predictions
due to ambiguities.

Discriminative While generative approaches use the likelihood
produced by an explicit generative model fit to the distribution of
regularized hidden representations to quantify uncertainty, discrimi-
native methods directly rely on the predictions based on regularized
representations.

Centroid-based techniques use distances between points in the
latent space to parameterize predictions. Centroids are defined with
respect to the distribution of the feature space generated by the
training set. Mandelbaum et al. [25] propose to use a Distance-based
Confidence Score (DCS) to estimate local density at a point as the
Euclidean distance in the embedded space between the point and its
k nearest neighbors in the training set. Similarly, DUQ [19] builds
on Radial Basis Function (RBF) networks [107], which requires the
preservation of input distances in the output space which is achieved
using the gradient penalty. The class-specific centroids used in the
RBF kernel are maintained as a running mean of the features ob-
served for each class.

Other methods are based on the idea that, since GPs with RBF
kernels are distance preserving functions [26], they can be combined
with regularization techniques that enforce distance awareness of

4.5 appendices 73

the feature extractor [26, 56] to obtain an end-to-end distance-aware
model. The uncertainty can then be computed at the network’s output
level as the Dempster-Shafer metric [26] or the softmax entropy [56].
Based on this intuitive idea, SNGP [26] and DUE [56] simply rely
on different approximations of the GP, adopting respectively the
Laplace approximation based on the random Fourier feature (RFF)
expansion of the GP posterior [141] and the inducing point approx-
imation [142, 143]. Another minor difference lies in the spectral
normalization algorithm, with DUE providing a SN implementation
also for batch normalization layers. While both methods rely on
spectral-normalized feature extractors, they could in principle be ap-
plied together with any distance-preserving regularization technique.
For example, the GPs could be placed on top of a feature extrac-
tor trained with gradient penalty [19] to regularize the bi-Lipschtiz
constant.

4.5.b Additional Results

4.5.b.1 Image Classification - Sensitivity to regularization strength

We provide additional ablation studies on the sensitivity to regu-
larization strength for different methods on MNIST (Fig. 4.3) and
FashionMNIST (Fig. 4.4)

These results confirm the findings of the main manuscript, i.e. that
only MIR and Dropout are sensible to regularization strength, while
DUMs based on Lipschitz regularization are not influenced by the
regularization strength.

4.5.b.2 Semantic Segmentation

Examples of segmentation and uncertainty masks. We show qual-
itative examples of predicted masks, error masks and uncertainty
masks for Softmax, MC dropout, SNGP and MIR on semantic seg-
mentation. Fig. 4.5 illustrates examples under minimal distributional
shift (i.e. Azimuth angle of the sun = 85◦ and Fig. 4.6 under maximal

4.5 appendices 74

distributional shift (i.e. Azimuth angle of the sun = −5◦. We show
the input image (Input), the segmentation ground truth (GT), the
predicted segmentation mask (Prediction), the error mask (Error) and
the uncertainty mask (Uncertainty). The error mask is computed as a
boolean mask with True values when a pixel is predicted wrongly
(yellow) and False (blue) when the prediction is instead correct. The
uncertainty mask is preprocessed to facilitate visualization. In partic-
ular, we first compute mean µ and standard deviation σ of per-pixel
uncertainties over each uncertainty mask. Then, the uncertainty mask
is clipped between [µ− 2σ, µ + 2σ]. Finally, the uncertainty mask is
normalized between 0 and 1 before being visualized.

While the softmax entropy provides decent uncertainty estimates
under minimal distributional shift, it tends to be overconfident under
severe distributional shift. In particular, Softmax models are only
uncertain close to object borders, but they are confident about large
portions of the image that are instead predicted wrongly. This can be
observed in Fig. 4.6, where all models tend to predict the entire sky
wrongly (assigned to ‘building’ class), but the Softmax model is the
most confident about its predictions of the sky being correct. DUMs
and MC dropout do a better job at recognizing wrong predictions
under sever domain shift by outputting higher uncertainty values.

4.5.c Training Details

We provide training and optimization details for all evaluated meth-
ods. All methods using spectral normalization use 1 power iteration.
Hyperparameters were chosen to minimize the validation loss.

4.5.c.1 Image Classification - MNIST/FashionMNIST

All methods trained on MNIST/FashionMNIST used a MLP as back-
bone with 3 hidden layers of 100 dimensions each and ReLU activa-
tion functions. We used a batch size of 128 samples and trained for
200 epochs. No data augmentation is performed.

4.5 appendices 75

Softmax and Deep ensembles. We used for the single softmax
model the Adam optimizer with learning rate 0.003, and L2 weight
regularization 0.0001. When using ensembles, 10 models are trained
from different random initializations.

MC dropout. We used for all baselines the Adam optimizer with
learning rate 0.003, dropout rate 0.4 and L2 weight regularization
0.0001.

We found the optimal SN coefficient to be 7, with the GP approxi-
mation using 10 (number of classes) inducing points initialized using
k-means over 10000 samples.

DUQ We trained DUQ with the SGD optimizer with learning rate
0.01, L2 weight regularization 0.0001, and a multi-step learning rate
decay policy with decay rate 0.3 and decay steps at the epochs 10, 20.
Lengthscale for the RBF kernel is 0.1 and optimal gradient penalty
loss weight is 0 where we searched along the grid [0.0, 0.0000001,
0.0000003, 0.000001, 0.000003, 0.00001, 0.00003, 0.0001, 0.0003, 0.001,
0.005, 0.01, 0.025, 0.05, 0.075, 0.1, 0.2, 0.5].

DDU. We trained DDU with the Adam optimizer with learning
rate 0.001, L2 weight regularization 0.0001, and a multi-step learn-
ing rate decay policy with decay rate 0.2 and decay steps at the
epochs 100, 200, 300. We found the optimal SN coefficient to be 6
searching along the grid [1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 15]. The GMM is
fitted by estimating the empirical mean and covariance matrix of the
representations on the training data associated with each class.

SNGP. We trained SNGP with the SGD optimizer with learning
rate 0.05, L2 weight regularization 0.0003, and a multi-step learning
rate decay policy with decay rate 0.2 and decay steps at the epochs
60, 120, 160. We found the optimal SN coefficient to be 6 searching
along the grid [1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 15]., with the GP approxima-
tion using 10 hidden dimensions, lengthscale 2 and mean field factor
30.

MIR. We trained MIR with the Adam optimizer with learning rate
0.001, and L2 weight regularization 0.0001. We found the optimal
reconstruction loss weight to be 1 after searching along the grid
[0.0, 0.1, 0.5, 1.0, 2.0, 5.0, 10.0, 20.0, 50.0, 100.0].

4.5 appendices 76

4.5.c.2 Image Classification - CIFAR10/SVHN

When training on CIFAR-10/SVHN, we use a ResNet-18 [105] as
backbone. The dimensionality of the last feature space encoded with
the ResNet backbone is 100 for all methods. We used a batch size of
128 samples and trained for 400 epochs. The training set is augmented
with common data augmentation techniques. We apply random
horizontal flips, random brightness augmentation with maximum
delta 0.2 and random contrast adjustment with multiplier lower
bound 0.8 and upper bound 1.2.

Softmax and Deep ensembles. We used for the single softmax
model the Adam optimizer with learning rate 0.003, L2 weight reg-
ularization 0.0001, and a multi-step learning rate decay policy with
decay rate 0.2 and decay steps at the epochs 250, 300, 400. When
using ensembles, 10 models are trained from different random ini-
tializations.

MC dropout. We used for all baselines the Adam optimizer with
learning rate 0.003, dropout rate 0.3, L2 weight regularization 0.0001,
and a multi-step learning rate decay policy with decay rate 0.2 and
decay steps at the epochs 250, 300, 400.

DUE We trained DUE with the SGD optimizer with learning rate
0.01, L2 weight regularization 0.0005, dropout rate 0.1, and a multi-
step learning rate decay policy with decay rate 0.2 and decay steps at
the epochs 100, 200, 300. We found the optimal SN coefficient to be 7
for SVHN and 9 for CIFAR-10, with the GP approximation using 10
(number of classes) inducing points initialized using k-means over
10000 samples.

DUQ We trained DUE with the SGD optimizer with learning rate
0.01, L2 weight regularization 0.0001, dropout rate 0.1, and a multi-
step learning rate decay policy with decay rate 0.3 and decay steps
at the epochs 200, 250. 300. Lengthscale for the RBF kernel is 0.1 and
optimal gradient penalty loss weight is 0

DDU. We trained DDU with the Adam optimizer with learning
rate 0.001, L2 weight regularization 0.0001, dropout rate 0.3, and a
multi-step learning rate decay policy with decay rate 0.2 and decay

4.5 appendices 77

steps at the epochs 80, 120, 180. We found the optimal SN coefficient
to be 7. The GMM fit on top of the pretrained feature extractor is
trained for 100 epochs and is fit with 64 batches.

SNGP. We trained SNGP with the SGD optimizer with learning
rate 0.05, L2 weight regularization 0.0004, dropout rate 0.1, and a
multi-step learning rate decay policy with decay rate 0.2 and decay
steps at the epochs 100, 200, 300. We found the optimal SN coefficient
to be 7, with the GP approximation using 10 hidden dimensions,
lengthscale 2 and mean field factor 30.

MIR. We trained MIR with the Adam optimizer with learning rate
0.003, L2 weight regularization 0.0001, dropout rate 0.1, and a multi-
step learning rate decay policy with decay rate 0.2 and decay steps at
the epochs 150, 200, 250, 300. We found the optimal reconstruction
loss weight to be 1.

4.5.c.3 Semantic Segmentation.

When training on semantic segmentation, we use a DRN [154, 155]
(DRN-A-50) as backbone. We used a batch size of 4 samples and
trained for 200 epochs. Images are rescaled to size 400× 640 The
training set is augmented with common data augmentation tech-
niques. All training samples are augmented with random cropping
with factor 0.8. We apply random horizontal flips, random bright-
ness augmentation with maximum delta 0.2 and random contrast
adjustment with multiplier lower bound 0.8 and upper bound 1.2.

Softmax. We used for the single softmax model the Adam opti-
mizer with learning rate 0.0004, L2 weight regularization 0.0001, and
a multi-step learning rate decay policy with decay rate 0.3 and decay
steps at the epochs 30, 60, 90, 120.

MC dropout. We used for all baselines the Adam optimizer with
learning rate 0.0004, dropout rate 0.4, L2 weight regularization 0.0001,
and a multi-step learning rate decay policy with decay rate 0.3 and
decay steps at the epochs 30, 60, 90, 120.

SNGP. We trained SNGP with the SGD optimizer with learning
rate 0.0002, L2 weight regularization 0.0003, dropout rate 0.1, and a

4.5 appendices 78

multi-step learning rate decay policy with decay rate 0.2 and decay
steps at the epochs 20, 40, 60, 80, 100. We found the optimal SN
coefficient to be 6, with the GP approximation using 128 hidden
dimensions, lengthscale 2 and mean field factor 25.

MIR. We trained MIR with the Adam optimizer with learning rate
0.0002, L2 weight regularization 0.0001, dropout rate 0.1, and a multi-
step learning rate decay policy with decay rate 0.3 and decay steps at
the epochs 30, 60, 90, 120. We found the optimal reconstruction loss
weight to be 1.

4.5.d Implementation Details.

All methods were re-implemented in Tensorflow 2.0. We payed at-
tention to all the details reported in each paper and we run all
experiments for each method multiple times to account for stochastic-
ity, i.e. 5 times for classification and 3 times for segmentation. When
an implementation was publicly available, we relied on it. This is the
case for DUQ1, SNGP2 and DUE3.

SNGP. We follow the publicly available implementation of SNGP,
which, compared to the implementation described in the original
paper, proposes to further reduce the computational overhead of
the GP approximation by replacing the Monte-Carlo averaging with
the mean-field approximation [157]. This is especially relevant in
large-scale tasks like semantic segmentation, were it is important to
reduce the computational overload.

4.5.d.1 Image Classification

DUE. Note that only DUE uses a SN approximation also for the batch
normalization layer. All other methods only restrict the Lipschitz
constant of convolutional and fully connected layers.

1 https://github.com/y0ast/deterministic-uncertainty-quantification

2 https://github.com/google/uncertainty-baselines/blob/master/baselines/

imagenet/sngp.py

3 https://github.com/y0ast/DUE

https://github.com/y0ast/deterministic-uncertainty-quantification
https://github.com/google/uncertainty-baselines/blob/master/baselines/imagenet/sngp.py
https://github.com/google/uncertainty-baselines/blob/master/baselines/imagenet/sngp.py
https://github.com/y0ast/DUE

4.5 appendices 79

MIR only differs from regular softmax models in its decoder
module used for the reconstruction regularization loss [20]. When
training MLP architectures the decoder is comprised of two fully-
connected layer. The first has a ReLU activation function and 200

output neruons. The second has a linear activation function and its
output dimensionality equals that of the models’ input data. When
training convolutional neural networks the decoder is comprised of
four blocks of transpose convolutions, batch normalization layers and
ReLU activation functions that gradually upscale the hidden repre-
sentations to the dimensionality of the input data. These four blocks
are followed by a 1x1 convolution with linear activation function.

4.5.d.2 Semantic Segmentation

MIR. Similar to image classification, MIR only differs from regular
segmentation models in its decoder module used for the reconstruc-
tion regularization loss [20]. The decoder module is comprised of a
single point-wise feed forward layer that maps the hidden represen-
tations z ∈ RWz×Hz×Cz to z ∈ RWz×Hz×3. Subsequently, the result is
bilinearly upsampled to the image resolution on which we compute
the reconstruction loss.

4.5.d.3 Uncertainty Estimation

We provide details on the estimation of uncertainty for the baseline
methods. For details on the uncertainty derivation in DUMs, please
refer to Section 4.2 of the main paper or to the original paper of each
amalysed method.

Softmax. In case of the softmax baseline we estimate uncertainty
using the entropy of the predictive distribution parameterized by the
neural network. Given an input x the entropy H is given by H(y|x) =
∑−p(y|x) log(p(y|x)) where p(y|x) are the softmax probabilities.

MC dropout and deep ensembles. We estimate epistemic uncer-
tainty according to Eq. 1.1.

4.5 appendices 80

4.5.d.4 Uncertainty Estimation for Semantic Segmentation

We average pixel-level uncertainties under the assumption that all
pixels are represented by i.i.d. variables.

Uncertainty. In our experiments on continuous distributional shifts
we want to estimate pixel-level uncertainty for the output map.

MIR estimates epistemic uncertainty using the likelihood of hidden
representations z ∈ RWz×Hz×Cz . Since z is high-dimensional in our
experiments, we assume that it factorizes along Wz and Hz and
is translation invariant. Formally, p(z) = ∏Wz

i ∏Hz
j pθ(zij) where

zij ∈ RWz×Hz and θ is shared across Wz and Hz.
We parameterize pθ with a GMM with n = 10 components where

each component has a full covariance matrix. We fit the GMM on
100000 hidden representations (zij ∈ RCz) randomly picked from
the training dataset post-training. Since Cz = 1024 is still high-
dimensional, we first apply PCA to reduce its dimensionality to
32.

In the dilated resnet architecture used for semantic segmentation
the latent representation z is passed through a point-wise feedfor-
ward layer f : RWz×Hz×Cz 7→ RWz×Hz×3 and, subsequently, bilinearly
upsampled to image resolution (RW×H×K) where K is the number of
classes. We could estimate the global, i.e.image-level, uncertainty of
an input, by providing the negative log-likelihood of the factorizing
distribution. However, in order to also obtain pixel-wise uncertainties
using MIR, we first compute the negative log-likelihood (i.e.epistemic
uncertainty) associated with each latent representation zij. Then, we
bilinearly upsample the negative log-likelihoods and use the result
as proxy for pixel-wise epistemic uncertainty. If we wanted to obtain
a global, i.e.image-level, uncertainty we could average pixel-level
uncertainties.

4.5.e Dataset

To benchmark our model on data with realistically and continuously
changing environment, we collect a synthetic dataset for semantic

4.5 appendices 81

segmentation. We use the CARLA Simulator [145] for rendering the
images and segmentation masks. The classes definition is aligned
with the CityScape dataset [151]. In order to obtain a fair comparison,
all the OOD data are sampled with the same trajectory and the
environmental objects, except for the time-of-the-day or weather
parameters.

in-domain data The data is collected from 4 towns in CARLA.
We produce 32 sequences from each town. The distribution of the
vehicles and pedestrians are randomly generated for each sequence.
Every sequence has has 500 frames with a sampling rate of 10 FPS.
From them we randomly sample the training and validation set.

out-of-domain data Here, we consider the time-of-the-day
and the rain strength as the parameters for the continuous changing
environment. In practice, these two parameters have major influence
for autonomous driving tasks.

The change of the time-of-the-day is illustrated in Fig. 4.7 (first
and second row). The time-of-the-day is parametrized by the Sun’s
altitude angle, where 90◦ means the mid-day and the 0◦ means the
dusk or dawn. Here, we produce samples with the altitude angle
changes from 90◦ to 15◦ by step of 5◦, and 15◦ to −5◦ by step of 1◦

where the environment changes shapely. From these examples, we
can confirm that the change of time-of-the-day leads to the major
change in the lightness, color and visibility of the sky, roads and the
buildings nearby. The effect of rain strength is demonstrated in Fig.
4.7 (bottom). Here the cloudiness and, ground wetness and ground
reflection are the main changing parameters.

4.5 appendices 82

0.55
0.96

0.98
D

ro
po

ut
-

A
C

C (a)

0.92 0.94 0.96

(b)

0.92 0.94

(c)

0.2

0.4

0.55 0.6

0.96

0.98

D
U

Q
-

A
C

C

0.88 0.9 0.93 0.94 0.95
0

0.2

0.4

0.58 0.6 0.62

0.96

0.98

SN
G

P
-

A
C

C

0.92 0.94 0.94 0.96

2
4
6
8

0.35 0.4
0.97

0.98

0.99

D
D

U
-

A
C

C

0.7 0.8 0.7 0.75

2
4
6
8

0.6

0.98

rAULC

M
IR

-
A

C
C

0.9 0.95
AUROC

0.95
AUROC

0
20
40
60
80

100

Figure 4.3: Trained on MNIST. Vertical axis: Test accuracy. (a) depicts cal-
ibration (MNIST - Rotation), (b) OOD detection performance
on FashionMNIST and (c) OOD detection performance on
Omniglot. Horizontal axis: rAULC (left), AUROC against
FashionMNIST (center) and Omniglot (right) for Dropout
(1st row), DUQ (2nd row), SNGP (3rd row), DDU (4th row)
and MIR (5th row) using different regularization strength.
For SNGP a larger hyperparameter corresponds to less reg-
ularization. For Dropout and MIR we observe a correlation
between regularization strength and performance.

4.5 appendices 83

0.4 0.45

0.88

D
ro

po
ut

(a)

0.9 0.95

(b)

0.9 0.95

(c)

0.2

0.4

0.38 0.4 0.42

0.86

0.88

D
U

Q

0.94 0.95 0.96 0.93 0.94 0.95
0

0.2

0.4

0.35 0.4

0.8

SN
G

P

0.88 0.9 0.9 0.92

2
4
6
8

0.4 0.45 0.5

0.86

0.88

rAULC

M
IR

0.96 0.98 1
AUROC

0.96 0.98
AUROC

0
20
40
60
80

100

Figure 4.4: Trained on FashionMNIST. Vertical axis: Test accuracy. (a)
depicts calibration (FashionMNIST - Rotation), (b) OOD de-
tection performance on MNIST and (c) OOD detection perfor-
mance on Omniglot. Horizontal axis: rAULC (left), AUROC
against MNIST (center) and Omniglot (right) for Dropout (1st
row), DUQ (2nd row), SNGP (3rd row) and MIR (4th row)
using different regularization strength. For SNGP a larger hy-
perparameter corresponds to less regularization. For Dropout
and MIR we observe a correlation between regularization
strength and performance.

4.5 appendices 84

Input / GT Prediction Error Uncertainty

So
ft

m
ax

D
ro

po
ut

SN
G

P
M

IR
So

ft
m

ax
D

ro
po

ut
SN

G
P

M
IR

Figure 4.5: Qualitative comparison of uncertainty from Softmax, MC
Dropout, SNGP and MIR under minimal time-of-the-day
distribution shift (i.e. Azimuth angle of the sun = 85◦). We
show the input image (Input) and the ground truth mask (GT),
and we report for each method the predicted segmentation
mask (Prediction), the error mask (Error) and the uncertainty
mask (Uncertainty).

4.5 appendices 85

Input / GT Prediction Error Uncertainty

So
ft

m
ax

D
ro

po
ut

SN
G

P
M

IR
So

ft
m

ax
D

ro
po

ut
SN

G
P

M
IR

Figure 4.6: Qualitative comparison of uncertainty from Softmax, MC
Dropout, SNGP and MIR under maximal time-of-the-day
distribution shift (i.e. Azimuth angle of the sun = −5◦). We
show the input image (Input) and the ground truth mask (GT),
and we report for each method the predicted segmentation
mask (Prediction), the error mask (Error) and the uncertainty
mask (Uncertainty).

4.5 appendices 86

(a) Midday (90◦) (b) Afternoon
(45◦)

(c) Afternoon
(15◦)

(d) Evening (10◦)

(e) Dusk (2◦) (f) Sunset (0◦) (g) Sunset (−2◦) (h) Night (≤ −5◦)

(i) Clear (j) Cloudy (k) Small rain (l) Heavy rain

Figure 4.7: Changing of the time-of-the-day and the weather

5
M A N I F L O W : I M P L I C I T LY R E P R E S E N T I N G
M A N I F O L D S W I T H N O R M A L I Z I N G F L O W S

Normalizing Flows (NFs) are flexible explicit generative models that
have been shown to accurately model complex real-world data distri-
butions. However, their invertibility constraint imposes limitations
on data distributions that reside on lower dimensional manifolds em-
bedded in higher dimensional space. Practically, this shortcoming is
often bypassed by adding noise to the data which impacts the quality
of the generated samples. In contrast to prior work, we approach this
problem by generating samples from the original data distribution
given full knowledge about the perturbed distribution and the noise
model. To this end, we establish that NFs trained on perturbed data
implicitly represent the manifold in regions of maximum likelihood.
Then, we propose an optimization objective that recovers the most
likely point on the manifold given a sample from the perturbed dis-
tribution. Finally, we focus on 3D point clouds for which we utilize
the explicit nature of NFs, i.e. surface normals extracted from the
gradient of the log-likelihood and the log-likelihood itself, to apply
Poisson surface reconstruction to refine generated point sets.

5.1 introduction

The goal of generative modeling is to grasp the fundamental laws
governing a data distribution in order to autonomously create alterna-
tive realizations. As such, it represents a core element of intelligence
and, thus, also machine learning research. Beyond fundamental re-
search, recent advances in generative modeling [28, 78, 83, 84, 158]
have lead to a variety of real-world applications [159–161]. Existing
generative models can be subdivided into implicit and explicit mod-
els. Both types aim to generate novel realizations consistent with

87

5.1 introduction 88

GT NF GT + Noise NF NF + LLM

U
ni

fo
rm

N
on

-
U

ni
fo

rm

Figure 5.1: In this toy example, we learn a distribution, both uniform
(GT) and non-uniform (GT + Noise), that exists on a sphere
using a NF. Training a vanilla RealNVP [28] on uncorrupted
data fails (left). The NF is able to learn the noise-perturbed
distribution. Applying our proposed log-likelihood maximiza-
tion (LLM) according to Eq. 5.3, we are able to recover the
original distribution - in the uniform as well as non-uniform
scenario. We also visualize the direction of the gradients of
the log-likelihood. We observe that they are perpendicular to
the manifold in both cases.

prior experience. However, unlike their implicit counterparts, explicit
models can also attach a likelihood to new observations. This directly
gives rise to more applications, such as anomaly detection [159].
Among explicit generative models, NFs [28] have recently emerged
as a family of parametric models of exceptional flexibility. Based on
invertible NNs, they allow modeling high-dimensional data while
maintaining the advantage of explicit likelihood evaluation [30, 162,
163] and have been successfully applied in a variety of contexts -
e.g. image super-resolution [160], modeling 3D point clouds [31] and
physical simulation [164].

Despite recent successes, NFs still possess a fundamental draw-
back rooted in their core idea - their invertibility. Real-world data
often resides on a lower dimensional manifold embedded in higher

5.1 introduction 89

dimensional space. While apparent for surfaces of 3D shapes, this
also holds for other data modalities, e.g. images. NFs rely on in-
vertible NNs to quantify the likelihood of data instances and are
trained by directly maximizing the likelihood of the data. Since a
lower dimensional manifold has no volume, NFs can predict arbi-
trarily large density values in such cases and their training objective
becomes ill-conditioned on data distributions that lie on manifolds.
This well-known problem [91, 93] is typically tackled by artificially
increasing the dimensionality of the data distribution. Practically, this
is achieved by adding noise to the data [30–32]. While this makes
the optimization of NFs feasible, it produces the undesirable side
effect of reduced quality of generated data. Most prior works tack-
ling this problem make strong assumptions about the underlying
manifold [91–94, 96] - i.e. regarding its structure or dimensionality.
However, such assumptions are typically impractical in the case of
real-world applications. Notably, SoftFlow [95] proposed a practical
framework for learning distributions on lower dimensional manifolds
using NFs and evaluated its benefit on 3D point clouds.

This work approaches this problem from a novel perspective. Given
a NF trained on a data distribution with added noise, we generate
samples from the original distribution which resides on the lower di-
mensional manifold. We achieve this by recognizing that the regions
of maximum likelihood locally present an implicit representation
of the manifold if the added noise is sufficiently small. Using this
observation, we propose an optimization objective that recovers the
most likely point on the manifold, given a sample from the distri-
bution with added noise. We show that our approach consistently
improves performance when modeling 3D point clouds as well as
images. Furthermore, we leverage the benefits of an explicit gener-
ative model to derive an approach that improves our method and
reduces the overhead of test time optimization for the specific case of
3D point clouds. To this end, we use the normal direction extracted
from the gradient of the log-likelihood and log-likelihood itself to
perform Poisson surface reconstruction [165] to efficiently refine the
generated 3D point clouds.

5.2 method 90

5.2 method

This section presents a new approach to sample from distributions
that reside on manifolds using NFs. One can regard those as delta
distributions in a higher dimensional space. We first revisit NFs and
discuss their challenges (Sec. 5.2.1). We then demonstrate how NFs
implicitly represent manifolds and introduce a general framework
for sampling from this implicit representation (Sec. 5.2.2)). Finally,
we propose an efficient algorithm based on Poisson surface recon-
struction [80] for 3D point clouds (Sec. 5.2.3).

Therefore, let Ω denote a m-dimensional compact manifold em-
bedded in n-dimensional Euclidean space, Ω ∈ Rn where m < n.
Capital letters X refer to random variables with their corresponding
probability density PX and lower case letters refer to their realizations
x ∼ PX(x).

5.2.1 The Curse of Invertibility - Normalizing Flows on Manifolds

NFs are a family of flexible parametric models for estimating proba-
bility distributions based on invertible NNs. Consider an invertible
transformation Fθ : Rn → Rn with parameters θ - parameterized by
a NN. In order to learn a probability distribution PX(x) with x ∈ Rn,
NFs parameterize the latter using the change of variable formula

PX(x) = PY(F−1
θ (x))det

∣∣∣JF−1
θ
(x)

∣∣∣
where JF−1

θ
(x) is the Jacobian of F−1

θ at x and Y is a random variable
with known parametric distribution PY. The parameters θ are learned
by maximizing the log-likelihood:

log(PX(x)) = log(PY(F−1
θ (x)))

+ log
(

det
∣∣∣JF−1

θ
(x)

∣∣∣) (5.1)

From Eq. 5.1 we observe the main challenge of implementing NFs is
the design of invertible NN layers allowing to evaluate the logarithm
of their Jacobian determinant efficiently.

5.2 method 91

Consider a random variable S that exists on a m-dimensional
manifold Ω which is distributed according to PS(x) = 0 ∀x /∈ Ω.
Assuming PY(x) has full support in Rn, Eq. 5.1 yields an ill-posed op-
timization problem since log

(
det

∣∣∣JF−1
θ
(x)

∣∣∣) becomes infinitely large
when squeezing Rn in its entirety onto Ω. Likewise, choosing PY(x)
without full support in Rn renders the optimization problem equally
ill-posed. The initial F−1

θ is required to be an injective transformation
from Ω and the support of Y. Otherwise the first term in Eq. 5.1,
log(PY(F−1

θ (x))), would tend to −∞. This can also be observed in
the toy example depicted in Fig. 5.1 where the vanilla NF is not able
to successfully learn the distribution which lies on the 1-sphere.

In practice these optimization difficulties are bypassed by adding
noise to S [30–32, 95]. We refer to this as inflating the distribution
PS(x). Formally, this corresponds to convolving PS with a noise
distribution PN :

PX(x) =
∫

Rn
PN(x− s)PS(s)ds (5.2)

A common choice for PN is the Gaussian distribution. Learning the
inflated distribution PX instead of PS stabilizes training with Eq. 5.1.
However, it inevitably leads to a loss of information about S since the
learned distribution PX deviates from the distribution of interest PS.

5.2.2 Sampling from the Implicit Manifold Representation

The goal of this work is to generate samples from PS given knowl-
edge of PX and PN . We achieve this by choosing the form of PN such
that it allows us to generate samples from PS on S given samples
from PX. We note that this is an ill-posed problem for general PN . We
first assume that S is uniformly distributed on Ω. Further, we ensure
that PN is unimodal and zero-centered. We achieve this by construc-
tion, e.g. by choosing PN = N (x; 0, Σ). This allows us to identify the
maximum of PX as an implicit representation of S. Subsequently, we here
set PN to be a n-dimensional Gaussian - PN(x) = N (x; 0, Σ) with

5.2 method 92

Σ = σ2I. Given this insight, our primary concern is subsequently to
develop an approach to project a sample x ∼ PX(x) back to S.

Naturally, the quality of this representation deteriorates for larger
noise magnitudes σ. In order to represent S well, the noise magnitude
σ needs to be sufficiently small. In particular, consider the typical
length scale l of the manifold S. We define l as the maximum side
length of the m-dimensional hypercube that approximates S well
everywhere locally. In this case, the gradient of the log-likelihood
only has a significant component that is perpendicular to Ω since
PS is uniformly distributed on Ω. This allows us to decode S locally
for a given point sampled from PX by following its gradient of the
log-likelihood to its maximum.

Thus, assuming a uniformly distributed S and that Fθ sufficiently
well estimates PX, we can sample s ∼ PS(x) on S by: 1.) drawing
a sample x′ ∼ PX(x) and 2.) solving the following optimization
problem that equates to finding the maximum of PX(x) closest to x:

s = argmin
x∈Rn

(
||x− x′||22 − log(PX(x))

)
(5.3)

Note that even uniformly distributed PS are practically relevant as
they are often assumed for point clouds of 3D shapes. However, it
is also interesting to consider the case of non-uniformly distributed
PS. For such PS, applying Eq. 5.3 would still generate samples that
lie on Ω. However, the resulting distribution may not resemble PS
since for non-uniform PS we do not have ∇PX(x) = 0 everywhere on
S. Nevertheless, for sufficiently smooth PS and small σ Eq. 5.3 still
yields a good estimate of PS. Specifically, we consider σ such that
σ≪ 1

max
s∈Ω

(|∇ΩPS(x)|) , where ∇Ω denotes the derivative along Ω. In this

case we can still approximate PS locally as a uniform distribution on
an m-dimensional hypercube and, thus, obtain samples from PS.

We optimize Eq. 5.3 by minimizing the objective:

L(x) = − log(PX(x)) + λ||x− x′||22 (5.4)

λ denotes a hyperparameter that is set by optimizing performance

on the validation set. Interestingly, dλ∥x−x′∥2
2

dx = −d log(N (x;x′, 1
λ I))

dx + C

5.2 method 93

with C constant in x. This is the kernel used to inflate PS. Thus,
from a Bayesian perspective we can also interpret it as the negative
logarithm of a prior distribution on the location of the most likely
point s on Ω that generated x′. In this light, PX(x) resembles the
likelihood function learned from the data and we understand the
optimum of Eq. 5.4 as the MAP estimate of s given x′. Subsequently,
we refer to Log-Likelihood Maximization according to Eq. 5.3 as
LLM.

Choice of λ. We implement λ as a global hyperparameter which
is optimized using the validation set. However, a locally varying
λ = λ(x) may improve upon this restrictive assumption. While we
find empirically that a global λ already yields significant advantages,
we consider a locally varying λ as a promising future research avenue.

5.2.3 An Adjusted Algorithm for 3D Point Clouds

While Eq. 5.4 gives us a practical and general framework for generat-
ing samples from PS using PX, it can be computationally demanding
since it requires multiple gradient updates. This is particularly chal-
lenging when using large neural networks to parameterize PX(x) as it
is often the case for real-world data distributions such as images [30,
162, 163] and 3D point clouds [29, 31, 32].

We here view 3D point clouds as distributions on 2D manifolds
in R3 and derive an approach that circumvents multiple gradient
updates for point clouds. In contrast to other data modalities such
as images, generating a 3D point cloud requires sampling a large
set of points which accurately represents the entire distribution at
once. Thus, we can generate samples on the manifold given global
information about the entire set of points. Hereafter, we focus on the
case where Ω refers to a 2D manifold embedded in R3 and PS refers
to a uniform distribution on Ω.

We consider the gradient of the log-likelihood parameterized by
the NF ∇ log(PX(x)). Given sufficiently small σ, ∇ log(PX(x)) is par-
allel to a surface normal on Ω for uniform PS in the vicinity of Ω.

5.3 experiments 94

We illustrate this in Fig. 5.1. Such normal vectors can be used to fuel
off-the-shelf surface reconstruction algorithms such as Poisson sur-
face reconstruction [165]. Poisson surface reconstruction uses point
sets and oriented surface normals to construct an implicit function
of a watertight 3D shape. The surface can then be reconstructed by
locating the iso-surface of the implicit function. While we here work
with Poisson surface reconstruction, our approach naturally trans-
fers to any surface reconstruction algorithm that relies on surface
normals [166]. Subsequently, we term this this approach LL-Poisson.

The proposed algorithm is depicted in Alg. 2. Given a set of K1

points X sampled from PX, we apply the following routine. We first
compute the gradient ∇ log(PX(x)) at each point and normalize it to
unit length. Then, we create consistent normals by propagating the
orientation of these vectors using a graph created by considering the
k nearest neighbors of each point. These K vector-point pairs are then
used to obtain a mesh representing Ω. We refine this mesh using
log(PX(x)) by removing vertices that have lower likelihood than the
α-percentile of the original set of points X . The latter is particularly
crucial for removing vertices that reside far away from Ω and when
dealing with non-watertight 3D shapes since Poisson surface recon-
struction generates watertight meshes. Finally, we uniformly sample
K2 points from the resulting mesh.

5.3 experiments

We first present a toy examples to foster an intuitive understanding
of the effect of optimizing Eq. 5.3 (Sec. 5.1). Then, we compare Mani-
Flow based on log-likelihood maximization (LLM) and LL-Poisson
with SoftFlow [95] (Sec. 5.3.2.1) and other point cloud representa-
tions (Sec. 5.3.2.2) for point cloud autoencoding on ShapeNet [167].
Finally, we demonstrate that ManiFlow scales to high-dimensional
data distributions on image generation (Sec. 5.3.4).

5.3 experiments 95

Algorithm 2 Generating Samples on Ω
Require: Fθ , initial point set X , k, K2, α

G← ∇ log(PX(X))

G← normalize(G) ▷ Normalized to unit length
G← propagate_orientation(G, k) ▷ Propagates orientation
according to k nearest neighbors
mesh← poisson_reconstruction(X , G)

percα ← percentile(α, PX(X))

mesh← remove_vertices(mesh, percα) ▷ Remove unlikely vertices
XΩ ← sample_uniformly(mesh, K2) ▷ Generate K2 uniform
samples from the mesh return XΩ

5.3.1 Synthetic Data

We perform experiments on artificial distributions in 2D. We consider
two cases: a uniform and a non-uniform distribution on a 1-sphere.
We train a RealNVP [28] with 5 coupling layers for 5000 epochs
on both distributions. More training details can be found in the
supplement.

The distributions and results are depicted in Fig. 5.1. As expected
we observe that a standard NF directly trained on the clean data fails
to generate samples that match the target distribution. We further
verify that the problem can be mitigated by adding Gaussian noise to
the data at training time. We find that performing post-training LLM
according to Eq. 5.3 allows us to sample from the original manifold
on the 1-sphere in accordance with the ground truth distribution. Fig.
5.1 also visualizes the direction of the gradients of the log-likelihood.
The gradients are approximately perpendicular to the 1-sphere in
the vicinity of the manifold in case of the uniform as well as the non-
uniform distribution. The direction only starts to deviate in regions
of very low probability density. This observation underlines our
discussion in Sec. 5.2.2 and motivates us to use NFs in combination
with Poisson surface reconstruction (see Sec. 5.2.3).

5.3 experiments 96

GT GT + Noise NF
LLM

λ = 0.0
LLM

λ = 0.2

Figure 5.2: In this experiment, we learn a non-uniform distribution (GT,
GT + Noise) that exists on a 1D sine curve in 2D using a
NF. We demonstrate the importance of the regularization
parameter λ. In absence of regularization (λ = 0) LLM is
not able to recover the correct distribution on the sine curve.
However, using λ = 0.2 recovers the correct distribution.

Impact of λ. We provide an additional experiment on artificial data
showing the importance of setting λ > 0 in Eq. 5.3. To this end,
we train a NF on a non-uniform distribution on a 1D sine curve
embedded in 2D space. After training, we recover the manifold using
ManiFlow - LLM using λ = 0.0 and λ = 0.2. The results are in Fig.
5.2. We observe that λ = 0.0 fails to recover the true distribution on
the manifold since generated points collapse towards global peaks of
the distribution parameterized by the NF.

5.3.2 3D Point Cloud Autoencoding

3D point clouds are a widespread data modality. Since they are
often exclusively comprised of surface points, they denote an impor-
tant testbed for methods that generate data on lower dimensional
manifolds. We evaluate on point cloud autoencoding since we are
primarily interested in the ability of ManiFlow to represent 3D point
clouds.
Dataset. We evaluate on the ShapeNet dataset [167]. We use the
categories: airplanes, cars, and chairs. We train on the presampled
point clouds provided by PointFlow [31], which are also used by Soft-

5.3 experiments 97

GT DPM [85] NF NFLLM NFLL-Poisson

Figure 5.3: Qualitative comparison of the ground truth (GT), DPM [85],
a RealNVP (NF) and a RealNVP with LLM/LL-Poisson
(NFLLM/NFLL-Poisson). We observe that ManiFlow paired with
LL-Poisson yields smoother surfaces.

Flow [95], DPM [85] and ShapeGF [80]. Each shape consists of 15000

points which we randomly subsample to 2048 points during train-
ing and test time. Prior to subsampling each shape is individually
normalized such that it has zero mean and unit variance.
Evaluation. At test time we decode 2048 points from the trained
models and compare them to 2048 points uniformly sampled from
the ground truth. We repeat each evaluation 5 times and report
the mean result. We use three metrics for measuring the quality of
reconstructed point clouds. We follow prior work and compute the
Chamfer Distance (CD) and Earth Mover Distance (EMD) [77]. If not
stated otherwise, we follow prior work [31] and report results on CD
multiplied by 104 and results on EMD by 102. We further report the
F1-score (F1) [168]. We use a threshold of τ = 10−4 for the F1-score.
We also report the performance of an oracle as an upper bound to
the performance. The oracle performance is computed by comparing
two independently sampled subsets of the ground truth point cloud.

5.3 experiments 98

Encoder. In an autoencoder an encoder model computes a latent
representation of a point cloud that, subsequently, a decoder model
uses to reconstruct the original point cloud. We follow PointFlow [31]
and parameterize the encoder with a PointNet [169], which produces
permutation-invariant latent representations. Specifically, we use
convolutions with filter sizes of 128, 256 and 512 followed by a
max pooling layer. The resulting 512-dimensional representation
is transformed into a 256-dimensional latent representation using a
single fully-connected layer. As a decoder model we use a conditional
NF. In particular, when comparing with SoftFlow [95], we follow
their experimental setup and use a NF based on autoregressive layers
and invertible 1 × 1 convolutions (Sec. 5.3.2.1). When comparing
against methods for modeling point clouds (Sec. 5.3.2.2), we adopt a
RealNVP similar to the one used in DPF [32]. The RealNVP consists
of 64 coupling layers where each coupling layer consists of two
fully-connected layers with a hidden dimensionality of 64. The first
fully-connected layer is followed by a Batch Normalization layer
and the swish activation function [170]. Further details are in the
supplement.
Optimization. In Sec. 5.3.2.1 we precisely follow the setup used
by SoftFlow [95]. We only deviate from it when training a basic
NF in absence of the SoftFlow framework. In this case we simply
use Gaussian noise of a fixed magnitude during training instead of
randomly sampling the noise variance from a range of values at each
iteration. We set the standard deviation of the noise to 0.02. In Sec.
5.3.2.2 we train the autoencoder for 1500 epochs using a batch size
of 128 using the Adam optimizer [116]. We set the initial learning
rate to 6.4× 10−4 and divide it by 4 after 1200 and 1400 steps. We
exponentially decay the standard deviation of the Gaussian noise
added to the data from 0.25 to 0.02 between the epochs 100 and 1200.
Each model is optimized on 4 V100 GPUs. For more details we refer
to the supplement.
ManiFlow - LLM. When performing LLM (Eq. 5.3) we use the Adam
optimizer and a fixed learning rate of 10−3. We found 25 gradient
updates to be sufficient. We choose a regularization parameter λ in

5.3 experiments 99

Method CD↓ EMD↓ F1 ↑

A
ir

pl
an

e

NF 1.262 2.58 84.22

NF + SF 1.179 2.69 85.63

NF + SF + LLM 1.161 2.68 85.96

NF + LLM 1.151 2.56 86.25

NF + LL-Poisson 1.132 3.06 87.26

C
ar

NF 6.978 5.18 22.36

NF + SF 6.876 5.23 23.19

NF + SF + LLM 6.850 5.22 23.44

NF + LLM 6.887 5.18 24.05

NF + LL-Poisson 6.830 5.01 23.73

C
ha

ir

NF 11.76 6.86 19.77

NF + SF 10.84 6.43 20.86

NF + SF + LLM 10.83 6.43 21.13

NF + LLM 11.57 6.78 20.85

NF + LL-Poisson 11.60 6.69 21.91

Table 5.1: Quantitative comparison of ManiFlow on point cloud autoen-
coding with SoftFlow [95] (SF) on the categories airplane, car
and chair of ShapeNet. We train a vanilla NF trained on noisy
data with and without the SoftFlow framework. Post-training
we apply either log-likelihood maximization (LLM) (Eq. 5.3)
or Poisson surface reconstruction (LL-Poisson). ManiFlow con-
sistently outperforms SoftFlow and is even able to improve
SoftFlow. CD is multiplied by 104 and EMD by 104.

(5.4) such that performance on validation set is optimized. Note that
λ is sensitive to the expressiveness of the NF. More expressive NF
lead to larger log-likelihoods, which requires larger λ. In Sec. 5.3.2.1
we use λ = 2.0 and in Sec. 5.3.2.2 we use λ = 4000.

5.3 experiments 100

ManiFlow - LL-Poisson. We first create an initial set of K1=10000

points using the NF and compute the gradient of the log-likelihood
for each of them. Then, we ensure consistent orientation of the re-
sulting vectors by propagating their orientation based on k = 20
nearest neighbors. We perform Poisson surface reconstruction using
maximum depth of 9 provided by Open3D [171]. Finally, we set
α = 0.05 and sample K2=2048 points uniformly from the resulting
mesh.

5.3.2.1 Comparison with SoftFlow

Here we compare ManiFlow with SoftFlow [95]. We report autoen-
coding performance of NF with and without the SoftFlow framework
and apply ManiFlow based on LLM/LL-Poisson to the NF in absence
of SoftFlow. We also perform LLM on the NF trained with SoftFlow.

The results are in Tab. 5.1. We make several observations. ManiFlow
LLM/LL-Poisson consistently improves reconstruction performance.
Secondly, despite the absence of the SoftFlow framework at training
time, a vanilla NF is able to outperform a NF trained with SoftFlow
when applying ManiFlow. Further, the performance of SoftFlow
can be reliably improved when applying LLM to it, indicating that
SoftFlow can be enhanced by applying ManiFlow. Lastly, we note
that LL-Poisson tends to outperform LLM despite of being twice as
fast. This demonstrates that refining the entire point set as a whole
based on the NF’s log-likelihood is superior over projecting each
point individually.

5.3.2.2 Further Comparison on Autoencoding.

We compare ManiFlow with recent methods proposed for represent-
ing point clouds - AtlasNet [79], PointFlow [31], ShapeGF [80] and
DPM [85]. The results are in Tab. 5.2. ManiFlow LLM/LL-Poisson
outperforms standard NFs, which is consistent with previous results.
Further, NFs equipped with ManiFlow are able to clearly outperform
AtlasNet [79] which was not possible before [29, 32] while allowing

5.3 experiments 101

Method CD↓ EMD↓ F1 ↑

A
ir

pl
an

e

AtlasNet - Sphere [79] 1.178 3.36 84.66

AtlasNet - Square [79] 1.211 3.42 84.30

PointFlow [31] 1.213 2.76 85.31

ShapeGF [80] 0.949 2.49 89.14

DPM [85] 0.947 2.19 89.27
RealNVPs 1.139 2.77 85.69

RealNVPs + LLM 1.063 2.76 86.98

RealNVPs + Poisson 1.045 2.86 88.13

Oracle 0.722 1.95 92.31

C
ar

AtlasNet - Sphere [79] 6.231 5.09 25.96

AtlasNet - Square [79] 6.221 5.19 25.79

PointFlow [31] 6.540 5.16 24.02

ShapeGF [80] 5.508 4.23 28.91
DPM [85] 5.462 3.96 28.77

RealNVPs 6.134 4.89 24.96

RealNVPs + LLM 5.976 4.90 26.99

RealNVPs + Poisson 5.928 4.30 26.44

Oracle 3.368 3.04 49.76

C
ha

ir

AtlasNet - Sphere [79] 7.643 6.30 27.51

AtlasNet - Square [79] 7.690 6.74 27.13

PointFlow [31] 10.094 6.46 21.33

ShapeGF [80] 6.297 5.03 32.68

DPM [85] 6.293 4.27 32.59
RealNVPs 8.071 5.31 25.59

RealNVPs + LLM 8.003 5.34 27.09

RealNVPs + Poisson 8.013 5.04 27.34

Oracle 2.762 3.07 56.02

Table 5.2: Quantitative comparison of autoencoding performance with
AtlasNet [79], PointFlow [31], ShapeGF [80] and DPM [85]
on airplane/chair/car category of ShapeNet. ManiFlow reli-
ably improves performance and enables NFs to outperform
AtlasNet. Poisson slightly outperforms LLM. ManiFlow con-
sistently outperforms SoftFlow and is even able to enhance the
performance of SoftFlow. CD is multiplied by 104 and EMD
by 104.

5.3 experiments 102

Poisson CD↓ EMD↓ F1↑

✗ 0.947 2.19 89.27

✓ 0.975 2.99 88.91

Table 5.3: Poisson surface reconstruction on point clouds generated by
DPM [85] on the airplane category. Unlike for NFs, we observe
that the reconstruction quality degrades

Use LL CD↓ EMD↓ F1↑

✗ 1.077 3.01 87.50

✓ 1.045 2.86 88.13

Table 5.4: ManiFlow LL-Poisson with/without the log-likelihood (LL) of
the NF on the airplane category. The reconstruction quality
degrades without LL of the NF

Use LL CD↓ EMD↓ F1↑

✗ 24.256 7.73 41.53

✓ 9.427 6.91 54.83

Table 5.5: ManiFlow LL-Poisson with/without the log-likelihood (LL) of
the NF on sparse point clouds (256 points) of the the airplane
category. The reconstruction quality degrades when not relying
on the LL of the NF more significantly on sparse point clouds

likelihood evaluation. While recent implicit generative models, such
DPM and ShapeGF, demonstrate strong performance, ManiFlow is
able to reduce the gap. Moreover, Fig. 5.3 visualizes reconstructed
point clouds from DPM and ManiFlow. LL-Poisson tends to create
smooth surfaces.

For ManiFlow LL-Poisson, it is important to use large number of
points K1 for obtaining competitive performance. To verify that this
does not equally help other models, we also post-process point clouds
generated by DPM using Poisson surface reconstruction. We apply

5.3 experiments 103

the same hyperparameters as for ManiFlow with LL-Poisson. The
only difference is the inability to evaluate the likelihood of each point.
Therefore, we estimate normals based on Principal Components
Analysis (PCA). We report the result in Tab. 5.3. Although using a
large number of points for creating the mesh, the final autoencoding
performance deteriorates in absence of the ability to evaluate the
log-likelihood.

Similarly, we investigate the impact of using the log-likelihood
provided by the NF when using LL-Poisson. Therefore, we evalu-
ate our model using LL-Poisson and with Poisson surface recon-
struction with normals estimated via PCA on the airplane category
of ShapeNet. The results are reported in Tab. 5.4. LL-Poisson out-
performs the baseline on every metric. We conclude that the log-
likelihood is an important ingredient for LL-Poisson.

Given the importance of the information stored in the log-likelihood,
we are interested in determining whether LL-Poisson is beneficial
when reconstructing a mesh from a sparse point cloud. Therefore,
we set K1=256 and perform again surface reconstruction with and
without information from the log-likelihood. We expect that for a
good mesh uniformly sampled points from it demonstrate good au-
toencoding performance. We show the results in Tab. 5.5. We observe
an even larger performance improvement when using LL-Poisson
over the baseline in the case of sparse point clouds. We conclude that
LL-Poisson can be useful when reconstructing meshes from sparse
point clouds.

5.3.3 Impact of Hyperparameters

We analyse the sensitivity of LLM/LL-Poisson to its hyperparameters.
We perform this anaysis on the task of point cloud autoencoding
and use the RealNVP trained on the airplane category in Sec. 5.3.2.
For LLM we plot the F1-score against the number of epochs used to
optimize Eq. 5.3 and the logarithm of the magnitude of the weight
λ. For LL-Poisson we plot the F1-score against the depth used for

5.3 experiments 104

0 10 20 30 40 50
Epochs

85.8

86.0

86.2

86.4

86.6

86.8

87.0

F1
-S

co
re

(a) F1-Score depending on the
number of epochs used for
ManiFlow-LLM.

2 0 2 4 6 8 10
log()

86.0

86.2

86.4

86.6

86.8

87.0

F1
-S

co
re

(b) F1-Score depending on the on
the logarithm of the weight λ
used for ManiFlow-LLM.

Figure 5.4: Analysis of the sensitivity of ManiFlow-LLM to the number
of epochs (a) and the magnitude of λ (b) on the airplane
category.

LLM MNIST CIFAR10 CelebA

✗ 30.0 72.7 51.7

✓ 21.7 64.7 43.9

Table 5.6: Quantitative evaluation of LLM on image generation. We re-
port the FID score when training a GLOW model [30] on
MNIST/CIFAR10/CelebA with/without LLM. During train-
ing Gaussian noise is added to the images. LLM improves
generation performance

Poisson surface reconstruction and the logarithm of the number of
points K1 sampled prior to surface reconstruction. Fig. 5.4 and Fig.
5.5 depict the results. While there exists an optimal λ, we find that
the other hyperparameters typically lead to saturating performance
given a sufficient magnitude.

5.3 experiments 105

7.0 7.5 8.0 8.5 9.0 9.5 10.0
Depth

87.2

87.4

87.6

87.8
F1

-S
co

re

(a) F1-Score depending on the
depth used in Poisson surface
reconstruction.

6 7 8 9 10
log(K1)

55

60

65

70

75

80

85

F1
-S

co
re

(b) F1-Score depending on the on
the logarithm of the number
of points K1.

Figure 5.5: Analysis of the sensitivity of ManiFlow-LL-Poisson to the
depth used for Poisson surface reconstruction (a) and the
number of points K1 (b) on the airplane category.

5.3.4 Generative Modelling on Images

So far we have conducted experiments low-dimensional data. In the
following we further evaluate ManiFlow based on LLM on image
generation to investigate whether it scales to high-dimensional data
distributions. To this end, we train a GLOW [30] on MNIST [107],
CIFAR10 [109] and CelebA [172]. We train each model for 400 epochs
using a batch size of 256 on MNIST/CIFAR10 and 128 on CelebA.
We use the Adam [116] optimizer and a fixed learning rate of 10−4.
When training NFs on images one typically uses additive uniform
noise [30]. Since uniform noise violates our assumption of unimodal
noise, we replace it with additive Gaussian noise. We choose the
standard deviation of the Gaussian noise such that it has the same
entropy as the uniform distribution used in the original work, i.e.
σ = 0.00756. After training we perform 50 steps of LLM using λ = 0.2
and a learning rate of 10−3. We report the Fréchet Inception Distance
(FID) [173] which is widely used to quantify the perceptual quality
of generated images.

5.4 conclusion 106

Tab. 5.6 shows quantitative results on image generation. We ob-
serve a reliable and clear improvement of the FID-score when apply-
ing ManiFlow. Thus, ManiFlow paired with LLM based on Eq. 5.3
scales to high-dimensional data.

5.4 conclusion

This work introduced ManiFlow - a practical framework for sam-
pling from lower dimensional manifolds using NFs. To this end, we
recognised that regions of maximum likelihood in NFs trained with
sufficiently small noise implicitly represent the underlying manifold.
Thus, given a trained NF we can generate samples on manifold. We
proposed two strategies to achieve this.

Firstly, we introduced a general framework based on maximizing
the log-likelihood using Eq. 5.3 (LLM). ManiFlow based on LLM
is applicable to low-dimensional as well as high-dimensional real
world data distributions. It consistently improves 3D point cloud
reconstruction (Sec. 5.3.2) and image generation (Sec. 5.3.4). In partic-
ular, on 3D point cloud autoencoding we find that post-processing
samples from NFs with ManiFlow LLM performs considerably better
than AtlasNet while being able to evaluate the likelihood. This was
previously not possible [29, 32].

Moreover, we proposed LL-Poisson as a specialized version for 3D
point clouds (Sec. 5.2.3). LL-Poisson utilizes the NF’s log-likelihood
and its normalized gradients to perform Poisson surface recon-
struction. LLM post-processes samples individually. In contrast, LL-
Poisson relocates points also based on local information about adja-
cent points and information about surface normals extracted from
the gradient field. Thus, LL-Poisson outperforms LLM on point cloud
autoencoding (Sec. 5.3.2). We showed that the log-likelihood of the
NF and its gradient improve Poisson surface reconstruction (see Tab.
5.3, Tab. 5.4 and Tab. 5.5). We particularly found that the benefit
the NF’s log-likelihood for LL-Poisson magnifies when operating on

5.4 conclusion 107

sparse point clouds. We conclude that LL-Poisson can also be used
to improve mesh creation from sparse point clouds.

In the realm of 3D shapes, it is also interesting to interpret Man-
iFlow in the light of implicit neural representations (INRs). INRs
represent shapes as the level set of an implicit function parameterized
by a NN and are typically learned as signed distance functions [174].
Similarly, ManiFlow naturally encodes the manifold implicitly in its
regions of maximum likelihood. Practically the main difference re-
mains that the underlying NF in ManiFlow allows direct sampling in
the vicinity of the surface whereas an INR requires many evaluations
far away from the surface.

While ManiFlow already yields strong improvements over stan-
dard NFs, it simultaneously gives rise to interesting future research
avenues. For example, since we have seen that the log-likelihood of
NFs contains geometric information, it is natural to ask whether we
can adjust the training of NFs to improve this property. A result-
ing approach could lead to the intersection of score-matching and
direct likelihood maximization. Furthermore, score matching has
recently demonstrated strong performance on point cloud denois-
ing [175]. Similarly, it worth investigating whether NFs equipped
with ManiFlow are useful for this task. In fact, such an approach
could extend traditional denoising approaches based on kernel den-
sity estimates [176].

5.5 appendices 108

GT DPM [85] NF NFLLM NFLL-Poisson

Figure 5.6: Further qualitative results on the airplane category of the
ground truth (GT), DPM [85], a RealNVP (NF) and a RealNVP
with LLM/LL-Poisson (NFLLM/NFLL-Poisson).

5.5 appendices

In Sec. 5.5.A, Sec. 5.5.B and Sec. 5.5.C, we depict additional qualita-
tive examples of reconstructed point clouds, visualize the meshes ob-
tained using LL-Poisson and show qualitative examples of generated
image. Finally, we provide additional details about the architecture
and optimization procedure used in the experiments in Sec. 5.5.D.

5.5.a Further Visualization of Point Clouds

We provide additional qualitative examples of generated point clouds
in Fig. 5.6, Fig. 5.7 and Fig. 5.8.

5.5 appendices 109

GT DPM [85] NF NFLLM NFLL-Poisson

Figure 5.7: Further qualitative results on the car category of the ground
truth (GT), DPM [85], a RealNVP (NF) and a RealNVP with
LLM/LL-Poisson (NFLLM/NFLL-Poisson).

GT DPM [85] NF NFLLM NFLL-Poisson

Figure 5.8: Further qualitative results on the chair category of the ground
truth (GT), DPM [85], a RealNVP (NF) and a RealNVP with
LLM/LL-Poisson (NFLLM/NFLL-Poisson).

5.5 appendices 110

Figure 5.9: Qualitative examples of meshes created with LL-Poisson on
the categories airplane, car and chair.

5.5.b Visualization of Meshes

Poisson surface reconstruction in LL-Poisson extracts a mesh of the
3D shape from the NF’s log-likelihood. We provide qualitative exam-
ples of these meshes in Fig. 5.9. Note that these meshes correspond
to the point clouds visualized in Fig. 5.6, Fig. 5.7 and Fig. 5.8.

5.5.c Visualization of Generated Images

We provide qualitative examples of applying LLM to a GLOW [30]
pretrained of CelebA [172]. We further visualize the difference be-
tween the images generated by GLOW before and after post-processing
using LLM.

5.5 appendices 111

Glow Glow + LLM Difference

Figure 5.10: Samples from Glow (+LLM) and the corresponding differ-
ence. The difference magnified such that its largest value
is 255 for visualization purpose. The difference resembles
white noise.

5.5.d Experimental Details

5.5.d.1 Architecture of Normalizing Flows

Experiments on Artificial Data. We train a RealNVP [28] comprised
of 5 coupling layers. Each coupling layer is comprised of two linear

5.5 appendices 112

layers with a relu activation function and 128 hidden dimensions
between them. We mask dimensions of the 2D data alternatingly.

Comparison with SoftFlow [95] in Sec. 5.3.2. We apply the architec-
ture proposed in the original work [95]. The decoder NF is comprised
of a sequence of 8 identical modules. This module is depicted in Fig.
5.11a. Here, activation normalization (ActNorm) and invertible 1x1

convolutions are implemented according to GLOW [30]. 1x1 convo-
lutions are enforced to be invertible by parameterizing the kernel
using the LU-decomposition [30]. The invertible autoregressive layer
is implemented according to [177]. In invertible autoregressive layers
scaling and translation of each dimension are calculated autoregres-
sively. Each autoregressive step is parameterized by a separate NN
consisting of of 4 linear layers with tanh activation functions and 256

hidden dimensions.

General experiments on autoencoding in Sec. 5.3.2. Here the decoder
model is implemented as a ReaLNVP [28] consisting of 63 coupling
layers. Such coupling layers are schematically depicted in Fig. 5.11b.
A coupling layer splits the dimensions into two sets and applies
the identity mapping to one set of dimensions. Further, the set of
dimensions, which is mapped by the identity, is used to compute
scaling and translation factors for the other set of dimensions. The
computation of scaling and translation is parameterized by a NN
which consists of 2 linear layers with an intermediate Swish activation
function and 64 hidden dimensions. The conditioning on the latent
shape representation z is implemented by FiLM conditioning [178].

5.5.d.2 Training Details

Artificial Data. We train the RealNVP for 5000 iterations with a batch
size of 128 on randomly drawn samples from the aforementioned
distributions. We use the Adam [116] optimizer and an initial learning
rate of 10−3 which we half after 2500 iterations.

5.5 appendices 113

(a) Basic module of architecture used in comparison with Soft-
Flow [95].

.

(b) Basic module of RealNVP architecture used in general compari-
son on point cloud autoencoding.

Figure 5.11: Architectures used in comparison in Sec. 5.3.2.1 (a) and Sec.
5.3.2. We use N=8 (a) and resp. N=63 (b) blocks.

5.5 appendices 114

Comparison with SoftFlow [95] in Sec. 5.3.2. We train autoencoder
for 15000 epochs using a batch size of 128 and the Adam optimizer
with an initial learning rate of 10−3. We multiply the learning rate
by a factor of 0.24 after 5000 and 10000 epochs. When training a NF
absent of the SoftFlow framework we add noise of the magnitude
0.02 to the data. When training with the SoftFlow framework, we
follow the original implementation [95] and use a maximum noise
standard deviation of 0.075 and a minimum noise standard deviation
of 0.0.

General experiments on autoencoding in Sec. 5.3.2. We train the
RealNVP for 1500 epochs using a batch size of 128 and the Adam
optimizer with an initial learning rate of 6.4× 10−4 which we mul-
tiply with 0.25 after 1200 and 1400 epochs. Additionally, we vary
the magnitude of noise added to the point clouds over the process
of the training. Initially, we train with a Gaussian noise of standard
deviation σ = 0.25 for the first 100 epochs. Then, we exponentially
decay the standard deviation of the noise to σ = 0.02 between epoch
100 and epoch 1200. Afterwards we fix σ = 0.02.

6
C O N C L U S I O N

We subsequently summarize our contributions (see Sec. 6.1) and
discuss promising future research directions (see Sec. 6.2).

6.1 contributions

Uncertainty quantification based on hidden representations. Chap-
ter 3 introduces an approach to quantify the epistemic uncertainty
of a NN based on the distribution of its hidden representations (see
Sec. 3.2.1). We demonstrate that this can yield epistemic uncertainty
efficiently and agnostic of the underlying architecture. Moreover, we
propose a simple approach to regularize hidden representations that
trades OOD detection performance off with predictive performance
(see Sec. 3.3.4).

Deterministic Uncertainty Methods. Chapter 4 provides the first
overview of DUMs (see Sec. 4.2). We demonstrate that the uncertainty
obtained by DUMs is often not well calibrated - especially in the
case of methods relying on explicit generative models trained on the
hidden representations of a NN (see Sec. 4.3.1.1 and 4.3.2.2). Fur-
thermore, we investigate the impact of the regularization strength of
various approaches and observe, surprisingly, that the regularization
strength when enforcing distance-aware representations does not
correlate well with OOD detection performance (see Sec. 4.3.1.3 and
4.5.B.1). Lastly, we also scale DUMs to large dense prediction tasks
(see Sec. 4.3.2)

Improving the perceptual quality of samples from NFs. Chapter 5

introduces an approach to sample from the underlying data manifold
given a NF trained on the data perturbed by noise and knowledge

115

6.2 outlook 116

of the noise itself (see Sec. 5.2.2). We focus on the application to 3D
point clouds but further demonstrate that our method also yields
promising results on images. Moreover, we further propose a refined
version of our method taylored to 3D point clouds based on Poisson
surface reconstruction (see Sec. 5.2.3). Hereby, we show that the
likelihood, and its gradient, learned by the NF benefit Poisson surface
reconstruction from point clouds (see Sec. 5.3.2.2).

6.2 outlook

Regularization of DUMs. Chapter 3 and 4 demonstrate the impor-
tance of regularizing NNs when estimating uncertainty based on
a point estimate of the parameters of a NN. In particular, we note
that both, DDU [21] and MIR [20], estimate epistemic uncertainty of
test data using the log-likelihood of hidden representations under a
GMM trained on representations of the training dataset. They only
differ in their regularization technique. However, MIR demonstrates
significantly stronger calibration (see Tab. 4.3) and mildly better OOD
detection performance (see Tab. 4.4). Thus, the investigation of novel
methods for regularizing DUMs aimed at improving the calibration
denotes a promising future research direction.

Large pretrained NNs. It has recently been shown that very large
NNs pretrained on massive amounts of data are able to predict high
quality uncertainty simply by using the entropy of the predicted
softmax values [179]. In fact, the authors even used such a pretrained
model in combination with SNGP and demonstrated its scaling
behavior. It would be interesting to investigate how such pretraining
impacts calibration on OOD data for various DUMs.

Log-likelihood of NFs. Chapter 5 shows that the likelihood obtained
from NFs can improve Poisson surface reconstruction. It would be
interesting to investigate whether this is also the case for other tasks
which require normals or the removal of outliers. In fact, NFs [89]

6.2 outlook 117

and score matching [175] have been recently successfully applied to
point cloud denoising.

B I B L I O G R A P H Y

1. Gal, Y., Islam, R. & Ghahramani, Z. Deep bayesian active learning
with image data in Proceedings of the 34th International Conference
on Machine Learning-Volume 70 (2017), 1183.

2. Da Silva, F. L., Hernandez-Leal, P., Kartal, B. & Taylor, M. E.
Uncertainty-aware action advising for deep reinforcement learning
agents in Proceedings of the AAAI conference on artificial intelligence
34 (2020), 5792.

3. Lütjens, B., Everett, M. & How, J. P. Safe reinforcement learning
with model uncertainty estimates in 2019 International Conference
on Robotics and Automation (ICRA) (2019), 8662.

4. Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Des-
jardins, G., Rusu, A. A., Milan, K., Quan, J., Ramalho, T.,
Grabska-Barwinska, A., et al. Overcoming catastrophic for-
getting in neural networks. Proceedings of the national academy
of sciences 114, 3521 (2017).

5. Ebrahimi, S., Elhoseiny, M., Darrell, T. & Rohrbach, M.
Uncertainty-guided Continual Learning with Bayesian Neural
Networks in International Conference on Learning Representations
(2019).

6. Blum, H., Sarlin, P.-E., Nieto, J., Siegwart, R. & Cadena, C. The
fishyscapes benchmark: Measuring blind spots in semantic
segmentation. arXiv preprint arXiv:1904.03215 (2019).

7. Der Kiureghian, A. & Ditlevsen, O. Aleatory or epistemic?
Does it matter? Structural safety 31, 105 (2009).

8. Kendall, A. & Gal, Y. What uncertainties do we need in bayesian
deep learning for computer vision? in Advances in neural informa-
tion processing systems (2017), 5574.

118

bibliography 119

9. MacKay, D. J. A practical Bayesian framework for backpropa-
gation networks. Neural computation 4, 448 (1992).

10. Gal, Y. Uncertainty in deep learning. University of Cambridge 1,
3 (2016).

11. Lakshminarayanan, B., Pritzel, A. & Blundell, C. Simple and
scalable predictive uncertainty estimation using deep ensembles in
Advances in neural information processing systems (2017), 6402.

12. Wen, Y., Tran, D. & Ba, J. Batchensemble: an alternative
approach to efficient ensemble and lifelong learning. arXiv
preprint arXiv:2002.06715 (2020).

13. Depeweg, S., Hernandez-Lobato, J.-M., Doshi-Velez, F. & Ud-
luft, S. Decomposition of uncertainty in Bayesian deep learning for
efficient and risk-sensitive learning in International Conference on
Machine Learning (2018), 1184.

14. Postels, J., Ferroni, F., Coskun, H., Navab, N. & Tombari, F.
Sampling-free Epistemic Uncertainty Estimation Using Approxi-
mated Variance Propagation in Proceedings of the IEEE International
Conference on Computer Vision (2019), 2931.

15. Loquercio, A., Segu, M. & Scaramuzza, D. A general frame-
work for uncertainty estimation in deep learning. IEEE Robotics
and Automation Letters 5, 3153 (2020).

16. Gal, Y. & Ghahramani, Z. Dropout as a bayesian approximation:
Representing model uncertainty in deep learning in international
conference on machine learning (2016), 1050.

17. Teye, M., Azizpour, H. & Smith, K. Bayesian Uncertainty Estima-
tion for Batch Normalized Deep Networks in International Confer-
ence on Machine Learning (2018), 4907.

18. Maddox, W. J., Izmailov, P., Garipov, T., Vetrov, D. P. & Wil-
son, A. G. A simple baseline for bayesian uncertainty in deep
learning. Advances in neural information processing systems 32
(2019).

bibliography 120

19. Van Amersfoort, J., Smith, L., Teh, Y. W. & Gal, Y. Uncertainty
estimation using a single deep deterministic neural network in Inter-
national Conference on Machine Learning (2020), 9690.

20. Postels, J., Blum, H., Strümpler, Y., Cadena, C., Siegwart, R.,
Van Gool, L. & Tombari, F. The Hidden Uncertainty in a Neural
Networks Activations. arXiv preprint arXiv:2012.03082 (2020).

21. Mukhoti, J., Kirsch, A., van Amersfoort, J., Torr, P. H. & Gal, Y.
Deterministic Neural Networks with Appropriate Inductive
Biases Capture Epistemic and Aleatoric Uncertainty. arXiv
preprint arXiv:2102.11582 (2021).

22. Postels, J., Segu, M., Sun, T., Sieber, L. D., Van Gool, L., Yu,
F. & Tombari, F. On the practicality of deterministic epistemic
uncertainty in Proceedings of the 39th International Conference on
Machine Learning 162 (2022), 17870.

23. Venkataramanan, A., Benbihi, A., Laviale, M. & Pradalier, C.
Gaussian Latent Representations for Uncertainty Estimation using
Mahalanobis Distance in Deep Classifiers in Proceedings of the
IEEE/CVF International Conference on Computer Vision (2023),
4488.

24. Shin, S., Bae, W., Noh, J. & Choi, S. Towards Explainable Computer
Vision Methods via Uncertainty Activation Map in Asian Conference
on Pattern Recognition (2023), 1.

25. Mandelbaum, A. & Weinshall, D. Distance-based confi-
dence score for neural network classifiers. arXiv preprint
arXiv:1709.09844 (2017).

26. Liu, J. Z., Lin, Z., Padhy, S., Tran, D., Bedrax-Weiss, T. & Laksh-
minarayanan, B. Simple and principled uncertainty estimation
with deterministic deep learning via distance awareness. arXiv
preprint arXiv:2006.10108 (2020).

27. Dinh, L., Krueger, D. & Bengio, Y. Nice: Non-linear indepen-
dent components estimation. arXiv preprint arXiv:1410.8516
(2014).

bibliography 121

28. Dinh, L., Sohl-Dickstein, J. & Bengio, S. Density estimation us-
ing real nvp. International Conference on Learning Representaions
(2017).

29. Postels, J., Liu, M., Spezialetti, R., Van Gool, L. & Tombari, F.
Go with the flows: Mixtures of normalizing flows for point cloud
generation and reconstruction in 2021 International Conference on
3D Vision (3DV) (2021), 1249.

30. Kingma, D. P. & Dhariwal, P. Glow: Generative flow with invertible
1x1 convolutions in Advances in neural information processing
systems (2018), 10215.

31. Yang, G., Huang, X., Hao, Z., Liu, M.-Y., Belongie, S. & Har-
iharan, B. Pointflow: 3d point cloud generation with continuous
normalizing flows in Proceedings of the IEEE/CVF International
Conference on Computer Vision (2019), 4541.

32. Klokov, R., Boyer, E. & Verbeek, J. Discrete point flow networks for
efficient point cloud generation in European Conference on Computer
Vision (2020), 694.

33. Neal, R. M. Bayesian learning for neural networks (Springer Sci-
ence & Business Media, 2012).

34. Neal, R. M. et al. MCMC using Hamiltonian dynamics. Hand-
book of markov chain monte carlo 2, 2 (2011).

35. Hinton, G. E. & Van Camp, D. Keeping the neural networks simple
by minimizing the description length of the weights in Proceedings
of the sixth annual conference on Computational learning theory
(1993), 5.

36. Kingma, D. P., Salimans, T. & Welling, M. Variational dropout and
the local reparameterization trick in Advances in neural information
processing systems (2015), 2575.

37. Zhang, G., Sun, S., Duvenaud, D. & Grosse, R. Noisy natural
gradient as variational inference. arXiv preprint arXiv:1712.02390
(2017).

bibliography 122

38. Zhang, G., Sun, S., Duvenaud, D. & Grosse, R. Noisy natural
gradient as variational inference in International Conference on
Machine Learning (2018), 5852.

39. Osband, I., Wen, Z., Asghari, M., Ibrahimi, M., Lu, X. & Van
Roy, B. Epistemic neural networks. arXiv preprint arXiv:2107.08924
(2021).

40. Ritter, H., Botev, A. & Barber, D. A scalable laplace approximation
for neural networks in 6th International Conference on Learning
Representations, ICLR 2018-Conference Track Proceedings 6 (2018).

41. Lee, J., Humt, M., Feng, J. & Triebel, R. Estimating model uncer-
tainty of neural networks in sparse information form in International
Conference on Machine Learning (2020), 5702.

42. Sharma, A., Azizan, N. & Pavone, M. Sketching Curvature
for Efficient Out-of-Distribution Detection for Deep Neural
Networks. arXiv preprint arXiv:2102.12567 (2021).

43. Rupprecht, C., Laina, I., DiPietro, R., Baust, M., Tombari, F.,
Navab, N. & Hager, G. D. Learning in an uncertain world: Repre-
senting ambiguity through multiple hypotheses in Proceedings of the
IEEE International Conference on Computer Vision (2017), 3591.

44. Dusenberry, M., Jerfel, G., Wen, Y., Ma, Y., Snoek, J., Heller, K.,
Lakshminarayanan, B. & Tran, D. Efficient and scalable bayesian
neural nets with rank-1 factors in International conference on ma-
chine learning (2020), 2782.

45. Havasi, M., Jenatton, R., Fort, S., Liu, J. Z., Snoek, J., Laksh-
minarayanan, B., Dai, A. M. & Tran, D. Training independent
subnetworks for robust prediction in International Conference on
Learning Representations (2020).

46. Rame, A., Sun, R. & Cord, M. MixMo: Mixing Multiple Inputs
for Multiple Outputs via Deep Subnetworks. Proceedings of the
IEEE International Conference on Computer Vision (2021).

bibliography 123

47. Durasov, N., Bagautdinov, T., Baque, P. & Fua, P. Masksembles for
uncertainty estimation in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (2021), 13539.

48. Wang, H., Shi, X. & Yeung, D.-Y. Natural-parameter networks:
A class of probabilistic neural networks. Advances in neural
information processing systems 29 (2016).

49. Haußmann, M., Hamprecht, F. A. & Kandemir, M. Sampling-
free variational inference of bayesian neural networks by variance
backpropagation in Uncertainty in Artificial Intelligence (2020), 563.

50. Bishop, C. M. Mixture density networks. Aston University
(1994).

51. Hendrycks, D. & Gimpel, K. A baseline for detecting misclas-
sified and out-of-distribution examples in neural networks.
arXiv preprint arXiv:1610.02136 (2016).

52. Lee, K., Lee, H., Lee, K. & Shin, J. Training confidence-
calibrated classifiers for detecting out-of-distribution samples.
arXiv preprint arXiv:1711.09325 (2017).

53. Guo, C., Pleiss, G., Sun, Y. & Weinberger, K. Q. On calibration
of modern neural networks in Proceedings of the 34th International
Conference on Machine Learning-Volume 70 (2017), 1321.

54. Mandelbaum, A. & Weinshall, D. Distance-based confi-
dence score for neural network classifiers. arXiv preprint
arXiv:1709.09844 (2017).

55. Van Amersfoort, J., Smith, L., Teh, Y. W. & Gal, Y. Simple and
Scalable Epistemic Uncertainty Estimation Using a Single Deep
Deterministic Neural Network. arXiv preprint arXiv:2003.02037
(2020).

56. Van Amersfoort, J., Smith, L., Jesson, A., Key, O. & Gal, Y.
Improving Deterministic Uncertainty Estimation in Deep
Learning for Classification and Regression. arXiv preprint
arXiv:2102.11409 (2021).

bibliography 124

57. Huang, H., van Amersfoort, J. & Gal, Y. Decomposing Rep-
resentations for Deterministic Uncertainty Estimation. arXiv
preprint arXiv:2112.00856 (2021).

58. Ren, J., Fort, S., Liu, J., Roy, A. G., Padhy, S. & Lakshmi-
narayanan, B. A simple fix to mahalanobis distance for im-
proving near-ood detection. arXiv preprint arXiv:2106.09022
(2021).

59. Pimentel, M. A., Clifton, D. A., Clifton, L. & Tarassenko, L. A
review of novelty detection. Signal Processing 99, 215 (2014).

60. Chalapathy, R. & Chawla, S. Deep learning for anomaly detec-
tion: A survey. arXiv preprint arXiv:1901.03407 (2019).

61. Schlegl, T., Seeböck, P., Waldstein, S. M., Schmidt-Erfurth, U.
& Langs, G. Unsupervised anomaly detection with generative adver-
sarial networks to guide marker discovery in International conference
on information processing in medical imaging (2017), 146.

62. Li, D., Chen, D., Goh, J. & Ng, S.-K. Anomaly detection with
generative adversarial networks for multivariate time series.
arXiv preprint arXiv:1809.04758 (2018).

63. Škvára, V., Pevnỳ, T. & Šmídl, V. Are generative deep models
for novelty detection truly better? arXiv preprint arXiv:1807.05027
(2018).

64. Nalisnick, E., Matsukawa, A., Teh, Y. W., Gorur, D. & Laksh-
minarayanan, B. Do deep generative models know what they
don’t know? International Conference on Learning Representations
(2019).

65. Choi, H., Jang, E. & Alemi, A. A. Waic, but why? genera-
tive ensembles for robust anomaly detection. arXiv preprint
arXiv:1810.01392 (2018).

66. Nalisnick, E., Matsukawa, A., Teh, Y. W. & Lakshminarayanan,
B. Detecting Out-of-Distribution Inputs to Deep Generative
Models Using Typicality. arXiv preprint arXiv:1906.02994 (2019).

bibliography 125

67. Morningstar, W. R., Ham, C., Gallagher, A. G., Lakshmi-
narayanan, B., Alemi, A. A. & Dillon, J. V. Density of States
Estimation for Out-of-Distribution Detection. arXiv preprint
arXiv:2006.09273 (2020).

68. Ruff, L., Vandermeulen, R., Goernitz, N., Deecke, L., Siddiqui,
S. A., Binder, A., Müller, E. & Kloft, M. Deep one-class clas-
sification in International conference on machine learning (2018),
4393.

69. Papernot, N. & McDaniel, P. Deep k-nearest neighbors: To-
wards confident, interpretable and robust deep learning. arXiv
preprint arXiv:1803.04765 (2018).

70. Lee, K., Lee, K., Lee, H. & Shin, J. A simple unified framework
for detecting out-of-distribution samples and adversarial attacks in
Advances in Neural Information Processing Systems (2018), 7167.

71. Blum, H., Sarlin, P.-E., Nieto, J., Siegwart, R. & Cadena, C. The
fishyscapes benchmark: Measuring blind spots in semantic
segmentation. arXiv preprint arXiv:1904.03215 (2019).

72. Feng, J., Lee, J., Geisler, S., Gunnemann, S. & Triebel, R.
Topology-Matching Normalizing Flows for Out-of-Distribution
Detection in Robot Learning. arXiv preprint arXiv:2311.06481
(2023).

73. Alemi, A. A., Fischer, I. & Dillon, J. V. Uncertainty in the varia-
tional information bottleneck. arXiv preprint arXiv:1807.00906
(2018).

74. Alemi, A. A., Fischer, I., Dillon, J. V. & Murphy, K. Deep vari-
ational information bottleneck. Proceedings of the International
Conference on Learning Representations (ICLR) 2017 (2016).

75. Winkens, J., Bunel, R., Roy, A. G., Stanforth, R., Natarajan, V.,
Ledsam, J. R., MacWilliams, P., Kohli, P., Karthikesalingam,
A., Kohl, S., et al. Contrastive training for improved out-of-
distribution detection. arXiv preprint arXiv:2007.05566 (2020).

bibliography 126

76. Chen, T., Kornblith, S., Norouzi, M. & Hinton, G. A simple
framework for contrastive learning of visual representations in Inter-
national conference on machine learning (2020), 1597.

77. Achlioptas, P., Diamanti, O., Mitliagkas, I. & Guibas, L. Learn-
ing representations and generative models for 3d point clouds in
International conference on machine learning (2018), 40.

78. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-
Farley, D., Ozair, S., Courville, A. & Bengio, Y. Generative ad-
versarial nets in Advances in neural information processing systems
(2014), 2672.

79. Groueix, T., Fisher, M., Kim, V. G., Russell, B. C. & Aubry,
M. A papier-mâché approach to learning 3d surface generation in
Proceedings of the IEEE conference on computer vision and pattern
recognition (2018), 216.

80. Cai, R., Yang, G., Averbuch-Elor, H., Hao, Z., Belongie, S.,
Snavely, N. & Hariharan, B. Learning gradient fields for shape
generation in European Conference on Computer Vision (2020), 364.

81. Hyvärinen, A. & Dayan, P. Estimation of non-normalized sta-
tistical models by score matching. Journal of Machine Learning
Research 6 (2005).

82. Welling, M. & Teh, Y. W. Bayesian learning via stochastic gra-
dient Langevin dynamics in Proceedings of the 28th international
conference on machine learning (ICML-11) (2011), 681.

83. Song, Y. & Ermon, S. Generative modeling by estimating gra-
dients of the data distribution. Advances in Neural Information
Processing Systems 32 (2019).

84. Ho, J., Jain, A. & Abbeel, P. Denoising diffusion probabilistic
models. Advances in Neural Information Processing Systems 33,
6840 (2020).

85. Luo, S. & Hu, W. Diffusion probabilistic models for 3d point cloud
generation in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (2021), 2837.

bibliography 127

86. Pumarola, A., Popov, S., Moreno-Noguer, F. & Ferrari, V. C-flow:
Conditional generative flow models for images and 3d point clouds in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (2020), 7949.

87. Wei, Y., Vosselman, G. & Yang, M. Y. Flow-based GAN for 3D
point cloud generation from a single image. Proceedings of the
The British Machine Vision Conference (2022).

88. Mao, A., Du, Z., Hou, J., Duan, Y., Liu, Y.-j. & He, Y. PU-Flow:
A point cloud upsampling network with normalizing flows.
IEEE Transactions on Visualization and Computer Graphics (2022).

89. Mao, A., Du, Z., Wen, Y.-H., Xuan, J. & Liu, Y.-J. Pd-flow: A
point cloud denoising framework with normalizing flows in European
Conference on Computer Vision (2022), 398.

90. Kimura, T., Matsubara, T. & Uehara, K. Chartpointflow for
topology-aware 3d point cloud generation in Proceedings of the
29th ACM International Conference on Multimedia (2021), 1396.

91. Gemici, M. C., Rezende, D. & Mohamed, S. Normalizing
flows on riemannian manifolds. arXiv preprint arXiv:1611.02304
(2016).

92. Cunningham, E., Zabounidis, R., Agrawal, A., Fiterau, I. & Shel-
don, D. Normalizing flows across dimensions. arXiv preprint
arXiv:2006.13070 (2020).

93. Brehmer, J. & Cranmer, K. Flows for simultaneous manifold
learning and density estimation. Advances in Neural Information
Processing Systems 33, 442 (2020).

94. Mathieu, E. & Nickel, M. Riemannian continuous normalizing
flows. Advances in Neural Information Processing Systems 33, 2503

(2020).

95. Kim, H., Lee, H., Kang, W. H., Lee, J. Y. & Kim, N. S. Softflow:
Probabilistic framework for normalizing flow on manifolds.
Advances in Neural Information Processing Systems 33, 16388

(2020).

bibliography 128

96. Horvat, C. & Pfister, J.-P. Denoising Normalizing Flow. Ad-
vances in Neural Information Processing Systems 34 (2021).

97. Cramer, E., Rauh, F., Mitsos, A., Tempone, R. & Dahmen, M.
Nonlinear isometric manifold learning for injective normaliz-
ing flows. arXiv preprint arXiv:2203.03934 (2022).

98. Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A.-r.,
Jaitly, N., Senior, A., Vanhoucke, V., Nguyen, P., Sainath, T. N.,
et al. Deep neural networks for acoustic modeling in speech
recognition: The shared views of four research groups. IEEE
Signal processing magazine 29, 82 (2012).

99. Redmon, J., Divvala, S., Girshick, R. & Farhadi, A. You Only
Look Once: Unified, Real-Time Object Detection in 2016 IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR) (IEEE,
Las Vegas, NV, USA, 2016), 779.

100. Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schulman,
J. & Mané, D. Concrete problems in AI safety. arXiv preprint
arXiv:1606.06565 (2016).

101. Bozhinoski, D., Di Ruscio, D., Malavolta, I., Pelliccione, P. &
Crnkovic, I. Safety for mobile robotic systems: A systematic
mapping study from a software engineering perspective. Jour-
nal of Systems and Software 151, 150 (2019).

102. Janai, J., Güney, F., Behl, A. & Geiger, A. Computer vision for
autonomous vehicles: Problems, datasets and state-of-the-art.
arXiv preprint arXiv:1704.05519 (2017).

103. Wen, Y., Tran, D. & Ba, J. BatchEnsemble: An Alternative Ap-
proach to Efficient Ensemble and Lifelong Learning. ICLR
(2020).

104. Kiureghian, A. D. & Ditlevsen, O. Aleatory or epistemic? Does
it matter? Structural Safety 31, 105 (2009).

105. He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for
image recognition in Proceedings of the IEEE conference on computer
vision and pattern recognition (2016), 770.

bibliography 129

106. Hendrycks, D. & Dietterich, T. Benchmarking Neural Network
Robustness to Common Corruptions and Perturbations. Pro-
ceedings of the International Conference on Learning Representations
(2019).

107. LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based
learning applied to document recognition. Proceedings of the
IEEE 86, 2278 (1998).

108. Xiao, H., Rasul, K. & Vollgraf, R. Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms. arXiv
preprint arXiv:1708.07747 (2017).

109. Krizhevsky, A., Hinton, G., et al. Learning multiple layers of
features from tiny images. Citeseer (2009).

110. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B. & Ng, A. Y.
Reading Digits in Natural Images with Unsupervised Feature
Learning. Citeseer (2011).

111. Efron, B., Hastie, T., Johnstone, I., Tibshirani, R., et al. Least
angle regression. Annals of statistics 32, 407 (2004).

112. Detrano, R., Janosi, A., Steinbrunn, W., Pfisterer, M., Schmid,
J.-J., Sandhu, S., Guppy, K. H., Lee, S. & Froelicher, V. Inter-
national application of a new probability algorithm for the
diagnosis of coronary artery disease. The American journal of
cardiology 64, 304 (1989).

113. Harrison Jr, D. & Rubinfeld, D. L. Hedonic housing prices and
the demand for clean air. Journal of environmental economics and
management 5, 81 (1978).

114. Snoek, J., Ovadia, Y., Fertig, E., Lakshminarayanan, B., Nowozin,
S., Sculley, D., Dillon, J., Ren, J. & Nado, Z. Can you trust your
model’s uncertainty? Evaluating predictive uncertainty under
dataset shift in Advances in Neural Information Processing Systems
(2019), 13969.

bibliography 130

115. Ardizzone, L., Lüth, C., Kruse, J., Rother, C. & Köthe, U.
Guided image generation with conditional invertible neural
networks. arXiv preprint arXiv:1907.02392 (2019).

116. Kingma, D. P. & Ba, J. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

117. Blanchard, G., Lee, G. & Scott, C. Generalizing from several
related classification tasks to a new unlabeled sample. Advances
in neural information processing systems 24, 2178 (2011).

118. Muandet, K., Balduzzi, D. & Schölkopf, B. Domain generalization
via invariant feature representation in International Conference on
Machine Learning (2013), 10.

119. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D.,
Goodfellow, I. & Fergus, R. Intriguing properties of neural
networks. arXiv preprint arXiv:1312.6199 (2013).

120. Wenzel, F., Roth, K., Veeling, B. S., Światkowski, J., Tran, L.,
Mandt, S., Snoek, J., Salimans, T., Jenatton, R. & Nowozin,
S. How good is the bayes posterior in deep neural networks
really? arXiv preprint arXiv:2002.02405 (2020).

121. Wu, M. & Goodman, N. A Simple Framework for Uncertainty
in Contrastive Learning. arXiv preprint arXiv:2010.02038 (2020).

122. Charpentier, B., Zügner, D. & Günnemann, S. Posterior Net-
work: Uncertainty Estimation without OOD Samples via
Density-Based Pseudo-Counts. Advances in Neural Information
Processing Systems 33, 1356 (2020).

123. Charpentier, B., Borchert, O., Zügner, D., Geisler, S. & Günne-
mann, S. Natural Posterior Network: Deep Bayesian Predic-
tive Uncertainty for Exponential Family Distributions. arXiv
preprint arXiv:2105.04471 (2021).

124. Gasperini, S., Haug, J., Mahani, M.-A. N., Marcos-Ramiro, A.,
Navab, N., Busam, B. & Tombari, F. CertainNet: Sampling-free
uncertainty estimation for object detection. IEEE Robotics and
Automation Letters 7, 698 (2021).

bibliography 131

125. Ardizzone, L., Kruse, J., Wirkert, S., Rahner, D., Pellegrini,
E. W., Klessen, R. S., Maier-Hein, L., Rother, C. & Köthe, U.
Analyzing inverse problems with invertible neural networks.
arXiv preprint arXiv:1808.04730 (2018).

126. Nalisnick, E., Matsukawa, A., Teh, Y. W., Gorur, D. & Lakshmi-
narayanan, B. Hybrid models with deep and invertible features in
International Conference on Machine Learning (2019), 4723.

127. Ardizzone, L., Mackowiak, R., Rother, C. & Köthe, U. Train-
ing Normalizing Flows with the Information Bottleneck for
Competitive Generative Classification. Advances in Neural Infor-
mation Processing Systems 33 (2020).

128. Peters, J., Janzing, D. & Schölkopf, B. Elements of causal inference:
foundations and learning algorithms (The MIT Press, 2017).

129. Segù, M., Tonioni, A. & Tombari, F. Batch Normalization
Embeddings for Deep Domain Generalization. arXiv preprint
arXiv:2011.12672 (2020).

130. Obukhov, A., Rakhuba, M., Liniger, A., Huang, Z., Georgoulis,
S., Dai, D. & Van Gool, L. Spectral Tensor Train Parameterization
of Deep Learning Layers in International Conference on Artificial
Intelligence and Statistics (2021), 3547.

131. Miyato, T., Kataoka, T., Koyama, M. & Yoshida, Y. Spectral nor-
malization for generative adversarial networks. arXiv preprint
arXiv:1802.05957 (2018).

132. Singla, S. & Feizi, S. Bounding singular values of convolution
layers. arXiv preprint arXiv:1911.10258 (2019).

133. Rosca, M., Weber, T., Gretton, A. & Mohamed, S. A case for
new neural network smoothness constraints. arXiv preprint
arXiv:2012.07969 (2020).

134. Sedghi, H., Gupta, V. & Long, P. M. The singular values of
convolutional layers. arXiv preprint arXiv:1805.10408 (2018).

bibliography 132

135. Smith, L., van Amersfoort, J., Huang, H., Roberts, S. & Gal,
Y. Can convolutional ResNets approximately preserve input
distances? A frequency analysis perspective. arXiv preprint
arXiv:2106.02469 (2021).

136. Oord, A. v. d., Li, Y. & Vinyals, O. Representation learning with
contrastive predictive coding. arXiv preprint arXiv:1807.03748
(2018).

137. Jacobsen, J.-H., Smeulders, A. & Oyallon, E. i-revnet: Deep
invertible networks. arXiv preprint arXiv:1802.07088 (2018).

138. Behrmann, J., Grathwohl, W., Chen, R., Duvenaud, D. & Ja-
cobsen, J. Invertible residual networks. arXiv e-prints. arXiv
preprint arXiv:1811.00995 (2018).

139. Jain, M., Lahlou, S., Nekoei, H., Butoi, V., Bertin, P., Rector-
Brooks, J., Korablyov, M. & Bengio, Y. DEUP: Direct Epistemic
Uncertainty Prediction. arXiv preprint arXiv:2102.08501 (2021).

140. Nalisnick, E., Matsukawa, A., Teh, Y. W., Gorur, D. & Lakshmi-
narayanan, B. Do Deep Generative Models Know What They Don’t
Know? in International Conference on Learning Representations
(2018).

141. Rasmussen, C. E. Gaussian processes in machine learning in Sum-
mer school on machine learning (2003), 63.

142. Titsias, M. Variational learning of inducing variables in sparse
Gaussian processes in Artificial intelligence and statistics (2009),
567.

143. Hensman, J., Matthews, A. & Ghahramani, Z. Scalable varia-
tional Gaussian process classification in Artificial Intelligence and
Statistics (2015), 351.

144. Burt, D., Rasmussen, C. E. & Van Der Wilk, M. Rates of conver-
gence for sparse variational Gaussian process regression in Interna-
tional Conference on Machine Learning (2019), 862.

bibliography 133

145. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A. & Koltun, V.
CARLA: An Open Urban Driving Simulator in Proceedings of the
1st Annual Conference on Robot Learning (2017), 1.

146. Naeini, M. P., Cooper, G. & Hauskrecht, M. Obtaining well
calibrated probabilities using bayesian binning in Proceedings of the
AAAI Conference on Artificial Intelligence 29 (2015).

147. BRIER, G. W. VERIFICATION OF FORECASTS EXPRESSED
IN TERMS OF PROBABILITY. Monthly Weather Review 78, 1

(1950).

148. Vuk, M. & Curk, T. ROC curve, lift chart and calibration plot.
Metodoloski zvezki 3, 89 (2006).

149. Krizhevsky, A., Nair, V. & Hinton, G. The cifar-10 dataset.
online: http://www. cs. toronto. edu/kriz/cifar. html 55, 5 (2014).

150. LeCun, Y. The MNIST database of handwritten digits. http://yann.
lecun. com/exdb/mnist/ (1998).

151. Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M.,
Benenson, R., Franke, U., Roth, S. & Schiele, B. The Cityscapes
Dataset for Semantic Urban Scene Understanding in Proc. of the
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (2016).

152. Michaelis, C., Mitzkus, B., Geirhos, R., Rusak, E., Bringmann,
O., Ecker, A. S., Bethge, M. & Brendel, W. Benchmarking ro-
bustness in object detection: Autonomous driving when winter
is coming. arXiv preprint arXiv:1907.07484 (2019).

153. Sun, T., Segù, M., Postels, J., Wang, Y., Van Gool, L., Schiele,
B., Tombari, F. & Yu, F. SHIFT: A Synthetic Driving Dataset for
Continuous Multi-Task Domain Adaptation in Computer Vision and
Pattern Recognition (2022).

154. Yu, F. & Koltun, V. Multi-scale context aggregation by dilated con-
volutions in International Conference on Learning Representations
(ICLR) (2016).

bibliography 134

155. Yu, F., Koltun, V. & Funkhouser, T. Dilated Residual Networks in
Computer Vision and Pattern Recognition (CVPR) (2017).

156. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V. &
Courville, A. Improved training of wasserstein gans. arXiv
preprint arXiv:1704.00028 (2017).

157. Daunizeau, J. Semi-analytical approximations to statistical mo-
ments of sigmoid and softmax mappings of normal variables.
arXiv preprint arXiv:1703.00091 (2017).

158. Kingma, D. P. & Welling, M. Auto-encoding variational bayes.
arXiv preprint arXiv:1312.6114 (2013).

159. Chen, X. & Konukoglu, E. Unsupervised detection of lesions in
brain MRI using constrained adversarial auto-encoders. arXiv
preprint arXiv:1806.04972 (2018).

160. Lugmayr, A., Danelljan, M., Gool, L. V. & Timofte, R. Srflow:
Learning the super-resolution space with normalizing flow in Euro-
pean conference on computer vision (2020), 715.

161. Arroyo, D. M., Postels, J. & Tombari, F. Variational transformer
networks for layout generation in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (2021),
13642.

162. Grathwohl, W., Chen, R. T., Bettencourt, J., Sutskever, I. &
Duvenaud, D. FFJORD: Free-Form Continuous Dynamics for Scal-
able Reversible Generative Models in International Conference on
Learning Representations (2018).

163. Behrmann, J., Grathwohl, W., Chen, R. T., Duvenaud, D. &
Jacobsen, J.-H. Invertible residual networks in International Confer-
ence on Machine Learning (2019), 573.

164. Kanwar, G., Albergo, M. S., Boyda, D., Cranmer, K., Hackett,
D. C., Racaniere, S., Rezende, D. J. & Shanahan, P. E. Equiv-
ariant flow-based sampling for lattice gauge theory. Physical
Review Letters 125, 121601 (2020).

bibliography 135

165. Kazhdan, M., Bolitho, M. & Hoppe, H. Poisson surface recon-
struction in Proceedings of the fourth Eurographics symposium on
Geometry processing 7 (2006).

166. Berger, M., Tagliasacchi, A., Seversky, L. M., Alliez, P., Guen-
nebaud, G., Levine, J. A., Sharf, A. & Silva, C. T. A survey
of surface reconstruction from point clouds in Computer Graphics
Forum 36 (2017), 301.

167. Chang, A. X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang,
Q., Li, Z., Savarese, S., Savva, M., Song, S., Su, H., Xiao, J., Yi, L.
& Yu, F. ShapeNet: An Information-Rich 3D Model Repository tech.
rep. arXiv:1512.03012 [cs.GR] (Stanford University — Princeton
University — Toyota Technological Institute at Chicago, 2015).

168. Knapitsch, A., Park, J., Zhou, Q.-Y. & Koltun, V. Tanks and
temples: Benchmarking large-scale scene reconstruction. ACM
Transactions on Graphics (ToG) 36, 1 (2017).

169. Qi, C. R., Su, H., Mo, K. & Guibas, L. J. Pointnet: Deep learning
on point sets for 3d classification and segmentation in Proceedings
of the IEEE conference on computer vision and pattern recognition
(2017), 652.

170. Ramachandran, P., Zoph, B. & Le, Q. V. Searching for activation
functions. arXiv preprint arXiv:1710.05941 (2017).

171. Zhou, Q.-Y., Park, J. & Koltun, V. Open3D: A Modern Library
for 3D Data Processing. arXiv:1801.09847 (2018).

172. Liu, Z., Luo, P., Wang, X. & Tang, X. Deep Learning Face At-
tributes in the Wild in Proceedings of International Conference on
Computer Vision (ICCV) (2015).

173. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B. & Hochre-
iter, S. Gans trained by a two time-scale update rule converge
to a local nash equilibrium. Advances in neural information pro-
cessing systems 30 (2017).

bibliography 136

174. Park, J. J., Florence, P., Straub, J., Newcombe, R. & Lovegrove,
S. DeepSDF: Learning Continuous Signed Distance Functions
for Shape Representation. Conference on Computer Vision and
Pattern Recognition (CVPR) (2019).

175. Luo, S. & Hu, W. Score-based point cloud denoising in Proceed-
ings of the IEEE/CVF International Conference on Computer Vision
(2021), 4583.

176. Schall, O., Belyaev, A. & Seidel, H.-P. Robust filtering of noisy
scattered point data in Proceedings Eurographics/IEEE VGTC Sym-
posium Point-Based Graphics, 2005. (2005), 71.

177. Kingma, D. P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever,
I. & Welling, M. Improved variational inference with inverse
autoregressive flow. Advances in neural information processing
systems 29 (2016).

178. Perez, E., Strub, F., De Vries, H., Dumoulin, V. & Courville, A.
Film: Visual reasoning with a general conditioning layer in Proceed-
ings of the AAAI Conference on Artificial Intelligence 32 (2018).

179. Tran, D., Liu, J., Dusenberry, M. W., Phan, D., Collier, M., Ren,
J., Han, K., Wang, Z., Mariet, Z., Hu, H., et al. Plex: Towards re-
liability using pretrained large model extensions. arXiv preprint
arXiv:2207.07411 (2022).

C U R R I C U L U M V I TA E

personal data

Name Janis Gerhard Postels
Date of Birth June 10, 1990

Place of Birth Wilhelmshaven, Germany
Citizen of Germany

education

2020 – 2024 ETH Zürich, Zürich, Switzerland
Final degree: Doctor of Sciences

2017 – 2019 TU München, München, Germany
Final degree: Master of Science

2011 – 2016 Universität Heidelberg, Heidelberg, Germany
Final degree: Bachelor of Science

professional experience

2023 NLP Quantitative Research Intern, G-Research,
London, United Kingdom

2019 – 2020 Research Scientist, Qualcomm AI Research,
Amsterdam, Netherlands

2018 – 2019 Master Thesis, Autonomous Intelligent Driving,
München, Germany

2018 Working Student, E-bot7, München, Germany

2018 Working Student, Allianz, München, Germany

2016-2017 IT Consultant, SPECTRUM AG,
Stuttgart, Germany

137

bibliography 138

publications

Janis Postels, Yannick Strümpler, Klara Reichard, Luc Van Gool and
Federico Tombari. “3D Compression Using Neural Fields”. In: arXiv
e-prints, abs/2311.13009 2023

Mengya Liu, Ajad Chhatkuli, Janis Postels, Luc Van Gool and Fed-
erico Tombari. “Unsupervised Template Warp Consistency for Im-
plicit Surface Correspondences”. In: Computer Graphics Forum 2023

Yannick Strümpler∗, Janis Postels∗, Ren Yang, Luc Van Gool and
Federico Tombari. “Implicit Neural Representations for Image Com-
pression”. In: ECCV 2022

Janis Postels, Martin Danelljan, Luc Van Gool, and Federico Tombari.
“ManiFlow: Implicitly Representing Manifolds with Normalizing
Flows”. In: 3DV 2022

Janis Postels*, Mattia Segu*, Tao Sun, Luca Sieber, Luc Van Gool,
Fisher Yu and Federico Tombari. “On the Practicality of Deterministic
Epistemic Uncertainty”. In: ICML 2022

Tao Sun*, Mattia Segu*, Janis Postels, Yuxuan Wang, Luc Van Gool,
Bernt Schiele, Federico Tombari and Fisher Yu. “SHIFT: A Synthetic
Driving Dataset for Continuous Multi-Task Domain Adaptation”. In:
CVPR 2022

Janis Postels∗, Mengya Liu∗, Riccardo Spezialetti, Luc Van Gool and
Federico Tombari. “Go with the Flows: Mixtures of Normalizing
Flows for Point Cloud Generation and Reconstruction”. In: 3DV 2021

Diego Martin Arroyo, Janis Postels, and Federico Tombari. “Vari-
ational Transformer Networks for Layout Generation”. In: CVPR
2021

Matthäus Heer, Janis Postels, Xiaoran Chen, Ender Konukoglu and
Shadi Albarqouni. “The OOD Blind Spot of Unsupervised Anomaly
Detection”. In: MIDL 2021

bibliography 139

Janis Postels∗, Hermann Blum∗, Yannick Strümpler, Cesar Cadena,
Roland Siegwart, Luc Van Gool, and Federico Tombari. “The Hidden
Uncertainty in a Neural Networks Activations”. In: arXiv e-prints,
abs/2012.03082, 2020

Janis Postels, Francesco Ferroni, Huseyin Coskun, Nassir Navab and
Federico Tombari. “Sampling-free Epistemic Uncertainty Estimation
Using Approximated Variance Propagation”. In: ICCV 2019

	Abstract
	Zusammenfassung
	Publications
	Acknowledgements
	Contents
	1 Introduction
	1.1 Deterministic Uncertainty Quantification
	1.2 Normalizing Flows for 3D Point Clouds

	2 Related Work
	2.1 Uncertainty Quantification
	2.2 Normalizing Flows for 3D Point Clouds

	3 The Hidden Uncertainty in a Neural Network’s Activations
	3.1 Introduction
	3.2 Uncertainty from Informative Representations
	3.3 Experiments
	3.4 Conclusion
	3.5 Appendices

	4 On the Practicality of Deterministic Epistemic Uncertainty
	4.1 Introduction
	4.2 Taxonomy for Deterministic Uncertainty Quantification
	4.3 Experiments
	4.4 Conclusion
	4.5 Appendices

	5 ManiFlow: Implicitly Representing Manifolds with Normalizing Flows
	5.1 Introduction
	5.2 Method
	5.3 Experiments
	5.4 Conclusion
	5.5 Appendices

	6 Conclusion
	6.1 Contributions
	6.2 Outlook

	 Bibliography
	Curriculum Vitae

